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Abstract
The traditional image captioning task uses
generic reference captions to provide textual
information about images. Different user pop-
ulations, however, will care about different
visual aspects of images. In this paper, we
propose a new task, Captioning with A Pur-
pose (CAPWAP). Our goal is to develop sys-
tems that can be tailored to be useful for the
information needs of an intended population,
rather than merely provide generic information
about an image. In this task, we use question-
answer (QA) pairs—a natural expression of
information need—from users, instead of ref-
erence captions, for both training and post-
inference evaluation. We show that it is pos-
sible to use reinforcement learning to directly
optimize for the intended information need, by
rewarding outputs that allow a question an-
swering model to provide correct answers to
sampled user questions. We convert several
visual question answering datasets into CAP-
WAP datasets, and demonstrate that under a
variety of scenarios our purposeful captioning
system learns to anticipate and fulfill specific
information needs better than its generic coun-
terparts, as measured by QA performance on
user questions from unseen images, when us-
ing the caption alone as context.

1 Introduction
The image captioning task typically selects for cap-
tions having high similarity with generic human
references. While this task definition has driven
much of the research in the field, the end-purpose
of these captions is not always clearly articulated.
We argue that (1) generic annotations may not be
representative of users’ information needs, (2) user
questions are a more natural way of articulating
information needs, and (3) optimizing captions to
provide correct answers to those questions allows

∗Work primarily completed while interning at Google.

Task Caption Information Need

Captioning There is a green bus. (Unspecified)

Visual QA (Unspecified) Where’s it headed?

CAPWAP
At least three people
are boarding the #14
bus to Bembridge.

Which bus is this?
Where’s it headed?
How many people
are boarding?

Figure 1: The informational purpose of generic caption-
ing is not clearly defined, and VQA provides only re-
actionary information. The objective of the CAPWAP
task is ultimately to provide more informative captions
that specifically anticipate and satisfy users’ potential
needs. In CAPWAP, we use QA as an implicit signal
for information need: e.g., in the image above, a good
caption that has been generated in advance should be
able to be used to answer, Where is this bus headed?

training to focus on information need. For example,
in the VizWiz mobile application (Bigham et al.,
2010), visually impaired users upload images from
their everyday lives, along with questions about
them that need to be answered. These questions
serve as a powerful signal for aspects of the image
that they find important.

Consider the image in Figure 1, where an annotator
might provide a generic caption such as There is a
green bus. This may be used to answer: What color
is the bus? However, it would provide no utility to
a user asking: Where is this bus headed? In fact,
examples from VizWiz demonstrate a clear discon-
nect between the type of information provided by
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Task Training Data Prediction Function Evaluation

Captioning { , ref.caption} { } → pred.caption SIMILARITY(pred.caption, ref.caption)

Visual QA { , ref.question, ref.answer} { , ref.question} → pred.answer ACCURACY(pred.answer, ref.answer)

CAPWAP { , ref.question, ref.answer} { } → pred.caption
ACCURACY(

QA(ref.question, pred.caption),
ref.answer)

Table 1: The CAPWAP task combines elements of generic image captioning with visual question answering. Train-
ing consists of images paired with visual questions and answers. A CAPWAP model should directly anticipate
user information needs by outputting captions that can be used to answer future questions drawn from a distribution
similar to the training data. Accordingly, the “QA” function represents the inference of an answer to a question
using the generated caption as context. We approximate this with a strong automatic question answering model.

today’s systems (e.g., arbitrary descriptions of en-
tities and actions) versus what visually-impaired
users need to know (e.g., fine-grained details to
help make decisions).

Here, we propose an alternative framing for cap-
tioning: Captioning with A Purpose (CAPWAP).
We do not assume the existence of a universal cap-
tion distribution. A good caption is highly subjec-
tive; different users will care about different aspects
of a given image. Instead, we assume a distribution
of visual question-answer pairs that are represen-
tative of population’s information needs. Here we
aim to map images to text that can serve as context
to answer likely questions under this distribution.
At test time, the goal is to anticipate similar user
questions for a new image, and implicitly answer
them before they even need to be asked.

We use image-question-answer triplets as supervi-
sion, and require the model to generate from the
latent space of captions that provide contextual
support for the answer (Table 1). Within our task
definition, any sampled caption that can be used to
answer these questions is considered useful. Under
this formulation, very different captions may be
scored identically if they deliver the same content—
regardless of word choice. Note that this is differ-
ent from either standard visual question answering
(VQA) or query-focused summarization: the target
questions are not available prior to generation; at
test time, they are used only for evaluation.

Existing approaches cannot be readily applied in
this setting, as there are no gold reference captions
for training—and off-the-shelf captioning systems
transfer quite poorly (§6). To address the new learn-
ing challenge that arises in CAPWAP, we propose
a novel model-in-the-loop reinforcement learning
(RL) approach that acts as a strong baseline for

this task. Our approach assumes a fixed question
answering (QA) system that predicts an answer to a
question using some input context. The captioning
model receives a reward if it generates text which
the QA system can use to predict the correct an-
swer. Applying RL, however, is nontrivial. A naı̈ve
exploration of the caption generation space can
lead to sparse rewards—resulting in long training
times and disappointing quality. We show that our
approach can be significantly improved by using
a novel, synthetic pre-training routine to push the
initial policy towards areas of high-reward.

