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Abstract

Deep neural network models have helped
named entity recognition achieve amazing per-
formance without handcrafting features. How-
ever, existing systems require large amounts of
human annotated training data. Efforts have
been made to replace human annotations with
external knowledge (e.g., NE dictionary, part-
of-speech tags), while it is another challenge
to obtain such effective resources. In this
work, we propose a fully unsupervised NE
recognition model which only needs to take in-
formative clues from pre-trained word embed-
dings. We first apply Gaussian Hidden Markov
Model and Deep Autoencoding Gaussian Mix-
ture Model on word embeddings for entity
span detection and type prediction, and then
further design an instance selector based on
reinforcement learning to distinguish positive
sentences from noisy sentences and then refine
these coarse-grained annotations through neu-
ral networks. Extensive experiments on two
CoNLL benchmark NER datasets (CoNLL-
2003 English dataset and CoNLL-2002 Span-
ish dataset) demonstrate that our proposed
light NE recognition model achieves remark-
able performance without using any annotated
lexicon or corpus.

1 Introduction

Named Entity (NE) recognition is a major natural
language processing task that intends to identify
words or phrases that contain the names of PER
(Person), ORG (Organization), LOC (Location),
etc. Recent advances in deep neural models allow
us to build reliable NE recognition systems (Lam-
ple et al., 2016; Ma and Hovy, 2016; Liu et al.,
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2018; Yang and Zhang, 2018; Luo et al., 2020; Luo
and Zhao, 2020). However, these existing methods
require large amounts of manually annotated data
for training supervised models. There have been
efforts to deal with the lack of annotation data in
NE recognition, (Talukdar and Pereira, 2010) train
a weak supervision model and use label propaga-
tion methods to identify more entities of each type;
(Shen et al., 2017) employ Deep Active Learning
to efficiently select the set of samples for labeling,
thus greatly reduce the annotation budget; (Ren
et al., 2015; Shang et al., 2018; Fries et al., 2017;
Yang et al., 2018b; Jie et al., 2019) use partially
annotated data or external resources such as NE
dictionary, knowledge base, POS tags as a replace-
ment of hand-labeled data to train distant supervi-
sion systems. However, these methods still have
certain requirements for annotation resources. Un-
supervised models have achieved excellent results
in the fields of part-of-speech induction (Lin et al.,
2015; Stratos et al., 2016), dependency parsing (He
et al., 2018; Pate and Johnson, 2016), etc. Whereas
the development of unsupervised NE recognition is
still kept unsatisfactory. (Liu et al., 2019) design a
Knowledge-Augmented Language Model for unsu-
pervised NE recognition, they perform NE recog-
nition by controlling whether a particular word is
modeled as a general word or as a reference to an
entity in the training of language models. However,
their model still requires type-specific entity vocab-
ularies for computing the type probabilities and the
probability of the word under given type.

Early unsupervised NE systems relied on labeled
seeds and discrete features (Collins and Singer,
1999), open web text (Etzioni et al., 2005; Nadeau
et al., 2006), shallow syntactic knowledge (Zhang
and Elhadad, 2013), etc. Word embeddings learned
from unlabeled text provide representation with
rich syntax and semantics and have shown to be
valuable as features in unsupervised learning prob-
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lems (Lin et al., 2015; He et al., 2018). In this
work, we propose an NE recognition model with
word embeddings as the unique feature source. We
separate the entity span detection and entity type
prediction into two steps. We first use Gaussian
Hidden Markov Model (Gaussian-HMM) to learn
the latent Markov process among NE labels with
the IOB tagging scheme and then feed the candi-
date entity mentions to a Deep Autoencoding Gaus-
sian Mixture Model (DAGMM) (Zong et al., 2018)
for their entity types. We further apply BiLSTM
and an instance selector based on reinforcement
learning (Yang et al., 2018b; Feng et al., 2018) to
refine annotated data. Different from existing dis-
tant supervision systems (Ren et al., 2015; Fries
et al., 2017; Shang et al., 2018; Feng et al., 2018),
which generate labeled data from NE lexicons or
knowledge base which are still from human an-
notation, our model may be further enhanced by
automatically labeling data with Gaussian-HMM
and DAGMM.

The contribution of this paper is that we propose
a fully unsupervised NE recognition model that
depends on no external resources or annotation
data other than word embeddings. The empirical
results show that our model achieves remarkable
results on CoNLL-2003 English and CoNLL-2002
Spanish benchmark datasets.

