
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8617–8624,
November 16–20, 2020. c©2020 Association for Computational Linguistics

8617

Incremental Neural Coreference Resolution in Constant Memory

Patrick Xia1 João Sedoc2 Benjamin Van Durme1

paxia@cs.jhu.edu jsedoc@nyu.edu vandurme@cs.jhu.edu
1Johns Hopkins University 2New York University

Abstract

We investigate modeling coreference resolu-
tion under a fixed memory constraint by ex-
tending an incremental clustering algorithm
to utilize contextualized encoders and neural
components. Given a new sentence, our end-
to-end algorithm proposes and scores each
mention span against explicit entity represen-
tations created from the earlier document con-
text (if any). These spans are then used to
update the entity’s representations before be-
ing forgotten; we only retain a fixed set of
salient entities throughout the document. In
this work, we successfully convert a high-
performing model (Joshi et al., 2020), asymp-
totically reducing its memory usage to con-
stant space with only a 0.3% relative loss in
F1 on OntoNotes 5.0.

1 Introduction

Coreference resolution is a core task in NLP for
both model analysis and information extraction. At
the sentence level, ambiguities in pronoun coref-
erence can be used to probe a model for com-
mon sense (Levesque et al., 2012; Sakaguchi et al.,
2020) or gender biases (Rudinger et al., 2018; Zhao
et al., 2018). At the document level, coreference
resolution is commonly used in information ex-
traction pipelines, but can be applied to reading
comprehension (Dasigi et al., 2019) or literature
analysis (Bamman et al., 2014).

Models for this task typically encode the en-
tire text before scoring and subsequently clustering
candidate mention spans, either found by a parser
(Clark and Manning, 2016b) or learned jointly (Lee
et al., 2017). Prior work has primarily focused on
improving pairwise span scoring functions (Raghu-
nathan et al., 2010; Clark and Manning, 2016a; Wu
et al., 2020) and methods for decoding into globally
consistent clusters (Wiseman et al., 2016; Lee et al.,
2018; Kantor and Globerson, 2019; Xu and Choi,

2020). Recent models have also benefited from pre-
trained encoders used to create high-dimensional
input text (and span) representations, and improve-
ments in contextualized encoders appear to trans-
late directly to coreference resolution (Lee et al.,
2018; Joshi et al., 2019, 2020).

These models typically rely on simultaneous ac-
cess to all spans – Θ(n) for a document with length
n – for scoring and all scores – up to Θ(n2) – for
decoding. As the dimensionality of contextualized
encoders, and therefore the size of span represen-
tations, increases, this becomes computationally
intractable for long documents or under limited
memory. Given these constraints, expensive scor-
ing functions are increasingly difficult to explore.
Further, prior models depart from how humans in-
crementally read and reason about coreferent men-
tions; Webster and Curran (2014) argue in favor of
a limited memory constraint as a more psycholin-
guistically plausible approach to reading and model
coreference resolution via shift-reduce parsing.

Motivated by scalability and armed with ad-
vances in neural architectures, we revisit that intu-
ition. Following prior work, our model begins with
a SpanBERT encoding of a text segment to form a
list of proposed mention spans (Joshi et al., 2019,
2020). Clustering is performed online: each span
either attaches to an existing cluster or begins a new
one. We substantially minimize memory usage dur-
ing inference by storing only the embeddings of
active entities in the document and a small set of
candidate mention spans. Our two contributions
of online clustering and storing a constant size set
of active entities result in an end-to-end trainable
model that uses O(1) space with respect to docu-
ment length while sacrificing little in performance
(see Figure 1).1

1Code and models available at https://nlp.jhu.
edu/incremental-coref.

https://nlp.jhu.edu/incremental-coref
https://nlp.jhu.edu/incremental-coref


8618

2 Model

Our algorithm revisits the approach taken by Web-
ster and Curran (2014) for incrementally making
coreference resolution decisions (online clustering).
The major differences lie in explicit entity repre-
sentations, neural components, and learning.

Baseline First, we summarize the coreference
resolution model described by Joshi et al. (2019),
which itself extends from earlier work (Lee et al.,
2017, 2018). For each document, this model enu-
merates and scores all spans up to a chosen width.
The span representations are formed using BERT
(Devlin et al., 2019) encodings of input text by con-
catenating the first, last, and an attention-weighted
average of the token representations within the
span. These spans are ranked and pruned to the
top Θ(n) mentions. Both the maximum span width
and fraction of remaining spans are hyperparame-
ters. For each remaining span, the model learns a
distribution over its possible antecedents (via a pair-
wise scorer) and the training objective maximizes
the probability of its gold labeled antecedents. The
entire model (including finetuning the encoder) is
trained end-to-end over OntoNotes 5.0.