We repurpose four VQA datasets for CAPWAP:
VQA (Goyal et al., 2017), GQA (Hudson and Man-
ning, 2019), Visual7W (Zhu et al., 2016), and
VizWiz (Gurari et al., 2018). These datasets range
in style from synthetic QA pairs (GQA) to natural
information-seeking questions asked by visually-
impaired users (VizWiz). We find that our method
produces significantly more informative captions
with respect to the given questions (up to 3.8× ex-
act match), compared to models trained on generic
captions from COCO (Lin et al., 2014).

Our key contributions are as follows:

1. We define a new task (CAPWAP) that generates
image captions for the purpose of fulfilling spe-
cific information needs expressed by different
target user populations.

2. We demonstrate that our information-need-
driven model can generate much higher quality
captions on this task than those of state-of-the-
art traditional generic captioning systems.

3. We propose a novel synthetic pre-training rou-
tine that greatly improves the performance of re-
inforcement learning under this new paradigm.
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2 Related Work

Since the early days of the field, human-written ref-
erences have been used for the supervised training
and evaluation of text generation systems, includ-
ing image captioning, summarization, and other
related applications (Edmundson, 1969; Lin and
Hovy, 2003; Ordonez et al., 2011; Vinyals et al.,
2015). Recently, researchers have begun to con-
sider a multitude of different objectives for refer-
ence comparison (Böhm et al., 2019; Gao et al.,
2019), or even parametric regressions trained on
human judgements (Louis and Nenkova, 2013;
Peyrard and Gurevych, 2018). Though diverse
in approach, each ultimately relies on designing
a robust general-purpose metric. In practice, en-
gineering such a metric is challenging—if at all
possible (Spärck Jones, 1994, 1999). Here we take
a more empirical approach by relying on the infor-
mation need expressed by users’ questions.

Many studies have observed that reference-trained
captioning models suffer from systematic usabil-
ity issues—including being rigid, neglecting rel-
evant image aspects, and regurgitating frequent
phrases (Wang et al., 2017; Dai et al., 2017). As
a result, much effort has been focused on develop-
ing secondary, corrective objectives—for instance,
“discriminability” losses encouraging captions to
be unique (Dai and Lin, 2017; Liu et al., 2018; Luo
et al., 2018). While these measures provide some
fixes, they do not necessarily reflect user informa-
tion needs—a central concept in CAPWAP.

The idea of using QA for assessing information
quality has been proposed in recent work for text
summarization (Arumae and Liu, 2019; Eyal et al.,
2019; Scialom et al., 2019). The primary distinc-
tions with our work are both the domain (images)
and how questions are obtained—both of which im-
pact the task objective and learning procedure. In
this prior work, questions are generated program-
matically (e.g., following Hermann et al., 2015).
Such “questions” may not necessarily reflect real
user preferences. Our work focuses on QA not as
just another method to improve standard reference-
based metrics, but as a key, flexible way of for-
mulating user information need—and as such we
focus on challenging, real QA datasets. Further-
more, we train on this signal, rather than rely on it
solely for evaluation (Wang et al., 2020).

Efforts to leverage VQA resources to drive image

captioning, and vice-versa, via variations of trans-
fer learning, have also received extensive interest
in recent years (Li et al., 2018; Wu et al., 2019;
Yang and Xu, 2019). As opposed to optimizing
metrics for specific VQA or supervised caption-
ing benchmarks, the primary focus in CAPWAP is
on modeling the target user population in order to
anticipate the correct information-need.

In a similar vein, VQA and textual QA resources
have also been leveraged for active learning (Shen
et al., 2019; Li et al., 2017), where the model learns
to query its environment for information it is uncer-
tain about to help improve its performance on the
given task. The key distinction with our work is the
directionality of the questions. In CAPWAP, the
model uses questions posed by the users to infer
their latent information need—which is a distinctly
different, and quite challenging, setting.

3 Problem Formulation

We begin by formulating the CAPWAP task. In our
setting, questions and answers are the only source
of direct supervision assumed during training. At
test time, the model is not given questions in ad-
vance, but rather must anticipate the information
need of the user, and generate captions that answer
the forthcoming questions in expectation.

Task Setting: Given an image x the model must
output a caption y, such that y entails the answer
a for a question-answer pair (q,a) sampled from
some underlying distribution D. Examples from D
are given during training, but are not known in ad-
vance by the generation model at test time.

Information Need: We assume that the QA data
from D is derived by the following process:

1. an image x is drawn from distribution p(x);

2. a question-answer pair (q,a) targeting an infor-
mative detail of x perceived as important to a
user in D is drawn from distribution p(q,a|x).

The operating assumption is that the marginal dis-
tribution over (q,a) pairs represents the visual in-
terests of the typical user. In other words, answers
to common questions represent the type of informa-
tion that is often considered important. This is com-
parable to content selection (Peyrard, 2019).

Question Anticipation: We do not assume the
existence of a “gold” caption. Rather, the caption y
is assumed to be a latent variable, and Gθ(y|x) is a
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Captioning Model Caption: A bus is boarding passengers at a stop.

Question: Why is the bus stopped? Question Answering Model Answer: boarding passengers

REINFORCE

Figure 2: Overview of our proposed approach to the CAPWAP task. The captioning model Gθ(y|x) is learned
using supervision from question-answer-image triples. Generated text that can be used to answer the question
correctly, according to an extractive question answering model, is rewarded in our model-in-the-loop reinforcement
learning framework. The questions, answers, and the question answering system are discarded after training.

stochastic generator that we must learn. A sample
y ∼ Gθ(y|x) should provide contextual support
for a new, randomly sampled question-answer pair.
We estimate this using the accuracy of a pre-trained
QA modelM(q,y), when using y as context for
q. CAPWAP requires maximizing the expectation:

argmax
θ

EGθ(y|x)
[
Ep(q,a|x) [R(y,q,a) ]

]
(1)

where θ parameterizesGθ(y|x), and we choose our
reward to beR(y,q,a), any appropriate accuracy
metric for comparing the output ofM(q,y) with
a (expressed as ACCURACY in Table 1).

