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Abstract

Many valid translations exist for a given sen-
tence, yet machine translation (MT) is trained
with a single reference translation, exacerbat-
ing data sparsity in low-resource settings. We
introduce Simulated Multiple Reference Train-
ing (SMRT), a novel MT training method that
approximates the full space of possible transla-
tions by sampling a paraphrase of the reference
sentence from a paraphraser and training the
MT model to predict the paraphraser’s distri-
bution over possible tokens. We demonstrate
the effectiveness of SMRT in low-resource set-
tings when translating to English, with im-
provements of 1.2 to 7.0 BLEU. We also find
SMRT is complementary to back-translation.

1 Introduction

Variability and expressiveness are core features of
language, and they extend to translation as well.
Dreyer and Marcu (2012) showed that naturally oc-
curring sentences have billions of valid translations.
Despite this variety, machine translation (MT) mod-
els are optimized toward a single translation of each
sentence in the training corpus. Training a high re-
source MT model on millions of sentence pairs
likely exposes it to similar sentences translated dif-
ferent ways, but training a low-resource MT model
with a single translation for each sentence (out of
potentially billions) exacerbates data sparsity.

We hypothesize that the discrepancy between
linguistic diversity and standard single-reference
training hinders MT performance. This was previ-
ously impractical to address, since obtaining multi-
ple human translations of training data is typically
not feasible. However, recent neural sentential para-
phrasers produce fluent, meaning-preserving En-
glish paraphrases. We introduce a novel method
that incorporates such a paraphraser directly in the
training objective, and uses it to simulate the full
space of translations.
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Figure 1: Some . . . . . . . .possible . . . . . . . . . . . . .paraphrases of the origi-
nal reference, ‘The tortoise beat the hare,’ for the
Dutch source sentence, ‘De schildpad versloeg de haas.’
A sampled path and some of the other tokens also
considered in the training objective are highlighted.

We demonstrate the effectiveness of our method
on two corpora from the low-resource MATERIAL
program, and on bitext from GlobalVoices. We
release data & code: data.statmt.org/smrt

2 Method

We propose Simulated Multiple Reference Training
(SMRT), which uses a paraphraser to approximate
the full space of possible translations, since explic-
itly training on billions of possible translations per
sentence is intractable.

In standard neural MT training, the reference
is: (1) used in the training objective; and (2) con-
ditioned on as the previous target token.1 We ap-
proximate the full space of possible translations
by: (1) training the MT model to predict the distri-
bution over possible tokens from the paraphraser
at each time step; and (2) sampling the previous
target token from the paraphraser distribution. Fig-
ure 1 shows an example of possible paraphrases
and highlights a sampled path and some of the other
tokens used in the training objective distribution.

1In autoregressive NMT inference, predictions condition
on the previous target tokens. In training, predictions typically
condition on the previous tokens in the reference, not the
model’s output (teacher forcing; Williams and Zipser, 1989).

http://data.statmt.org/smrt
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We review the standard NLL training objective,
and then introduce our proposed objective.

NLL Objective The standard negative log likeli-
hood (NLL) training objective in NMT, for the ith

target word in the reference y is:1

LNLL = −
∑
v∈V

[
1{yi = v} (1)

× log pMT(yi = v |x, yj<i)
]

where V is the vocabulary, 1{·} is the indicator
function, and pMT is the MT output distribution
(conditioned on the source x, and on the previous
tokens in the reference yj<i). Equation 1 computes
the cross-entropy between the MT model’s distri-
bution and the one-hot reference.

Proposed Objective We compute the cross en-
tropy between the distribution of the MT model
and the distribution from a paraphraser conditioned
on the original reference:

LSMRT = −
∑
v∈V

[
ppara(y

′
i = v | y, y′j<i) (2)

× log pMT(y′i = v |x, y′j<i)
]

where y′ is a paraphrase of the original reference y.
ppara is the output distribution from the paraphraser
(conditioned on the reference y and the previous
tokens in the sentence produced by the paraphraser
y′j<i). pMT is the MT output distribution (condi-
tioned on the source sentence, x and the previous
tokens in the sentence produced by the paraphraser,
y′j<i). At each time step we sample a target to-
ken y′i from the paraphraser’s output distribution to
cover the space of translations. We condition on
the sampled y′i−1 as the previous target token for
both the MT model and paraphraser.

For a visualization see Figure 1, which shows

. . . . . . . .possible. . . . . . . . . . . . .paraphrases of the reference, ‘The tortoise
beat the hare.’ The paraphraser and MT model
condition on the paraphrase (y′) as the previous
output. The paraphrase (y′) and the rest of the
tokens in the paraphraser’s distribution make up
pPARA, which is used to compute LSMRT.