This model is further improved by Joshi et al.
(2020), who introduces SpanBERT and uses it as
the underlying encoder instead. The SpanBERT-
large version of Joshi et al. (2019) is the baseline
model used in this paper.

Inference Our method (Algorithm 1) stores a per-
manent list of entities (clusters), each with its own
representation. For a given sentence or segment,
the model proposes a candidate set of spans. For
each span, a scorer scores the span representation
against all the cluster representations. This is used
to determine to which (if any) of the pre-existing
clusters the current span should be added. Upon
inclusion of the span in the cluster, the cluster’s rep-
resentation is subsequently updated via a (learned)
function. Periodically, the model evicts less salient
entities, writing them to disk. Under this algorithm,
each clustering decision is permanent.2

Concretely, our model uses a contextualized en-
coder, SpanBERT (Joshi et al., 2020), to encode
an entire segment. Given a segment, SPANS re-
turns candidate spans, a result of enumerating all
spans up to a fixed width, encoding spans as a
combination of the embeddings within the span,

2This uses greedy decoding; exploring decoding strategies
is beyond the scope of this work, which is focused on memory.

Algorithm 1 FindClusters(Document)
Create an empty Entity List, E
for segment ∈ Document do

M ← SPANS(segment)
for m ∈M do

scores← PAIRSCORE(m,E)
top score← max(scores)
top e← argmax(scores)
if top score > 0 then

UPDATE(top e,m)
else

ADD NEW ENTITY(E,m)

EVICT(E)
return E

and pruning using a learned scorer, following prior
work (Lee et al., 2017; Joshi et al., 2019).

PAIRSCORE is a feedforward scorer which takes
as input the concatenation of a mention span and
entity representation along with additional embed-
dings for distance and genre. UPDATE updates the
entity representation (etop e) with the newly linked
span representation (em). In this work, we use a
learned weight, α = σ(FF([etop e, em])) and up-
date etop e ← αetop e + (1−α)em.3 Here, FF is a
feedforward network and σ is the sigmoid function.

To ensure constant space, EVICT moves some
entities from E to CPU. These entities are never
revisited; the offsets are stored on CPU solely for
evaluation purposes. We evict based on cluster size
and distance from the end of the segment.

The algorithm is independent of these compo-
nents, so long as they satisfy the correct interface.
Specifically, our algorithm is compatible with the
recent model by Wu et al. (2020). They use a query-
based pairwise scorer, which could be adopted in
place of the feedforward pairwise scorer. Our use
of abstract components also allows for comparison
of different encoders or update rules.

Training Similar to prior work (Lee et al., 2017),
our training objective is to maximize the proba-
bility of the correct antecedent (cluster) for each
mention span. However, rather than considering all
correct antecedents, we are only interested in the
cluster for the most recent one.4 For each mention
m, scores is treated as an unnormalized probabil-
ity distribution P (e | m) for e ∈ E, where E is
the entity list that includes an ε target label which
represents the action of starting a new cluster. The
exact objective is to maximize P (e = egold | m);

3Using a simple moving average performs slightly worse.
4Scoring is between mention spans and entity clusters, so

there needs to be a single correct cluster.



8619

MUC B3 CEAFφ4

P R F1 P R F1 P R F1 Avg. F1

Baseline (Joshi et al., 2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Ours 85.7 84.8 85.3 78.1 77.5 77.8 76.3 74.1 75.2 79.4
Ours (without eviction) 85.7 84.9 85.3 78.1 77.5 77.8 76.2 74.2 75.2 79.4

CorefQA (Wu et al., 2020) 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1

Table 1: Complete results of our model on the OntoNotes 5.0 test set with three coreference resolution metrics:
MUC, B3, and CEAFφ4 . For completeness, we also present the values for the current state-of-the-art. All models
use an encoder derived from SpanBERT-large.

egold is the gold cluster of m (i.e., the cluster the
most recent antecedent was assigned to).

However, the entirely sequential algorithm also
introduces sample inefficiency, as most mentions
have the same label (ε) and barely accrue loss. We
speed up training by accumulating gradients peri-
odically, trading computation time for space. This
tradeoff is similar to that of batching by documents,
which is impractical for our model from a memory
perspective. Like prior work, we update parameters
once per document (and not once per mention).