CAPWAP vs. Other Tasks: Table 1 compares our
setting to those of both standard (generic) caption-
ing and visual question answering. Both standard
captioning and CAPWAP models output a single
caption per image, but CAPWAP does not compare
to references. Both VQA and CAPWAP models are
trained and evaluated with QA data, but CAPWAP
does not provide the question prior to generation.
VQA models output single answers, whereas CAP-
WAP models output anticipatory contexts.

4 An Approach to CAPWAP
Given that we only have access to question-answer
pairs during training, but not during inference, how
can we learn a model for this task? Eq. 1 naturally
lends itself to a reinforcement learning (RL) frame-
work where the model receives a reward r (e.g.,
r = R(y,q,a)) for each generated caption y and
training QA pair (q,a). Gθ(y|x) can be cast as a
policy, and updated with policy gradients.

Optimizing such a policy, however, poses a techni-
cal challenge because the model is only rewarded
for correct (or partially correct) answers, which is
initially a rare event. Transferring Gθ(y|x) from
generic captioning data can be a useful starting
point. Our method then follows this recipe:

1. Initialize Gθ(y|x) using fully-supervised off-
the-shelf captioning data, (x̃, ỹ) ∼ Dgeneric;

2. Fine-tune Gθ(y|x) using policy gradient on tar-
geted visual QA data, (x,q,a) ∼ Dtarget.

In Sections 4.1 and 4.2 we detail our model for
Gθ(y|x), and the above training procedure.

Note that Dgeneric is assumed to be out-of-domain
for our intended captioning purpose, Dtarget. Since
we are interested in diverse user-generated ques-
tions and information needs, the generic captioning
data can often diverge dramatically from our end
goal. To improve transfer, in Section 4.3 we further
develop a novel mechanism for automatically gen-
erating in-domain synthetic data that can be used as
pre-training for guiding Gθ(y|x) towards balanced
areas of high reward in Dtarget.

4.1 Model Architecture

We briefly describe our base captioning model,
which consists of a Faster R-CNN and Transformer-
based encoder-decoder, following the sequence-to-
sequence framework common in state-of-the-art
image captioning systems (Anderson et al., 2018;
Vinyals et al., 2015; Zhou et al., 2019). See Ap-
pendix A for full technical details. Given an im-
age x, we first represent it as a sequence of de-
tected object bounding box embeddings, computed
from a pre-trained Faster R-CNN model (Anderson
et al., 2018). We then generate caption word-pieces
y = (y1, . . . , yn) using a Transformer-based archi-
tecture (Vaswani et al., 2017).

4.2 Policy Training

We describe our RL framework for training our
captioning model using QA data. See Appendix B
for additional technical details, including hyper-
parameter settings and optimization choices.
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Initialization: We initialize Gθ(y|x) using maxi-
mum likelihood estimation (MLE) on a corpus of
out-of-domain generic captions (x̃, ỹ), as common
practice (Ranzato et al., 2016). This warm-starts
our policy with an initial set of grounded image
concepts, albeit not necessarily the ones we ulti-
mately care about. Given the generic reference
ỹ = (ỹ1, . . . , ỹn), we minimize the cross-entropy:

LXE(θ) = −
n∑
i=1

logGθ(ỹi | x̃, ỹj<i) (2)

QA Model: We implement the QA modelM us-
ing a BERTLARGE extractive model fine-tuned on
SQuAD 2.0 (Rajpurkar et al., 2018)—which con-
tains unanswerable questions. As an extractive
model,M predicts a span yi...j . Important for our
use-case,M is both able to be accurate when pre-
dicting the answer a when a is present in y, and
also able to abstain from answering when a is not
logically entailed (i.e., predict “no answer”).

QA Reward: We take R(y,q,a) from Eq. 1 as
the F1 score of the predicted answer with the gold
answer. We control for reward noise with a confi-
dence threshold for predicting “no answer.”

Policy Gradient: We use REINFORCE with a
baseline (Williams, 1992) to compute the policy
gradient∇θLQA(θ) of the QA reward:

−EGθ(y|x) [(R(y,q,a)− b)∇θ logGθ(y|x)] (3)

We take b as R(ŷ,q,a), where ŷ is the argmax
(test-time prediction) of Gθ, following the self-
critical method of Rennie et al. (2017).

4.3 Synthetic Policy Pre-Training

In the beginning of training, the generated cap-
tions typically do not correctly answer many ques-
tions, leading to almost no reward signal. More
formally, the reward is sparse if the policy Gθ(y|x)
is not well-initialized. As a result, REINFORCE
becomes extremely sample-inefficient. When the
target distribution is strikingly divergent from the
one present in the generic captioning data—a key
setting in this work—supervised pre-training on
the out-of-domain data does not yield a usable ini-
tialization. As a substitute, we derive a method for
generating a synthetic dataset of captions Dsynthetic
with high-reward as a form of guided policy
search (Levine and Koltun, 2013). The full method
then consists of three stages that train on the three
datasets: Dgeneric → Dsynthetic → Dtarget.

y: A ferry boat is lowering its ramp.

M−1(y) Fφ(y|x,q,a)
q: What is the ferry boat doing?

a: Lowering its ramp.