The rest of this paper is organized as follows.
The next section introduces our proposed basic
model in detail. Section 3 further gives a refinement
model. Experimental results are reported in Section
4, followed by related work in Section 5. The last
section concludes this paper.

2 Model

As shown in Figure 1, the first layer of the model is
a two-class clustering layer, which initializes all the
words in the sentences with 0 and 1 tags, where 0
and 1 represent non-NE and NE, respectively. The
second layer is a Gaussian-HMM used to gener-
ate the boundaries of an entity mention with IOB
tagging (Inside, Outside and Beginning). The rep-
resentation of each candidate entity span is further
fed into a Deep Autoencoding Gaussian Mixture
Model (DAGMM) to identify the entity types.

2.1 Clustering

The objective of training word embeddings is to
let words with similar context occupy close spatial
positions. (Seok et al., 2016) conduct experiments

on the nearest neighbors of NEs and discover that
similar NEs are more likely to be their neighbors,
since NEs are more similar in position in the corpus
and syntactically and semantically related. Based
on the discoveries above, we perform K-Means
clustering algorithm on the word embeddings of
the whole vocabulary. According to the clusters,
we assign words in the cluster with fewer words 1
tags, and the other cluster 0 tags (according to the
statics of (Jie et al., 2019), the proportion of NEs
is very small on CoNLL datasets), and generate a
coarse NE dictionary using the words with 1 tag.

2.2 Gaussian HMM
Hidden Markov model is a classic model for NE
recognition (Zhou and Su, 2002; Zhao, 2004), since
hidden transition matrix exists in the IOB format of
the NE labels (Sarkar, 2015). We follow the Gaus-
sian hidden Markov model introduced by (Lin et al.,
2015; He et al., 2018). Given a sentence of length
l, we denote the latent NE labels as z = {zi}li=1,
the cluster embeddings as v = {vi}li=1, observed
(pre-trained) word embeddings as x = {xi}li=1,
transition parameters as θ. The joint distribution of
observations and latent labels is given as following:

p(z, x, v; θ) =
l∏

i=1

p(zi|zi−1; θ)p(xi|zi)p(vi|zi)

(1)
where p(zi|zi−1; θ) is the multinomial transition
probability, p(xi|zi) is the multivariate emission
probability, which represents the probability of a
particular label generating the embedding at posi-
tion i.

Cluster features (0, 1 tags) carry much word-
level categorization information and can indicate
the distribution representation, which we map to
3-dimension cluster embeddings v ∈ R2×3. We ini-
tialize v2×3 as [[1, 0, 0], [0, 0.5, 0.5]] (correspond-
ing to O, I, B tag, respectively), which means that if
the cluster tag of a word is 0, we initialize the word
with all the probability of being O tag, otherwise
it will be half of the probability of being B or I
tag. p(vi|zi) is obtained through this lookup table,
and we fine-tune the cluster embeddings during the
training.

.
Gaussian emissions Given a label z ∈ {B, I,O},
we adopt multivariate Gaussian distribution with
mean µz and covariance matrix Σz as the emission
probability. The conditional probability density is
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Figure 1: Architecture of the unsupervised NE recognition model. The left part is designed for entity span detection
and the right part is used for entity type prediction.

in a form as:

p(x;µz,Σz) =
exp(−1

2(x− µz)TΣ−1
z (x− µz))√

(2π)d|Σz|
(2)

where d is the dimension of the embeddings, | · |
denotes the determinant of a matrix. The equation
assumes that embeddings of words labeled as z are
concentrated around the point µz , and the concen-
tration is attenuated according to the covariance
matrix Σz .

The joint distribution over a sequence of obser-
vations x, cluster sequence v and the latent label
sequence z is:

p(z, x, v; θ, µt,Σt) =

l∏
i=1

p(zi|zi−1; θ)p(x;µz,Σz)p(vi|zi)
(3)

We use forward algorithm to calculate the probabil-
ity of x which we maximize during training.

We present two techniques to refine the output
of Gaussian-HMM.

Single-word NEs We check the experimental
results of Gaussian-HMM and discover that they
perform well on the recognition of multi-word
NEs, but inferiorly on single-word NEs, which
incorrectly gives many false-positive labels, so we

need to do further word-level discrimination. For a
single-word NE identified by the above model, if it
is less than half of the probability of being marked
as an NE in the corpus and does not appear in the
coarse NE dictionary generated in the clustering
step, then we modify it to a non-NE type. Through
this modification, the precision is greatly improved
without significantly reducing the recall.