We lean on pretrained components: we reuse
not only encoder weights that are already finetuned
on this dataset, but also the mention and pairwise
scorers from Joshi et al. (2020) as initialization for
our encoder, SPANS and PAIRSCORE.5

3 Experiments

Since we reuse weights from Joshi et al. (2020)
(our baseline), our primary experiment is to com-
pare their model to our constant space adaptation
in both task performance and memory usage. Addi-
tionally, we analyze document and segment length,
conversational genre, and explicit clusters.

Data We use OntoNotes 5.0 (Weischedel et al.,
2013; Pradhan et al., 2013), which consists of
2,802, 343, and 348 documents in the training,
development and test splits respectively. These
documents span several genres, including those
with multiple speakers (broadcast and telephone
conversations) and those without (broadcast news,
newswire, magazines, weblogs, and the Bible).

Implementation We use the model dimensions
and training hyperparameters from the baseline
model, a publicly available coreference resolution
model by Joshi et al. (2019, 2020). We also reuse
their (trained) parameters for the encoder, span

5The implementation of Joshi et al. (2020, 2019) was the
most amenable to extension and experimentation and therefore
serves as our illustrative example.

scorer, and span pair scorer as initialization. How-
ever, our model does not make use of speaker fea-
tures, since it is not meaningful to assign a speaker
to the cluster representation. At the end of each seg-
ment, we evict singleton (size 1) clusters more than
600 tokens away from the end of the segment. Ad-
ditionally, we evict all clusters whose most recent
member is more than 1200 tokens away. In this
work, we also freeze the encoder—further finetun-
ing the encoder provided little, if any, benefit likely
because the encoder has already been finetuned on
this dataset and task. Additional details, including
our choice of eviction function, are described in
Appendix A. All experiments are performed on
either a single NVIDIA 1080 TI (11GB) or GTX
Titan X (12GB).

4 Results

4.1 Performance
Table 1 presents the OntoNotes 5.0 test set scores
for the metrics: MUC (Vilain et al., 1995), B3

(Bagga and Baldwin, 1998), and CEAFφ4 (Luo,
2005) using the official CoNLL-2012 scorer. We
reevaluated the baseline, and we report the scores
for CorefQA directly from Wu et al. (2020). We
observe a small drop in performance compared to
the baseline and apparently no drop with eviction.

4.2 Document Length
Our goal is a constant-memory model that is com-
parable to the baseline. We showed above that
our model is competitive with and without evic-
tion, the key to constant memory. In Table 2, we
report the average F1 broken down based on the
length (in subtokens)6 of the document and num-
ber of speakers. Our model is competitive on most
document sizes and in the single speaker setting.
On longer documents, eviction has a minor effect.

6This split of the development set differs from that used by
Joshi et al. (2019) which counts the number of 128-subtoken
sized segments. We directly count subtokens.



8620

Subset #Docs JS-L Ours ∆ -evict

All 343 80.1 79.5 -0.6 79.7
0-128 57 84.6 84.5 -0.1 84.5

129-256 73 83.7 83.6 -0.1 83.6
257-512 78 82.9 83.4 +0.5 83.4
513-768 71 80.1 79.3 -0.8 79.3

769-1152 52 79.1 78.6 -0.5 79.0
1153+ 12 71.3 69.6 -1.7 69.8

1 Speaker 268 81.1 81.0 -0.1 81.2
2+ Speakers 75 76.7 75.0 -1.7 75.0

Test 348 79.6 79.4 -0.2 79.4

Table 2: Average F1 score on the development set bro-
ken down by document length and number of speak-
ers. JS-L refers to the spanbert largemodel from
Joshi et al. (2020), which we treat as our baseline, and
-evict refers to the model without eviction.

Model GPU Memory (GB) Dev. F1

Our model 2.0 79.5
No eviction 2.0 79.7

JS-B 6.4 77.7
JS-L >11.9 80.1

Table 3: Space needed and performance over the de-
velopment set. JS-B and JS-L refer to the base and
large variants SpanBERT used in the baseline.

Because our model does not make use of speaker
embeddings, we perform worse on documents with
multiple speakers. This drop due to speaker fea-
tures matches previous findings (Lee et al., 2017).
One way to include speakers and retain speaker-
independent entity embeddings is by treating speak-
ers as part of the input text (Wu et al., 2020).