Figure 3: A demonstration of reverse engineering the
connections between question generation (M−1) and
context generation (Fφ). x is the image (not shown).
See Algorithm 1 in Appendix C for full details.

For the extractive QA model to possibly yield a
positive reward, the answer must be a span of the
caption. When the question and answer are known
in advance, it is typically fairly simple to reverse
engineer a candidate caption that meets this con-
straint (e.g., by inverting wh-movement). Figure 3
demonstrates this concept. If we have an auxiliary
model Fφ(y|x,q,a) that can automate this reverse
engineering step, we can synthetically generate
captions to use for pre-training, as in Eq. 2.1

QA Conditional Model: Motivated by this, we
learn Fφ(y|x,q,a) by explicitly conditioning on
QA pairs when generating a caption that supports
the answer span by design. Concretely, we include
the word-pieces of the question q = (q1, . . . , ql)
and answer a = (a1, . . . , am) as inputs when de-
coding y, while y satisfiesM(y,q) = a.

How do we train Fφ(y|x,q,a) effectively with-
out access to any paired data (x,q,a,y)? We
create automatic (x̃, q̂, â, ỹ) examples from the
out-of-domain generic captioning data used in Sec-
tion 4.2 by using the (text-based) question genera-
tion modelM−1 of Alberti et al. (2019). At a high
level, given a generic caption ỹ = (ỹ1, . . . , ỹn),
this inverse model (1) picks an answer span â ⊆ ỹ,
(2) generates a question q̂ following some inferred
distribution p(q|â, ỹ), and (3) confirms that the
sample obeys “round-trip filtering”, i.e., that the
original QA model answers the synthetic example
correctly (M(q̂, ỹ) = â). We then train the model
for Fφ using conditional cross-entropy:

LCXE(φ) = −
n∑
i=1

logFφ(ỹi | x̃, q̂, â, ỹj<i) (4)

Synthetic Data Generation: After training, we
transfer Fφ(y|x,q,a) with fixed weights to gen-
erate reverse engineered captions ŷ using the

1Methods for constrained decoding (Anderson et al., 2016;
Hokamp and Liu, 2017, inter alia) that enforce a ⊆ y are
related, yet complementary, and can be incorporated into any
Fφ. It is more important to ensure that not only is the answer
contained in the caption, but also that it is logically supported.
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true (x,q,a,null) examples from our target QA
datasets. For each example, we decode the top-
k captions using beam search, and keep those
with R(ŷ,q,a) ≥ c, where c is a threshold (e.g.,
c = 1.0 for an exact match F1 score). These exam-
ples paired with the high-scoring captions are used
to create the synthetic captions dataset Dsynthetic.
We then use Dsynthetic as further weak supervision
for initializingGθ(y|x), again following Eq. 2. See
Appendix C for additional technical details.

5 Experimental Setup

Evaluation: Our primary evaluation assumes a
dataset of questions and answers about images.
Conceptually, if the correct answers are supported
by the generated caption in expectation, then we
consider it to be sufficiently informative.2

Automatic Evaluation: Our automatic proxy of
informativeness utilizes the state-of-the-art extrac-
tive question answering model (M) described in
Section 4.2 that is trained on SQuAD 2.0.3 M is
applied to the given QA pair, with the generated
caption as the “context.” We report EM, measuring
exact match with the gold answer, and F1, measur-
ing word overlap. If there are multiple answers,
then we take the maximum score over all.

Human Evaluation: For human evaluation we ask
raters to judge whether a caption is less, equally, or
more informative than another caption with respect
to the question-answer pair. We also gather human
ratings for two properties that are desirable regard-
less of the target audience: (1) fluency (whether
the caption is grammatical and coherent) and (2)
fidelity (whether the caption makes any false asser-
tions regarding what is in the image).

5.1 Datasets

We evaluate our method on four converted visual
question answering datasets. We filter questions
that are unaswerable, or have ‘yes/no’ or non-
alphabetic answers.4 Appendix D gives additional
size, splitting, and pre-processing details.

COCO (Lin et al., 2014): For all experiments,

2Note that traditional captioning metrics such as ROUGE,
BLEU, and CIDEr rely on gold references, which are not
available in our new setting (in fact, by our definition, there is
no one “gold” caption). Thus, we cannot include them.

3For evaluation we turn off the “no answer” option.
4Numerical answers that are written out (e.g., two vs. 2)

are not disqualified. This requirement simplifies evaluation.

we use COCO as the source of out-of-domain
generic captions for pre-training. COCO contains
images covering 80 object categories and vari-
ous scenes gathered from Flickr, paired with five
human-written reference captions.

CapVQA (Goyal et al., 2017): VQA v2.0 origi-
nally contains questions written by crowd-workers
where the prompt was to write queries that are easy
for humans to answer, but challenging for a hypo-
thetical robot that mainly knows only about objects.
VQA is the only dataset we consider that fully cov-
ers the same images as COCO.

CapGQA (Hudson and Manning, 2019): GQA
contains challenging compositional questions de-
rived from scene graphs of everyday images using
various human-specified grammars.

CapVisual7W (Zhu et al., 2016): Visual7W con-
tains questions written by crowd-workers about ob-
jects that, in general, require richer and longer an-
swers than those in VQA. We use only the “telling”
split of the dataset (i.e., the questions that require
open-ended natural language answers).

CapVizWiz (Gurari et al., 2018): VizWiz con-
sists of natural visual questions asked by visually-
impaired users of a mobile application who were
seeking answers to their daily visual needs. Each
question is answered by a remote assistant.