High-Quality phrases Another issue of the
above models is the false-negative labels, a long
NE may be divided into several short NEs, in which
case we need to merge them with phrase matching.
We adopt a filter to determine high quality phrases
according to word co-occurrence information in
the corpus:

p(wordlast, wordcurrent)

p(wordlast) ∗ p(wordcurrent)
∗ n > T (4)

where p(·) represents the frequency of one word
appearing in the corpus, n is the total number of
words and T is the threshold, which is set as the
default value in word2vec1 for training phrase em-
beddings. The intuition behind this is that if the
ratio of the co-occurrence frequency of two adja-
cent words to their respective frequencies is greater
than the threshold, then we consider that these two

1https://code.google.com/archive/p/word2vec
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words are likely to form a phrase. Being aware of
these high-quality phrases, we expect to enhance
the recall of our model.

After obtaining the candidate entity span men-
tions, we represent them by separating words in
them into two parts, the boundary and the internal
(Sohrab and Miwa, 2018). The boundary part is
important to capture the contexts surrounding the
region, we directly take the word embedding as
its representation. For the internal part, we simply
average the embedding of each word to treat them
equally. In summary, given the word embeddings
x, we obtain the representation u of NE(i, j) as
follows:

u = NE(i, j) = [xi;
1

j − i+ 1

j∑
k=i

xk;xj ] (5)

2.3 DAGMM
After obtaining the candidate entity mentions, we
need to further identify their entity types. Gaussian
Mixture Model (GMM) is adopted to learn the dis-
tribution of each entity type. Experimental result
of (Zong et al., 2018) suggested to us that it is more
efficient to perform density estimation in the low-
dimensional space, in which case the distribution
of words are denser and more suitable for GMM.
Therefore, we adopt Deep Autoencoding Gaussian
Mixture Model (DAGMM) (Zong et al., 2018) to
identify NE types. DAGMM consists of two ma-
jor components: compression network utilizes a
deep autoencoder to perform dimension reduction
and concatenate the reduced low-dimensional rep-
resentation and the reconstruction error features
as the representations for the estimation network;
The estimation network takes the low-dimension
representation as input, and uses GMM to perform
density estimation.

Compression network contains an encoder
function for dimension reduction and a decode
function for reconstruction, both of which are multi-
layer perceptron (MLP), and we use tanh function
as the activation function. Given NE representation
u, the compression generates its low-dimensional
representation t as follows.

te = MLP (u; θe) u′ = MLP (te; θd)

tr = f(u, u′) t = [te, tr]
(6)

where θe and θd are respectively the parameters
of the encoder and decoder, u′ is the reconstruc-
tion counterpart of u, f(·) denotes the reconstruc-
tion error, we take the concatenation of relative

Euclidean distance and cosine similarity as tr in
our experiment. t is then fed into the input layer of
estimation network. Intuitively, we need to make
the reconstruction error low to ensure that the low-
dimensional representations preserve the key infor-
mation of the NE representations. Thus the recon-
struction error is taken as part of the loss function
and is designed as the L2-norm.

L(ui, u
′
i) = ‖ui − u′i‖22 (7)

Estimation network contains an MLP to pre-
dict the mixture membership for each instance and
a GMM with unknown mixture-component distri-
bution φ, mixture means µ and covariance matrix
Σ for density prediction. During the training phase,
the estimation network estimates the parameters of
GMM and evaluates the likelihood for the instances.
Given the low-dimensional representation t and the
number of entity types K as the number of mixture
components, MLP maps the representation to the
K-dimension space:

m = MLP (t; θm)

γ̂ = softmax(m)
(8)

where θm is the parameter of MLP, γ̂ is a K-
dimension vector for the soft mixture-component
membership prediction. The estimation network
estimates the parameters of GMM as follows (∀1 ≤
k ≤ K),

φ̂k =

N∑
i=1

γ̂ik
N
, µ̂k =

∑N
i=1 γ̂ikti∑N
i=1 γ̂ik

Σ̂k =

∑N
i=1 γ̂ik(ti − µ̂k)(ti − µ̂k)T∑N

i=1 γ̂ik

(9)

where γ̂i is the membership prediction for ti, and
φ̂k, µ̂k, σ̂k are mixture probability, mean, covari-
ance for component k in GMM, respectively.