4.3 Inference Memory

We now look towards space. In Table 3, we report
the space needed to perform inference over the en-
tire development set. Compared to the baseline and
its smaller base version, our model uses substan-
tially less memory. We also find that eviction has
little effect on memory and F1 on this dataset.

Usage in practice is subject to the memory al-
locator, and our implementation (PyTorch) differs
in framework from the baseline (TensorFlow). To
fairly compare the two models, we compute the
maximum space used by the allocated tensors for
each document during inference.7 Figure 1 com-
pares this value of peak theoretical memory usage
of several models against the dataset. It shows the

7For profiling, we use run op benchmark for Tensor-
Flow 1.15 and pytorch memlab 0.0.4 and torch.cuda
for PyTorch 1.5.

Figure 1: Total size of GPU-allocated tensors for each
document in the development set. The base (JS-B) and
large (JS-L) models of the baseline use apparently lin-
ear space, while ours with inference segment lengths of
128 and 512 use constant space.

baseline is dominated by a term that grows linearly
with length, while that is not the case for our model,
which has constant space usage.

Our model reduces the asymptotic memory us-
age to O(1). In addition, these plots do not clearly
show asymptotic memory usage: the baseline and
other derivative models have a quadratic compo-
nent for scoring span pairs (with a small coeffi-
cient). The encoder, SpanBERT, adds a significant
constant term (with respect to document length) to
all models. While there is some work in sparsify-
ing Transformers (Child et al., 2019; Kitaev et al.,
2020), there does not yet exist a sparse SpanBERT.

These plots show that models have relatively
modest memory usage during inference. However,
their usage grows in training, due to gradients and
optimizer parameters. This additional memory us-
age would render training and finetuning the un-
derlying encoder infeasible for the baseline but
possible using our model with 12GB GPUs.

4.4 Segment Length
The memory usage at each step (and therefore of
the algorithm) is also dependent on the segment
length due to the encoder. Table 4 explores the
effect of the length of each segment (split at sen-
tence boundaries), which gives us further insight
into the tradeoff between performance and mem-
ory reduction. We compare models without evic-
tion to ensure fairness. Our observations follow
those from Joshi et al. (2019) that larger context
windows compatible with the encoder input size
improve performance. We also observe that models
trained on shorter sequences can be scaled, at infer-



8621

President Clinton may travel to North Korea in an attempt

to improve relations with that country. The announce-

ment comes after two days of talks between American

and North Korean leaders in Washington. Secretary of

State Madeleine Albright has accepted an invitation to

visit North Korea and meet with leader Kim Jong-il. She

made the unexpected announcement at a dinner last night

in Washington. North Korea’s top defense official hosted

the event. The country is on a U.S. list of nations that

sponsor terrorism. The Clinton administration is trying to

persuade North Korea to halt its ballistic missile program

as a way it can get off the list. There’s no word yet when

Albright’s trip will take place.

Figure 2: t-SNE plot (left) of span representations of a single document (right) in the development set (cnn 0040 0).
Each color/shape is a predicted cluster, while light gray circles indicate predicted singletons. For each span, the
gold cluster label (-1, if not annotated) and its contribution to the entity embedding is noted in parentheses.

ence time, to longer sequences and obtain gains in
performance. There is an unsurprising substantial
drop using single sentences, owing to coreference
being a cross-sentence phenomenon.

Inference Length
Sentences Tokens

Train↓ 1 sent. 10 sent. 128 toks. 512 toks.

se
nt

s. 1 70.0 76.4 75.2 76.9
5 70.0 77.4 76.4 78.6

10 68.9 77.8 76.2 78.9

to
ks

.

128 70.1 77.2 76.3 77.7
256 69.1 77.9 76.5 78.8
384 67.7 77.3 76.1 79.1
512 67.1 77.7 75.6 79.7

Table 4: Average dev. F1 score for models trained
and evaluated across a range of segment lengths (either
fixed number of sentences or subtokens).

4.5 Span Representations

Figure 2 visualizes the proposed span representa-
tions for a single document in the development
set. The colors/shapes represent our predictions,
and each point is annotated with the text, the gold
cluster label, and the (normalized) α for each span
(recall α is used in the UPDATE function to deter-
mine a span’s contribution to its entity embedding).