3 Experimental Setup

3.1 Paraphraser

For use as an English paraphraser, we train a Trans-
former model (Vaswani et al., 2017) in FAIRSEQ

(Ott et al., 2019) with an 8-layer encoder and de-
coder, 1024 dimensional embeddings, 16 encoder

and decoder attention heads, and 0.3 dropout. We
optimize using Adam (Kingma and Ba, 2015). We
train on PARABANK2 (Hu et al., 2019c), an En-
glish paraphrase dataset.2 PARABANK2 was gen-
erated by training an MT system on CzEng 1.7 (a
Czech−English bitext with over 50 million lines
(Bojar et al., 2016)), re-translating the Czech train-
ing sentences, and pairing the English output with
the original English translation.

3.2 NMT models

We train Transformer NMT models in FAIRSEQ

using the FLORES low-resource benchmark param-
eters (Guzmán et al., 2019): 5-layer encoder and
decoder, 512-dimensional embeddings, and 2 en-
coder and decoder attention heads. We regularize
with 0.2 label smoothing and 0.4 dropout. We opti-
mize using Adam with a learning rate of 10−3. We
train for 200 epochs, and select the best checkpoint
based on validation set perplexity. We translate
with a beam size of 5. For our method we use the
proposed objective LSMRT with probability p = 0.5
and standard LNLL on the original reference with
probability 1 − p. We sample from only the 100
highest probability vocabulary items at a given time
step when sampling from the paraphraser distribu-
tion to avoid very unlikely tokens (Fan et al., 2018).

Using our English paraphraser, we aim to demon-
strate improvements in low-resource settings, since
these remain a challenge in NMT (Koehn and
Knowles, 2017; Sennrich and Zhang, 2019). We
use Tagalog (tl) to English and Swahili (sw) to
English bitext from the MATERIAL low-resource
program (Rubino, 2018). We also report results on
MT bitext from GlobalVoices, a non-profit news
site that publishes in 53 languages.3 We evaluate
on the 10 lowest-resource settings that have at least
10,000 lines of parallel text with English: Hungar-
ian (hu), Indonesian (id), Czech (cs), Serbian (sr),
Catalan (ca), Swahili (sw),4 Dutch (nl), Polish (pl),
Macedonian (mk), Arabic (ar).

We use 2,000 lines each for a validation set for
model selection from checkpoints and a test set for
reporting results. The approximate number of lines
of training data is in the top of Table 1. We train an
English SentencePiece model (Kudo and Richard-

2Hu et al. released a trained SOCKEYE paraphraser but we
implement our method in FAIRSEQ.

3We use v2017q3 released on Opus (Tiedemann, 2012,
opus.nlpl.eu/GlobalVoices.php).

4Swahili is in both. MATERIAL data is not widely avail-
able, so we separate them to keep GlobalVoices reproducible.

http://opus.nlpl.eu/GlobalVoices.php
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dataset GlobalVoices MATERIAL

*→ en hu id cs sr ca sw nl pl mk ar sw tl
train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k 19k 46k

baseline 2.3 5.3 3.4 11.8 16.0 17.9 22.2 16.0 27.0 12.7 37.8 32.5
this work 5.4 12.3 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9 39.0 33.7

∆ +3.1 +7.0 +3.2 +4.3 +4.0 +2.6 +2.6 +2.0 +1.2 +2.2 +1.2 +1.2

Table 1: BLEU scores on the test set. We bold the best value; all improvements are statistically significant at the
95% confidence level. ‘train lines’ indicates amount of training bitext.

son, 2018) on the paraphraser data, and apply it
to the target (English) side of the MT bitext, so
that the paraphraser and MT models have the same
output vocabulary. We also train SentencePiece
models on the source-side of the bitexts. We use a
subword vocabulary size of 4,000 for each.

4 Results

Results are shown in Table 1. Our method improves
over the baseline in all settings, by between 1.2 and
7.0 BLEU (all statistically significant at the 95%
confidence level (Koehn, 2004)).5 We see larger
improvements for lower-resource corpora.

5 Analysis

We analyze our method to explore: (1) how it per-
forms at a various resource levels; (2) how it com-
bines with back-translation; (3) how the different
components of the method impact performance;
and (4) how it compares to sequence-level para-
phrastic data augmentation.

5.1 MT Data Ablation

In order to better understand how our method per-
forms across data sizes on the same corpus, we
ablate Bengali-English bitext from GlobalVoices.

Figure 2 plots the performance of our method
and the baseline against the log of the data amount.
Our improvements of 2.7, 3.7, 1.6, and 0.8 BLEU at
the 15k, 25k, 50k, and 100k subsets are statistically
significant at the 95% confidence level; the 0.1
improvement for the full 132k data amount is not.
Similar to Table 1, we see larger improvements in
lower-resource ablations.