The likelihood for the instance is inferred by

E(t) = −log(

K∑
k=1

φ̂k
exp(−1

2(t− µ̂k)T Σ̂−1
k (t− µ̂k)√

(2π)d|Σ̂k|
)

(10)
To avoid the diagonal entries in covariance ma-

trices degenerating to 0, we penalize small values
on the diagonal entries by

p(Σ̂) =

K∑
k=1

d∑
j=1

1

Σ̂kjj

(11)
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Figure 2: The framework of the reinforcement learning model, which consists of two parts. The left instance
selector filters sentences according to a policy function, and then the selected sentences are used to train a better
NE tagger. The instance selector updates its parameters based on the reward computed from NE tagger.

where d is the dimension of the t.
During training, we minimize the joint objective

function:

J(θe, θd, θm) =
1

N

N∑
i=1

L(ui, u
′
i)

+
λ1

N

N∑
i=1

E(ti) + λ2P (Σ̂)

(12)

where λ1 and λ2 are two user-tunable parameters.
The final output is the result of K (the number

of entity types) classification. We can only iden-
tify whether a word is an NE and whether several
NEs are of the same category, since the entity type
names as any other user-defined class/cluster/type
names are just a group of pre-defined symbols by
subjective naming. Therefore, following most work
of unsupervised part-of-speech induction such as
(Lin et al., 2015), we use matching to determine the
corresponding entity category of each class, just
for evaluation.

3 Refinement

The annotations obtained from the above procedure
are noisy, we apply Reinforcement Learning (RL)
(Feng et al., 2018; Yang et al., 2018b) to distinguish
positive sentences from noisy sentences and refine
these coarse-grained annotations. The RL model

has two modules: an NE tagger and an instance
selector.

3.1 NE tagger

Given the annotations generated by the above
model, we take it as the noisy annotated label to
train the NE tagger. Following (Lample et al., 2016;
Yang et al., 2018a; Yang and Zhang, 2018), we em-
ploy bi-directional Long Short-Term Memory net-
work (BiLSTM) for sequence labeling. In the input
layer, we concatenate the word-level and character-
level embedding as the joint word representation.
We employ BiLSTM as the encoder, the concatena-
tion of the forward and backward network output
features [

−→
hk,
←−
hk] is fed into an MLP, and then feed

the output of MLP to a CRF layer.
CRF (Lafferty et al., 2001) has been included in

most sota models, which captures label dependen-
cies by adding transition scores between adjacent
labels. During the decoding process, the Viterbi
algorithm is used to search the label sequence with
the highest probability. Given a sentence of length
l, we denote the input sequence x = {x1, ..., xl},
where xi stands for the ith word in sequence x.
For y = {y1, ..., yl} being a predicted sequence of
labels for x. We define its score as

score(x, y) =

l−1∑
i=0

Tyi,yi+1 +
l∑

i=1

Pi,yi (13)
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where Tyi,yi+1 represents the transmission score
from the yi to yi+1, Pi,yi is the score of the ith tag
of the ith word from the BiLSTM.

A softmax over all possible tag sequences in the
sentences generates a probability for the sequence
y:

p(y|x) =
escore(x,y)∑
ỹ∈Y e

score(x,ỹ)
(14)

where Y is the set of all possible tag sequences.
During the training, we consider the maximum log-
likelihood of the correct NE tag sequence. While
decoding, we predict the optimal sequence which
achieves the maximum score:

y∗ = arg max
ỹ∈Y

score(x, ỹ) (15)

3.2 Instance Selector
The instance selection is a reinforcement learn-
ing process, where the instance selector acts as
the agent and interacts with the environment (sen-
tences) and the NE tagger, as shown in Figure 2.
Given all the sentences, the agent takes an action
to decide which sentence to select according to a
policy network at each state, and receives a reward
from the NE tagger when a batch of N sentences
have been selected.

State representation. We follow the work of
(Yang et al., 2018b) and represent the state sj as
the concatenation of the serialized vector represen-
tations from BiLSTM and the label scores from the
MLP layer.

Policy network. The agent makes an action aj
from set of {0, 1} to indicate whether the instance
selector will select the jth sentence. We adopt a
logistic function as the policy function:

A(sj , aj) = aiσ(W ∗ sj + b)

+ (1− aj)(1− σ(W ∗ sj + b))
(16)

where W and b are the model parameters, and σ(·)
stands for the logistic function.