5.2 Generic Captioning Models

In addition to our baseline captioning model trained
only to maximize the likelihood of COCO refer-
ences (MLE in the tables), we compare to two
state-of-the-art generic image captioning methods
(also trained on COCO data). Huang et al. (2019)
directly optimizes the CIDEr metric with policy
gradients, while Luo et al. (2018) optimizes both
CIDEr and a “discrimination” loss intended to en-
courage models to describe each image’s uniquely
identifying aspects. These models are included in
order to highlight the differences in applicability be-
tween off-the-shelf models trained for generic im-
age captioning versus those for CAPWAP.

6 Results

In the following, we address several key research
questions relating to our approach to CAPWAP,
and the broader assumptions, strengths, and limita-
tions of using QA to drive the process.
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Model CapVQA CapGQA CapVisual7W CapVizWiz
EM F1 EM F1 EM F1 EM F1

Human reference (from COCO) 16.5 25.7 - - - - - -
Luo et al. (2018) 12.0 20.1 9.6 13.9 6.5 11.8 4.7 11.8
Huang et al. (2019) 16.0 25.0 9.9 14.9 6.9 14.0 6.0 13.4
Our generic baseline: MLE 16.8 25.2 8.0 11.1 6.9 13.2 4.9 12.6

Our CAPWAP model: RL 23.1 32.3 15.7 19.3 10.5 18.4 22.5 28.5
Our CAPWAP model: RL + SYN 24.2 33.2 16.6 19.8 9.2 15.4 19.5 27.8

Table 2: Does the proposed approach better fulfill information needs? We show question answering test per-
formance when applying an extractive question answering model on predicted captions (see Table 1). Existing
captioning models trained on generic references (rows 2-4)—or even the generic references themselves (row 1)—
do not capture the information requested by different QA datasets. Applying our RL method for tailoring towards
CAPWAP (row 5) leads to more informative captions with respect to those questions (and by extension, for the
assumed end-users). Adding synthetic pre-training data (+ SYN) improves results on several datasets (row 6).

A = Purposeful (RL + SYN) vs. B = Generic

Dataset Informativeness
A > B B > A

CapVQA 27% 20%
CapGQA 31% 20%
CapVisual7W 38% 22%
CapVizWiz 37% 20%

Table 3: Do raters think that the proposed approach
provides more informative captions? Human evalua-
tion of the informativeness of captions with respect to
our QA datasets agrees with our automatic evaluation—
finding our model to have better information coverage
than MLE, our baseline without QA rewards.

Evaluation of Generic Captions: We begin by
empirically verifying our introductory claim that
training on generic reference captions can poorly
reflect the varying, user-specific information need.
Table 2 presents the results of the baseline generic
captioning systems when evaluated in terms of how
well the predicted captions support QA over dif-
ferent distributions. Though they are strong meth-
ods as measured on the COCO benchmark, un-
surprisingly, they still fail to capture all the infor-
mation necessary to answer diverse visual ques-
tions. Performance on CapVizWiz is exceptionally
poor; the visually-impaired users ask for informa-
tion strikingly different than what is represented
in COCO. The causes of this poor performance go
beyond simple limitations in the current state-of-
the-art models; the target references themselves
are insufficient. For example, on CapVQA, where
the images overlap with COCO and thus human
captions are directly available, the average perfor-
mance of these “gold” references is only slightly
better—supporting our conjecture that good cap-
tions for one purpose are not necessarily good for

Evaluation
Train CapVQA CapGQA CapV7W CapVizWiz

CapVQA 33.8 14.3 15.6 16.4
CapGQA 24.8 20.2 12.6 13.5
CapV7W 26.0 11.4 15.2 14.0
CapVizWiz 23.9 12.0 12.2 31.3

Generic 25.5 11.7 12.8 14.1

Table 4: Does the proposed approach tailor to specific
information need? We show transfer performance (dev
F1) of the RL + SYN policies learned on different
QA datasets. The in-domain F1 peaks indicate that the
model is producing distribution-specific captions.

another, even on the same images.

Adaptation to Information Need: We next test
the effectiveness of our proposed approach at tailor-
ing captions to meet the specific information need
stipulated by our datasets. Our results in Table 2
demonstrate significant improvements by our QA-
driven models (RL and RL + SYN) across all four
datasets—achieving an average gain of 8.0 absolute
F1. Notably, we improve by 7.5 EM over the aver-
age human caption on CapVQA, and by 16.5 EM
over the best generic model on CapVizWiz. Table 4
further illustrates that the adaptation process is in-
deed tailored to the respective QA datasets. The
improvements on our automatic QA-based metrics
(using the proxy modelM) also translate to human
judgements. Table 3 presents the results of our hu-
man A/B test of our proposed model vs. the MLE
baseline. Relative to MLE, we find that our method
is significantly more informative with respect to un-
seen QA pairs across all datasets. As expected, the
largest improvements are on the datasets whose
questions deviate significantly from the generic
COCO content (e.g., CapVizWiz).
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Dataset Input
Image

Generic Caption
Output

Purposeful Caption
(RL + SYN) Output

Unseen
Question

Unseen
Answer

CapVQA a man playing tennis
a man in white shirt and
white shorts playing a game
of tennis on a grass court

what color is
he wearing?

white shirt
and shorts

CapGQA a man riding on
the back of a horse

a man riding a horse next
to a woman on the right side

what color is the
horse the man is
to the right of?

brown

CapVisual7W
a couple of people
that are standing
in the snow

two people posing for a
picture taken at a ski slope

why are the kids
wearing coats ? it is cold

CapVizWiz a plate of food that
is on a table

this is a picture of a sweet
corn frozen dinner

what kind of tv
dinner is this? lean cuisine

Figure 4: Example outputs5 comparing our model trained for CAPWAP (RL + SYN) with the baseline model
trained on generic COCO references (MLE). These examples are representative of the way in which the various
datasets ask about image content. Tendencies include colors for CapVQA, spatial relations for CapGQA, higher-
level concepts in CapVisual7W, and OCR in CapVizWiz. Note that our approach to CAPWAP does not (and likely
cannot ever perfectly) anticipate all unseen questions—but is distributionally closer in terms of content selection.