5.2 Back-translation

Back-translation (Sennrich et al., 2016) is the de
facto method for incorporating non-parallel data

5All BLEU scores are SacreBLEU (Post, 2018).
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Figure 2: Bengali-English data ablation. Improve-
ments of 2.7, 3.7, 1.6, and 0.8 BLEU at the 15k, 25k,
50k, and 100k subsets are statistically significant.

in NMT, so we investigate how our method in-
teracts with it. Table 2 shows the results for
back-translation, our work, and the combination
of both.6 Adding our method to back-translation
improves results by an additional 0.5 to 5.7 BLEU.7

For all language pairs, the best performance
is achieved by our method combined with back-
translation, or our method alone. For 9 of 12 cor-
pora, back-translation and our proposed method
are complementary, with improvements of 1.2 to
7.8 BLEU7 over the baseline when combining the
two. For cs-en and tl-en, adding back-translation to
our method does not change BLEU. In the lowest-
resource setting (hu-en) our method alone outper-
forms the baseline by 3.1 BLEU, but adding back-
translation reduces the improvement by 0.5 BLEU.

5.3 Method Ablation

In Table 3 we analyze the contributions of each
part of our proposed method. We compare four

6We use a 1:1 ratio of bitext to back-translated bitext.
We use newscrawl2016 (data.statmt.org/news-crawl)
as monolingual text. When combining with our work, we run
our method on both the original and back-translation data.

7All statistically significant at the 95% confidence level.

http://data.statmt.org/news-crawl/
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dataset GlobalVoices MATERIAL

*→ en hu id cs sr ca sw nl pl mk ar sw tl
train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k 19k 46k

baseline 2.3 5.3 3.4 11.8 16.0 17.9 22.2 16.0 27.0 12.7 37.8 32.5
baseline w/ back-translation 2.8 7.1 4.6 17.6 20.1 20.7 26.9 19.3 29.1 16.0 38.8 33.0

this work 5.4 12.3 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9 39.0 33.7
this work w/ back-translation 4.9 12.8 6.6 19.6 23.4 23.0 27.5 20.2 29.7 16.8 39.3 33.7

Table 2: Comparison between back-translation and this work. We bold the best BLEU score on the test set, as well
as any result where the difference from it is not statistically significant at the 95% confidence level.

dataset GlobalVoices MATERIAL

dist. paraphrase *→ en hu id cs sr ca sw nl pl mk ar sw tl
loss sampling train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k 19k 46k

7 n/a baseline 2.3 5.3 3.4 11.8 16.0 17.9 22.2 16.0 27.0 12.7 37.8 32.5

7 7 (1) 2.9 8.8 4.6 14.5 17.8 19.2 23.4 17.6 27.0 14.2 35.7 29.9
7 3 (2) 5.1 11.6 6.5 15.6 19.7 20.2 24.4 18.1 27.9 15.0 38.1 32.0
3 7 (3) 4.0 10.5 6.5 15.2 18.8 19.8 23.9 18.0 27.6 14.4 37.6 31.6

3 3 (4) this work 5.4 12.3 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9 39.0 33.7

Table 3: We compare four conditions to the baseline: (1) paraphrasing the reference, without sampling or the
distribution in the loss; (2) sampling from the paraphraser in the training objective, without the distribution; (3)
using the distribution in the training objective, without sampling; and (4) the proposed method. We bold the best
test set BLEU score, and others where the difference is not statistically significant at the 95% confidence level.

conditions to the baseline:8 (1) paraphrasing the
reference, without sampling or the distribution in
the loss;9 (2) sampling from the paraphraser, with-
out the distribution in the loss; (3) using the distri-
bution in the training objective, without sampling
the paraphrase; and (4) the proposed method.

We find that sampling is particularly important
to the success for the method; removing it signifi-
cantly degrades performance in all but 3 language
pairs. Since we sample a paraphrase each batch,
this exposes the model to a wide variety of different
paraphrases. Using the distribution in the loss func-
tion is also beneficial, particularly for the lower
resource settings and in the MATERIAL corpora.

5.4 Sequence-Level Paraphrastic Data
Augmentation

As a contrastive experiment, we use the paraphraser
to generate additional target-side data for use in
data augmentation. For each target sentence (y) in

8All use settings from § 3.2: we use the original reference
with LNLL with 1− p = 0.5 probability, and when sampling
we sample from the top w = 100 tokens.

9This is equivalent to LNLL using a paraphrase generated
with greedy-search as the reference, see § 5.4.

the training data, we generate a paraphrase (y′). We
then concatenate the original source-target pairs
(x, y) with the paraphrased pairs (x, y′) and per-
form standard standard LNLL training. We con-
sider 3 methods for generating paraphrases: beam
search (beam of 5), greedy search, sampling (top-
100 sampling). Greedy search tends to work best:
see Table 4. It improves over the baseline for the
10 Global Voices datasets, but not for the two MA-
TERIAL ones. Overall, our proposed method is
more effective than this contrastive method. We
hypothesize this is due to the wider variety of para-
prhases SMRT introduces by sampling and training
toward the full distribution from the paraphraser.