Reward. The reward function indicates the abil-
ity of the NE tagger to predict labels of the selected
sentences and only generates a reward when all
the actions of the selected N sentences have been
completed,

r =
1

N
(
∑

x,y∈H̃

log p(y|x)) (17)

where H̃ represents the set of selectedN sentences.

Training During the training phase, we optimize
the policy network to maximize the reward of the
selected sentences. The parameters are updated as
follows,

Θ = Θ + α

N∑
j=1

r∇Θ logA(sj , aj) (18)

where α is the learning rate and Θ is the parameter
of the instance selector.

We train the NE tagger and instance selector
iteratively. In each round, the instance selector
first selects sentences from the training data, and
then the positive sentences are used to train the
NE tagger, the tagger updates the reward to the
selector to optimize the policy function. Different
from the work of (Yang et al., 2018b), we relabel
the negative sentences by the NE tagger after each
round, and merge them with the positive sentences
for the next selection.

4 Experiments

We conduct experiments 2 on two standard NER
datasets: CoNLL 2003 English dataset (Tjong
Kim Sang and De Meulder, 2003) and CoNLL
2002 Spanish dataset (Tjong Kim Sang, 2002) that
consist of news articles. These datasets contain
four entity types: LOC (location), MISC (miscel-
laneous), ORG (organization), and PER (person).
We adopt the standard data splitting and use the
micro-averaged F1 score as the evaluation metric.

4.1 Setup

Pre-trained Word Embeddings. For the CoNLL
2003 dataset, we use the pre-trained 50D SENNA
embeddings released by (Collobert et al., 2011)
and 100D GloVe (Pennington et al., 2014) embed-
dings for clustering and training, respectively. For
CoNLL 2002 Spanish dataset, we train 64D GloVe
embeddings with the minimum frequency of occur-
rence as 5, and the window size of 5.
Parameters and Model Training. For DAGMM,
the hidden dimensions for compression network
and estimation network are [75, 15] and 10, respec-
tively. For NE Tagger, we follow the work of (Yang
and Zhang, 2018) and use the default experimental
settings. We conduct optimization with the stochas-
tic gradient descent, the learning rate is initially set
to 0.015 and will shrunk by 5% after each epoch.
The number of selected sentences at each time is set

2Code is available at: https://github.com/cslydia/uNER.
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EN SP

Pre Rec F1 Pre Rec F1

(Lample et al., 2016) LSTM-CRF 91.0 90.8 90.9 85.7 85.8 85.8

(Jie et al., 2019) IA-Training0 89.0 90.1 89.5 81.3 82.7 82.0

(Liu et al., 2019)
Dict 1 - - 72 - - -

Dict +P (τ |y)2 - - 76 - - -

(Shang et al., 2018)
Dict-Training3 75.18 79.71 77.38 22.11 70.89 33.71

Handcraft 23.45 26.38 24.83 - - -
SENNA 7.09 7.0 7.036 - - -

Ours

basic4 62.57 56.83 60.76 45.35 53.41 49.05
LSTM-CRF 73.15 60.02 65.94 49.99 56.76 53.16

LSTM-CRF + RL5 74.25 63.51 68.64 50.61 58.36 54.31

Table 1: Main results of NE recognition on CoNLL 2003 English (EN) and CoNLL 2002 Spanish (SP) datasets.
Superscript annotations: 0: represents incomplete annotations in training data. 1: type-specific entity vocabularies
extracted from WikiText-2. 2: a prior type information which was pre-computed from entity popularity information.
3: these three represent the lexicon extracted from training data, human annotated lexicon from Wikipedia corpus
and SENNA lexicon. 4: Our basic ouput from GMM without refinement. 5: +RL: add reinforcement learning with
instance selector.

as 10. Dropout (Srivastava et al., 2014) of a ratio
0.5 is applied for embeddings and hidden states.

4.2 Compared Methods

Supervised benchmarks on each dataset are rep-
resented to show the gap between supervised and
our unsupervised model without any annotation
data or external resources. LSTM-CRF (Lample
et al., 2016) is the state-of-the-art supervised NE
recognition model.

(Jie et al., 2019) propose an approach to tackle
the incomplete annotation problem. This work in-
troduces q distribution to model missing labels in-
stead of traditionally uniform distribution for all
possible complete label sequences, and uses k-fold
cross-validation for estimating q. They report the
result of keeping 50% of all the training data and re-
moving the annotations of the rest entities together
with the O labels for non-NEs.