Given these embeddings, the figure supports the
viability of clustering approaches: gold coreference
clusters tend to be “close” in embedding space. Re-
garding α, some spans are weighted equally (“Clin-
ton”) while others are not (“North Korea”). This
could be a result of online updates biasing more

recent spans with higher weights. Alternatively, it
may suggest that some spans (like names) are more
informative than others (like pronouns).

5 Conclusion

We present an online algorithm for space efficient
coreference resolution that incorporates contribu-
tions from recent neural end-to-end models. We
show it is possible to transform a model which
performs document-level inference into an incre-
mental algorithm. In so doing, we greatly reduce
the memory usage of the model during inference
at virtually no cost to performance, thereby pro-
viding an option for researchers and practitioners
interested in modern coreference resolution models
for tasks constrained by memory, like the modeling
of book-length texts.

Acknowledgments

We would like to thank Aaron White for helpful
discussions. This work was supported in part by
DARPA AIDA (FA8750-18-2-0015) and IARPA
BETTER (#2019-19051600005). The views and
conclusions contained in this work are those of the
authors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, or endorsements of DARPA, ODNI,
IARPA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes notwithstand-
ing any copyright annotation therein.



8622

References
Amit Bagga and Breck Baldwin. 1998. Algorithms for

scoring coreference chains. In In The First Interna-
tional Conference on Language Resources and Eval-
uation Workshop on Linguistics Coreference, pages
563–566.

David Bamman, Ted Underwood, and Noah A. Smith.
2014. A Bayesian mixed effects model of literary
character. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 370–379, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. URL
https://openai.com/blog/sparse-transformers.

Kevin Clark and Christopher D. Manning. 2016a.
Deep reinforcement learning for mention-ranking
coreference models. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2256–2262, Austin, Texas.
Association for Computational Linguistics.

Kevin Clark and Christopher D. Manning. 2016b. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 643–653, Berlin, Germany. Association for
Computational Linguistics.

Pradeep Dasigi, Nelson F. Liu, Ana Marasović,
Noah A. Smith, and Matt Gardner. 2019. Quoref:
A reading comprehension dataset with questions re-
quiring coreferential reasoning. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5925–5932, Hong Kong,
China. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8(0):64–77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of

the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808, Hong Kong,
China. Association for Computational Linguistics.

Ben Kantor and Amir Globerson. 2019. Coreference
resolution with entity equalization. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 673–677, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In Inter-
national Conference on Learning Representations.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Proceedings of the Thirteenth International Confer-
ence on Principles of Knowledge Representation
and Reasoning, KR’12, page 552–561. AAAI Press.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25–32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using ontonotes. In Proceed-
ings of CoNLL.

Karthik Raghunathan, Heeyoung Lee, Sudarshan Ran-
garajan, Nathanael Chambers, Mihai Surdeanu, Dan
Jurafsky, and Christopher Manning. 2010. A multi-
pass sieve for coreference resolution. In Proceed-
ings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pages 492–
501, Cambridge, MA. Association for Computa-
tional Linguistics.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the

https://doi.org/10.3115/v1/P14-1035
https://doi.org/10.3115/v1/P14-1035
https://doi.org/10.18653/v1/D16-1245
https://doi.org/10.18653/v1/D16-1245
https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://transacl.org/index.php/tacl/article/view/1853
https://transacl.org/index.php/tacl/article/view/1853
https://transacl.org/index.php/tacl/article/view/1853
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/P19-1066
https://doi.org/10.18653/v1/P19-1066
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108
https://www.aclweb.org/anthology/H05-1004
https://www.aclweb.org/anthology/H05-1004
https://www.aclweb.org/anthology/D10-1048
https://www.aclweb.org/anthology/D10-1048
https://doi.org/10.18653/v1/N18-2002
https://doi.org/10.18653/v1/N18-2002


8623

Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14, New Orleans, Louisiana. Association
for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. AAAI.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Sixth Mes-
sage Understanding Conference (MUC-6): Proceed-
ings of a Conference Held in Columbia, Maryland,
November 6-8, 1995.

Kellie Webster and James R. Curran. 2014. Limited
memory incremental coreference resolution. In Pro-
ceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Tech-
nical Papers, pages 2129–2139, Dublin, Ireland.
Dublin City University and Association for Compu-
tational Linguistics.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. OntoNotes release
5.0 LDC2013T19. Linguistic Data Consortium,
Philadelphia, PA.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coref-
erence resolution. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 994–1004, San Diego,
California. Association for Computational Linguis-
tics.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji-
wei Li. 2020. CorefQA: Coreference resolution as
query-based span prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6953–6963, Online. As-
sociation for Computational Linguistics.