6 Related Work

Knowledge Distillation Our proposed objective
is similarly structured to word-level knowledge dis-
tillation (KD; Hinton et al., 2015; Kim and Rush,
2016), where a student model is trained to match
the output distribution of a teacher model. Para-
phrasing as preprocessed data augmentation, as dis-
cussed in § 5.4, is similarly analogous to sequence-
level knowledge distillation (Kim and Rush, 2016).
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dataset GlobalVoices MATERIAL

*→ en hu id cs sr ca sw nl pl mk ar sw tl
train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k 19k 46k

baseline 2.3 5.3 3.4 11.8 16.0 17.9 22.2 16.0 27.0 12.7 37.8 32.5

beam-search paraphrase 2.6 8.7 4.7 13.5 16.3 18.4 22.6 16.6 26.6 12.2 35.9 29.4
greedy paraphrase 3.2 9.4 4.6 14.8 18.3 19.6 24.4 18.0 27.5 14.7 35.8 30.3
sampled paraphrase 2.8 8.0 5.1 13.9 16.8 19.5 23.9 17.6 27.6 14.2 37.2 31.6

this work 5.4 12.3 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9 39.0 33.7

Table 4: We compare three ways of generating paraphrases for preprocessed data augmentation: beam search,
greedy search, and sampling. We bold the best BLEU score on the test set, as well as any result where the
difference from it is not statistically significant at the 95% confidence level.

In typical KD both the student and teacher mod-
els are translation models trained on the same data,
have the same input and output languages, and use
the original reference for the previous token. In
contrast, our teacher model is a paraphraser, which
takes as input the original reference sentence (in
the target language), with the sampled paraphrase
as the previous token. KD is usually used to train
smaller models and does not typically incorporate
additional data sources, though it has been used
for domain adaptation (Dakwale and Monz, 2017;
Khayrallah et al., 2018).

Paraphrasing in MT Hu et al. (2019a) present
case studies on paraphrastic data augmentation for
NLP tasks, including NMT. They use sequence-
level augmentation with heuristic constraints on
the model’s output. SMRT differs in that we train
toward the paraphraser distribution, and we sample
from the distribution rather than using heuristics.

Wieting et al. (2019a) used a paraphrastic-
similarity metric for minimum risk training (MRT;
Shen et al., 2016) in NMT. They note MRT is slow,
and, following prior work, use it for fine-tuning
after NLL training. While our method is about 3
times slower than standard LNLL, this is not pro-
hibitive in low-resource conditions.

Paraphrasing was also used for statistical MT,
including: source-side phrase table augmentation
(Callison-Burch et al., 2006; Marton et al., 2009),
and generation of additional references for tuning
(Madnani et al., 2007, 2008).

Data Augmentation in NMT Back-translation
(BT) translates target-language monolingual text to
create synthetic source sentences (Sennrich et al.,
2016). BT needs a reverse translation model for

each language pair. In contrast, we need a para-
phraser for each target language. Zhou et al. (2019)
found BT is harmful in some low-resource settings,
but a strong paraphraser can be trained as long as
the target language is sufficiently high resource.

Fadaee et al. (2017) insert rare words in novel
contexts in the existing bitext, using automatic
word alignment and a language model. RAML
(Norouzi et al., 2016) and SwitchOut (Wang et al.,
2018) randomly replace words others from the vo-
cabulary. In contrast to random or targeted word
replacement, we generate semantically similar sen-
tential paraphrases.

Label Smoothing Label smoothing (which we
use when training with LNLL) spreads probabil-
ity mass over all non-reference tokens equally
(Szegedy et al., 2016); LSMRT places higher proba-
bility on semantically plausible tokens.

7 Conclusion

We present Simulated Multiple Reference Train-
ing (SMRT), which significantly improves per-
formance in low-resource settings—by 1.2 to 7.0
BLEU—and is complementary to back-translation.

Neural paraphrasers are rapidly improving (Wiet-
ing et al., 2017, 2019b; Li et al., 2018; Wieting and
Gimpel, 2018; Hu et al., 2019a,b,c), and the con-
currently released PRISM multi-lingual paraphraser
Thompson and Post (2020a,b) has coverage of 39
languages and outperforms prior work in English
paraphrasing. As paraphrasing continues to im-
prove and cover more languages, we are optimistic
SMRT will provide larger improvements across the
board—including for higher-resource MT and for
additional target languages beyond English.
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