(Liu et al., 2019) proposes a Knowledge-
Augmented Language Model (KALM), which rec-
ognizes NEs during training language models.
Given type-specific entity vocabularies and the gen-
eral vocabulary, KALM computes the entity proba-
bility of the next word according to its context. This
work extracts 11,123 vocabularies from WikiText-2
as the knowledge base. WikiText-2 is a standard
language modeling dataset and covers 92.80% of

entities in CoNLL 2003 dataset.

Category SENNA Handcraft
Location 36,697 213,318
Miscellaneous 4,722 -
Organization 6,440 11,749
Person 123,283 80,050
Total 171,142 305,117

Table 2: Number of entries for each category in lexi-
cons for (Shang et al., 2018) for comparisons with our
model, which need no lexicon.

(Shang et al., 2018) propose a distant supervision
NE recognition model AutoNER using domain-
specific dictionaries. This work designs a Tie or
Break tagging scheme that focuses on the ties be-
tween adjacent tokens. Accordingly, AutoNER
is designed to distinguish Break from Tie while
skipping unknown positions. The authors report
their evaluation results on datasets from a specific
domain and their method needs necessary support
from an NE lexicon. For better comparisons, we
use the lexicon from the training data, the SENNA
lexicon presented by (Collobert et al., 2011) and
our handcraft lexicon 3 as the domain-specific dic-
tionary to re-implement their work on CoNLL-
2003 English dataset, the size of each category

3This dictionary is mainly based on Wikipedia corpus.
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LOC MISC ORG PRR overall

basic 0.75 0.67 0.64 0.83 0.72
P (τ |y) 0.81 0.67 0.65 0.88 0.76

Ours 0.68 0.45 0.60 0.83 0.69

Table 3: Comparisons with (Liu et al., 2019) on
CoNLL-2003 for each entity type.

EN SP

Pre Rec F1 Pre Rec F1

Cluster 0.43 0.53 0.47 0.27 0.69 0.39
HMM 0.80 0.72 0.76 0.54 0.70 0.63

Table 4: Main results for entity span detection. Cluster
is the result before sending to Gaussian-HMM, HMM
is short for Gaussian-HMM.

in each lexicon is shown in Table 2. Due to the
resource constraints, we only extract the lexicon in
training data without labeling a larger dictionary
for wider comparisons for CoNLL-2002.

4.3 Results and Comparisons

We present F1, precision, and recall scores on both
datasets in Table 1. All the models compared in
Table 1 besides ours need extra resources to some
extent, like partially annotated training data, NE
dictionary, etc. While our model achieves compara-
ble results without using any resources mentioned
above. We compare the prediction results for each
entity type with (Liu et al., 2019) in Table 3, and
it is shown that our model performs well in LOC,
ORG and PER types. These NEs have specific
meanings, and more similar in position and length
in the corpus, thus their word embeddings can bet-
ter capture semantic and syntactic regularities, and
thus better represent the words, while MISC in-
cludes various entity types which may bring signif-
icant confusion on learning type patterns. While
(Liu et al., 2019) better regularize the type infor-
mation from NE dictionaries and re-trained type
information.

Though (Shang et al., 2018) achieves better re-
sults when using golden NE dictionary for English,
they perform poorly on SENNA and our manually
annotated dictionary. Specially, when using the
gold NE dictionary for training Spanish dataset,
the result is especially unsatisfactory. According
to our statistics, over half of the MISC NEs in
CoNLL 2002 Spanish training data are labeled as
other types in the same dataset, while the ratio

is 28% in CoNLL 2003 English dataset, thus the
results differs a lot in the two datasets. Our mod-
els achieve much better performance than those of
(Shang et al., 2018) by more than doubling their
F1 scores in the general NE dictionary (SENNA
and human-labeled Wikipedia dictionary). Besides,
our unsupervised NE recognition method is shown
more general and gives a more stable performance
than the distant supervision model in (Shang et al.,
2018), which highly relies on the quality of the
support dictionary and the domain relevance of the
dictionary to the corpus.

We acknowledge that there still exists a gap be-
tween our unsupervised NE recognition model with
the sota supervised model (Lample et al., 2016; Jie
et al., 2019), but the applicability of unsupervised
models and the robustness of resource dependence
are unreachable by supervised models.