A = RL + SYN vs. B = RL

Dataset Fluency Fidelity
A > B B > A A > B B > A

CapVQA 57% 26% 55% 29%
CapGQA 84% 6% 76% 11%
CapVisual7W 69% 19% 66% 22%
CapVizWiz 38% 37% 24% 47%

Table 5: Does synthetic data improve secondary mea-
sures of caption quality? Raters find that this strategy
dramatically improves fluency and fidelity (§5) when
compared to a model with only on-policy sampling.

Importance of Synthetic Pre-training: A defi-
ciency of QA-based rewards is that they neither
explicitly enforce text fluency, nor penalize the sys-
tem when content is produced that is either not rele-
vant or not true. On the other hand, when reference
captions are available, it is easy to learn a fluent
language model. Table 5 shows that incorporating
synthetic, guiding “silver” samples from our aux-
iliary QA conditional model Fφ(y|x,q,a) (§4.3)
to bridge the gap between Dgeneric and each consid-
ered Dtarget dramatically reduces the fluency and fi-
delity issues that arise from training solely with QA
rewards. Ultimately, however, Table 6 shows that
our model still suffers on these secondary metrics
as compared to the reference-trained MLE baseline.
This is a challenge that is shared with nearly all
other comparable RL-based methods for text gener-
ation (e.g., Guo et al., 2018; Paulus et al., 2018, et
cetera). Incorporating complementary fluency re-

5Examples are chosen to highlight model differences.

A = Purposeful (RL + SYN) vs. B = Generic

Dataset Fluency Fidelity
A ≥ B A ≥ B

CapVQA 37% 33%
CapGQA 30% 57%
CapVisual7W 37% 53%
CapVizWiz 34% 72%

Table 6: Do more informative captions come at a cost?
Raters find that our tailored “purposeful” approach is
less fluent more than half the time (left). Still, this sys-
tem has greater or equal fidelity to the image content on
most datasets (right). At a high level, while the system
does give more relevant information, it may do so in a
less fluent way, a direction we leave for future work.

wards (e.g., via pre-trained language model perplex-
ity) is a valuable direction for future work.

Qualitative Discussion: The qualitative effect of
our method is quite intuitive (see Figure 4 as well as
Table 7). For example, many questions in CapGQA
ask about spatial relations, which is reflected in the
generated captions. On the other hand, CapVizWiz
users often ask about detailed information about
meals, and the adapted model attempts to provide
a more useful description beyond a “plate of food.”
Of the above datasets, note that only CapVizWiz
consists of questions asked by genuinely interested
users. Interestingly, this property unearths yet an-
other challenge: CapVizWiz questions can be long-
form and quite different from SQuAD, and reverse
engineering them (using Fφ) for pre-training is
noisier (as evidenced by the performance of +SYN
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Model
Dataset

CapVQA CapGQA CapVisual7W CapVizWiz
|y| adj% |V 2| |y| adj% |V 2| |y| adj% |V 2| |y| adj% |V 2|

Generic: MLE 10.8 6.9 3.6 11.1 7.7 2.5 10.7 6.5 3.1 10.7 9.1 1.3

CAPWAP: RL 16.2 15.8 4.8 15.6 17.5 2.0 20.1 15.5 3.9 5.0 12.2 1.4

CAPWAP: RL + SYN 13.9 11.1 4.8 13.8 8.7 2.0 13.6 7.6 4.4 9.6 7.0 2.6

Table 7: How do the generated captions differ qualitatively? We present a number of automatic qualitative mea-
sures of caption content calculated over the dev sets: average caption length (|y|), adjective production rate (adj%),
and the total vocabulary size of the unique unigrams and bigrams emitted (|V 2|). Captions are measured in tokens
(PTB-style), adjectives are identified using NLTK (Loper and Bird, 2002), and vocabulary size is measured in
thousands. Both CAPWAP methods tend to produce longer captions, presumably with more descriptions (higher
number of adjectives). Notably, RL + SYN manages to maintain more “natural” adjective production rates and
richer language usage (in terms of bigram usage) than RL only, supporting the human quality ratings in Table 5.

Model Reward
Dataset

CapVQA CapGQA CapVisual7W CapVizWiz
IN EM F1 IN EM F1 IN EM F1 IN EM F1

RL + SYN answer supported 42.5 24.7 33.8 25.1 16.9 20.2 16.7 9.1 15.2 34.3 22.0 31.3

w/o “no answer” answer most likely 40.8 23.3 32.3 29.6 19.1 23.8 16.3 8.9 15.1 33.8 20.8 30.9

w/o QA model answer present 46.4 22.4 31.5 40.2 13.9 21.6 17.4 8.9 15.2 39.0 13.5 26.6

Generic MLE None 32.9 17.1 25.5 17.0 8.4 11.7 14.2 6.7 12.8 18.5 5.9 14.1

Table 8: What is the impact of using the QA model to provide rewards? We present an ablation study across our
different datasets when using the QA model with the “no answer” option or not, as well as a simple indicator
reward, 1{a ⊆ y}, that simply measures if the answer string is present at all (without running the expensive QA
model). Our results show that while the indicator reward increases the indicator metric (IN) the most, these are
likely mostly spurious or disfluent generations. Using the QA model improves the F1 and EM scores across all
datasets—and in all cases except one improves further when confidence is used.

in Table 5). While the artificial settings of the
other datasets are not ideal, their diversity serves to
demonstrate the flexibility of our approach.