Liyan Xu and Jinho D. Choi. 2020. Revealing the myth
of higher-order inference in coreference resolution.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–20,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

https://www.aclweb.org/anthology/M95-1005
https://www.aclweb.org/anthology/M95-1005
https://www.aclweb.org/anthology/C14-1201
https://www.aclweb.org/anthology/C14-1201
https://doi.org/10.18653/v1/N16-1114
https://doi.org/10.18653/v1/N16-1114
https://doi.org/10.18653/v1/2020.acl-main.622
https://doi.org/10.18653/v1/2020.acl-main.622
http://arxiv.org/abs/2009.12013
http://arxiv.org/abs/2009.12013
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003


8624

A Hyperparameters

In this section, we describe several implementa-
tion details and other experiments that we tried. To
improve memory usage, we use gradient accumula-
tion. Ultimately, all training was performed on the
NVIDIA 1080 TI (11GB), on which we accumulate
gradients when the memory usage exceeds 7.5GB.
In initial trials, we explored sampling losses for
negative examples (spans that do not have an an-
tecedent). While we found sampling at a rate of
0.2 (for example) would speed up training and in-
ference, ultimately it contributed up to a one point
deficit in F1.

We also explored teacher forcing, in which spans
are added to the gold cluster during training in-
stead of the predicted one. This would “correct”
the training objective to match prior work. How-
ever, this did not have a noticeable effect on perfor-
mance. Likewise, we were able to train a competi-
tive model for which only the SpanBERT encoder
from Joshi et al. (2019) was retained and the span
scorer and pairwise scorer were randomly initial-
ized. However, we opted not to use that for the full
experiments because training was more expensive
in time. Further, learning span detection is not guar-
anteed by this objective, leading to high variance
across runs (most notably in the number of epochs).
Thus, the effect of other hyperparameters would
not be immediately apparent.

Additionally, we attempted further finetuning
the encoder with a separate learning rate of [1e-
5, 5e-6], but were unsuccessful in improving the
performance. On our GPUs, training (without fine-
tuning) roughly takes 70 min/epoch with negative
sample rate 0.2, 100 min/epoch without sampling
loss, and 160 min/epoch when finetuning. All runs
are stopped after 5 to 15 epochs due to early stop-
ping (patience = 5).

For eviction, a policy which evicts singletons
distance > 600 and all clusters distance > 1200
would have a recall of 99.57% over the training
set. This is a result of sweeping over [200, 300,
400, 500, 600, 900] for singletons and [400, 600,
800, 1000, 1200, 1800] for all clusters. We also try
using a single fixed distance, as well as other non-
constant schemes (e.g. size × distance as thresh-
olds). Here, distance is between the current point
in the document and the average of the start and
end indices of the most recent span added to the
cluster. We selected this policy from several other
choices due to the recall it achieved.

Our model dimensions otherwise match up ex-
actly with Joshi et al. (2019). Rather than omitting
the speaker embedding and segment length embed-
ding entirely (which would affect pairwise scorer
dimensionality), we replace those embeddings with
the zero vector.

Concretely, we performed grid searches over
dropout ([0.3, 0.4, 0.5]), sample rate ([0.2, 0.5,
0.75, 1.0]), and update method ([alpha, mean]).
We find that 0.4 dropout, 1.0 sample rate, and al-
pha weighting were the best after 2 epochs. Alpha
weighting resulted in, on average, approximately
0.1 F1 improvement (after 2 epochs).

For alpha weighting, we used a two-layer MLP:
the first layer has size 300 and ReLu nonlinearity,
while the final layer then projected to a scalar with
a sigmoid activation. After fixing those values, we
explored learning rate ([5e-5, 1e-4, 2e-4, 5e-4]),
eviction policy at training ([no eviction, eviction]),
and gradient clipping value ([1, 5, 10]). Here, we
found that 2e-4, no eviction, and gradient clipping
at 10 performed slightly better, although there was
little difference between them after these models
were allowed to converge.

Given the final set of hyperparameters, we per-
formed five training runs, resulting in average de-
velopment set F1 of [79.4, 79.5, 79.5, 79.5, 79.7].
We selected the best performing model for the re-
sults in the paper. For Table 4, we trained each
model only once.

For these experiments, our model contains 377M
parameters, of which 340M is SpanBERT-large
(Joshi et al., 2020).