Table 4 lists the results of entity span detection.
Our Gaussian-HMM absorbs informative clue from
clustering, and greatly improves the results of entity
span detection. For the English dataset, we apply
SENNA embedding, which is trained on English
Wikipedia and Reuters RCV1 corpus, thus the re-
sult of clustering becomes better, leading to a better
result of Gaussian-HMM. While for the Spanish
dataset, the embedding is trained on Wikipedia
corpus only, which has little connection with the
CoNLL-2002 datasets, thus the result is slightly
lower. Overall, unsupervised modeling based on
word embeddings may be more general and robust
than dictionary-based and corpus-based modeling.

4.4 Discussion

Our model is good at dealing with common NEs,
because their word embeddings well represent
meanings, thus leading to a better prediction. How-
ever, our model is not very satisfactory in dealing
with nested NEs. For example, South Africa and
Africa can be taken as NEs respectively, and south
is recognized as O labels in most of the other cases,
thus in this case, our model makes a bias prediction,
and only recognizes Africa. Table 5 shows an ex-
ample of a positive instance and a negative instance
before RL and after RL. During the training pro-
cess, the instance selector takes action to select the
first instance for training a silver NE Tagger. Then
the second instance is relabeled after one epoch,
and merged with the first instance for the next turn.
We can discover that the NE Tagger learns the ef-
fective features of the ORG type, and can modify
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Intance 1

Instance Newcombe was quoted as saying in Sydney ’s Daily Telegraph
Before RL B-PER O O O O O B-LOC O B-ORG I-ORG
After RL B-PER O O O O O B-LOC O B-ORG I-ORG

golden label B-PER O O O O O B-LOC O B-ORG I-ORG

Instance 2

Instance Thursday ’s overseas edition of the People ’s Daily
Before RL O O O O O O O O O
After RL O O O O O O B-ORG I-ORG I-ORG

golden label O O O O O O B-ORG I-ORG I-ORG

Table 5: Example of of two instances before and after Reinforcement Learning (RL).

the wrong labels in the second instance.
Using Pre-trained Languages Models. We

have also tried language models such as ELMo and
BERT as encoders for Gaussian-HMM, but their
sparse characteristics in high-dimensional space
are not conducive to Gaussian modeling. Unsuper-
vised models have fewer parameters and simpler
training phase, thus there is no guarantee that the
language model will retain its key properties when
it is reduced to low dimensions. We further add the
pre-trained language model BERT as the additional
embeddings for the NE Tagger to refine the output
of Gaussian-HMM and DAGMM, which slightly
improves our result to 69.99 for CoNLL-2003 En-
glish NER and 56.66 for CoNLL-2002 Spanish
NER.

5 Related work

Deep neural network models have helped peoples
released from handcrafted features in a wide range
of NLP tasks (Zhang et al., 2019; Li et al., 2018a,b,
2019; Zhou and Zhao, 2019; Xiao et al., 2019;
Zhang et al., 2020a,b,c). LSTM-CRF (Lample
et al., 2016; Ma and Hovy, 2016) is the most state-
of-the-art model for NE recognition. In order to
reduce the requirements of training corpus, dis-
tant supervised models (Shang et al., 2018; Yang
et al., 2018b; Ren et al., 2015; He, 2017; Fries
et al., 2017) have been applied to NE recognition.
Recently, (Liu et al., 2019) proposed a Knowledge-
Augmented Language Model, which trains lan-
guage models and at the same time compute the
probability of the next word being different entity
types according to the context given type-specific
entity/general vocabularies. Unlike these existing
approaches, our study focuses on unsupervised NE
recognition learning without any extra resources.

Noisy data is another important factor affecting
the neural network models, reinforcement learning
has been applied to many tasks, (Feng et al., 2018)
use reinforcement learning for Relation Classifica-
tion from Noisy Data. (Yang et al., 2018b) show
how to apply reinforcement learning in NE recog-
nition systems by using instance selectors, which
can tell high-quality training sentences from noisy
data. Their work inspires us to use reinforcement
leaning after obtaining coarse annotated data from
Gaussian-HMM.

6 Conclusion

This paper presents an NE recognition model with
only pre-trained word embeddings and achieves
remarkable results on CoNLL 2003 English and
CoNLL 2002 Spanish benchmark datasets. The
proposed approach yields, to the best of our knowl-
edge, first fully unsupervised NE recognition work
on these two benchmark datasets without any an-
notation data or extra knowledge base.
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