Ablation Studies: Tables 7 and 8 show the effects
of different design choices in our RL and RL +
SYN models. A significant challenge for CAP-
WAP systems, as previously discussed and illus-
trated in Table 6, is learning information need while
maintaining fluency. Table 7 shows how synthetic
pre-training regularizes the model to stay closer
to human-level production patterns. Similarly, Ta-
ble 8 shows how using the QA model to provide
rewards (as opposed to a simple keyword search)
helps the model avoid spurious rewards.

Future Work: The CAPWAP paradigm intro-
duces new challenges for learning effective sys-
tems, some of which our approach solves, and oth-
ers which it still leaves open (e.g., maintaining
fluency and fidelty). While some may be addressed
by large-scale multi-modal models (Li et al., 2019;
Tan and Bansal, 2019), it is still unclear whether
they would fully cover the diversity of information

that real users are interested in (e.g., OCR).

7 Conclusion

We defined and studied the CAPWAP task, where
question-answer pairs provided by users are used
as a source of supervision for learning their visual
information needs. Our results indicate that mea-
suring caption content by its ability to logically
support the answers to typical QA pairs from a tar-
get audience is (1) not only feasible, but also (2) a
good proxy for uncovering information need. We
hope this work will motivate the image captioning
field to learn to anticipate and provide for the infor-
mation needs of specific user communities.
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berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-scale machine learning on
heterogeneous systems. Software available from ten-
sorflow.org.

Chris Alberti, Daniel Andor, Emily Pitler, Jacob De-
vlin, and Michael Collins. 2019. Synthetic QA corpora
generation with roundtrip consistency. In ACL.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. Guided open vocabulary image
captioning with constrained beam search. In EMNLP.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for image
captioning and visual question answering. In CVPR.

Kristjan Arumae and Fei Liu. 2019. Guiding extractive
summarization with question-answering rewards. In
NAACL.

Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg
Little, Andrew Miller, Robert C. Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White,
and Tom Yeh. 2010. VizWiz: Nearly real-time answers
to visual questions. In 23rd Annual ACM Symposium
on User Interface Software and Technology.
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A Model Architecture Details
The captioning architecture we use is a standard
Transformer sequence-to-sequence model. As the
model is not the main focus, we did not do any ex-
tensive hyper-parameter tuning or ablations beyond
ensuring that we had a reasonable baseline model
on COCO (114 CIDEr on COCO captions).

Image Encoder: For each image x, we take
represent the region embeddings oi ∈ R2048 of
the bounding boxes for the k most confident ob-
ject detections. We use the pre-trained Faster R-
CNN (Ren et al., 2015) model of Anderson et al.
(2018).6 We then map each region embedding to
õi ∈ Rd using a single dense layer with a ReLU.
Inspired by the positional token embeddings in the
BERT model (Devlin et al., 2019), we then aug-
ment õi with learned position (the rasterized co-
ordinate of the bounding box center), segment (a
constant “image” component identifier), and confi-
dence (the detection rank of the object) embeddings
to obtain the full object representation:

ôi = õi + pi + si + ci.

Text Decoder: We decode the caption auto-
regressively—starting with the [CLS] token and
terminating on [SEP]. At each time-step t we
concatenate the image embeddings with special de-
limiters and the word-pieces decoded thus far, to
obtain a joint context:

h = {[IMG], ô1, . . . , ôk,[CLS],w1, . . . ,wt},

where wi ∈ Rd is the word piece embedding (the
sum of token, position, and segment embeddings).
We then encode h using multi-layer Transformer,
and compute the probability of generating wt+1

using a softmax over the 30,522 word-piece vocab-
ulary (the BERT vocabulary). For efficiency, we
encode whole sequences at a time with a left-to-
right attention mask: image regions may attend to
all other image regions, and tokens may attend to
all previous tokens and image regions.

6https://github.com/peteanderson80/
bottom-up-attention

Hyperparameters: In our experiments we use the
top 64 object regions and a 6-layer Transformer
with 512 hidden input units, 8 attention heads, and
2,048 hidden units in the intermediate feed-forward
layer. During inference we do beam search with
a beam size of 3 and a length penalty α of 0.6
(Wu et al., 2016). We implemented our model in
Tensorflow (Abadi et al., 2015).

B Model Training Details

QA Model Threshold: During inference, the
QA model M(q,y) computes the probability
of the “no answer” option pM(NONE|q,y) and
the probability of the most likely answer span
pM(yi...j |q,y). We adjust how precise this reward
is by treating the log odds ratio c of the “no an-
swer” vs. span options as a hyper-parameter when
choosing the prediction â:

log

(
pM(yi...j |q,y)
pM(NONE|q,y)

){
> c, â = yi...j

≤ c, â = NONE

Depending on the value of c, we may only answer if
we are confident the answer is supported—not just
the most probable (e.g., based on answer-type)—
to avoid potentially spurious rewards obtained by
guessing or elimination. Table 8 shows an ablation
over some choices of c.

Answer Normalization: For both training and
evaluation, we normalize the gold and predicted an-
swers by removing articles and punctuation when
comparing them (see Rajpurkar et al., 2016).

Policy Gradient: We approximate the policy gra-
dient (Eq. 3) using a single Monte-Carlo sample
y = (y1, . . . , yn) from Gθ(y|x). We accelerate
training by restricting samples to be from a set
of high-probability candidates with non-zero re-
ward (cf. Anderson et al., 2018; Narayan et al.,
2018, inter alia). We decode using beam search
and sample from the top-k beams (k = 16).

Training: For MLE pre-training on Dgeneric
(Eq. 2), all examples are shuffled and divided into
mini-batches of 256 examples each. For RL adap-
tation to Dtarget (Eq. 3), we use a mini-batch size of
128. To help regularize the fluency of the model,
during RL training we continue to multi-task on the
supervised generic captions, as in MIXER (Ran-
zato et al., 2016). For both settings, we train for
a maximum of 120K steps and choose the best

https://github.com/peteanderson80/bottom-up-attention
https://github.com/peteanderson80/bottom-up-attention
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Algorithm 1 Synthetic data generation procedure for policy pre-training.
Definitions: Dgeneric is assumed out-of-domain generic captioning data with input images x̃ and supervised
reference captions ỹ. Dtarget is the in-domain target QA data with input images x, questions q, and answers
a.M is the automatic QA model used in this paper for evaluation (Table 1).M−1(y) is a pre-trained QA
generation model, that takes in some context y and outputs a predicted QA pair (q̂, â).

1: function TRAIN(Dgeneric,M−1, T )
2: φ← random . Initialize parameters for Fφ
3: for i = 1 to T do . Train for T steps
4: x̃, ỹ ∼ Dgeneric . Sample a generic image/caption pair
5: q̂, â←M−1(y) . Generate a synthetic QA pair
6: L← − logFφ(y|x,q,a) . Compute loss when conditioning on the QA
7: φ← MINIMIZE(L, φ) . Update the model parameters of Fφ
8: return Fφ . Produce Fφ, the synthetic data generator

9:

10: function GENERATE(Dtarget,M, Fφ)
11: Dsynthetic← [ ] . Initialize synthetic dataset
12: for (x,q,a) ∈ Dtarget do . Iterate target dataset
13: ỹ← argmaxFφ(y|x,q,a) . Conditionally decode a caption for the QA pair
14: ifM(q, ỹ) = a then . Filter for consistency
15: APPEND(Dsynthetic, (x, ỹ)) . Keep the synthetic sample

16: return Dsynthetic . Yield Dsynthetic for additional pre-training

model based on the dev set performance (using
COCO CIDEr (Vedantam et al., 2015) for MLE
pre-training and QA F1 for RL). For optimization,
we use Adam (Kingma and Ba, 2015) with a linear
warm-up and decay schedule. Training was per-
formed on a 4× 4 TPU, and took about 1-2 hours
per experiment.

C Synthetic Pre-training Details
QA Conditional Model: We use the same basic
architecture for Fφ(y|x,q,a) as for the main cap-
tioning model Gθ(y|x), and only introduce two
new “question” segment and “answer” segment
embeddings that we add to differentiate the con-
ditional text from the generated text in the Trans-
former. The full input then becomes:

h = {[IMG], ô1, . . . , ôk,[Q],q1, . . . ,qm,

[A], a1, . . . ,an,[CLS],w1, . . . ,wt},

where the segment delimiter, qi, and aj vectors
are defined the same way as—and shared with—
the caption’s input word-piece embeddings wi (see
§A). We decode auto-regressively as before.

Training and Generating: We train Fφ(y|x,q,a)
using both the corpus of generic captions used

for MLE pre-training in Section 4.2 (i.e., COCO)
and additional Wikipedia text. We create auto-
matic (x,q,a,y) and (null,q,a,y) examples
for COCO and Wikipedia sentences, respectively.
To offset biases present in the question genera-
tion model (which is out-of-domain for caption-
styled text as it is trained on SQuAD), we add
(x,null,a,y) examples from the generic cap-
tions by selecting random spans of y, using the sam-
pler of Joshi et al. (2019) (random spans with Pois-
son distributed lengths). Algorithm 1 illustrates the
full synthetic data generation process.

D Converted Dataset Details

Splits: For the COCO and VQA datasets we use
the ‘Karpathy’ splits from Karpathy and Li (2015).
For GQA, we use the ‘balanced’ splits, but limit
to ∼5K images each for the new test and dev
sets from the original GQA dev set. Both the Vi-
sual7W and GQA datasets have images from Visual
Genome (Krishna et al., 2016), and thus some (par-
tially) overlap with the ‘Karpathy’ COCO images.
Since we use COCO for pre-training (Dgeneric), we
avoid data leakage by mapping Visual Genome
IDs to COCO IDs and either filter questions about
images that are in the COCO train or dev sets, or re-
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Dataset Train Development Test
Images QA Images QA Images QA

I COCO 113, 287 − 5, 000 − 5, 000 −

II

CapVQA 104, 311 297, 484 4, 617 13, 081 4, 615 12, 847

CapGQA 69, 450 611, 102 5, 000 43, 015 4, 739 41, 398

CapVisual7W 20, 268 93, 878 3, 448 16, 314 4, 892 22, 769

CapVizWiz 10, 027 10, 027 960 960 1, 905 1, 905

Table D.1: Statistics of the datasets used in this paper. Type I: generic/no QA. Type II: target/QA.

assign the data to match COCO. Finally, on VizWiz,
we combine all of the original data and randomly re-
partition it into test and dev sets of ∼1K and ∼2K
images each, keeping the rest for training.


