
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 7400–7410,
November 16–20, 2020. c©2020 Association for Computational Linguistics

7400

Textual Data Augmentation for Efficient Active Learning on Tiny Datasets

Husam Quteineh1∗, Spyridon Samothrakis2, and Richard Sutcliffe3∗

1Business and Local Government Data Research Centre, School of CSEE, University of Essex
husam.quteineh@essex.ac.uk

2IADS, University of Essex
ssamot@essex.ac.uk

3IPMI Group, School of IST, Northwest University China
rsutcl@nwu.edu.cn

Abstract

In this paper we propose a novel data augmen-
tation approach where guided outputs of a lan-
guage generation model, e.g. GPT-2, when la-
beled, can improve the performance of text
classifiers through an active learning process.
We transform the data generation task into
an optimization problem which maximizes
the usefulness of the generated output, using
Monte Carlo Tree Search (MCTS) as the opti-
mization strategy and incorporating entropy as
one of the optimization criteria. We test our
approach against a Non-Guided Data Genera-
tion (NGDG) process that does not optimize
for a reward function. Starting with a small
set of data, our results show an increased per-
formance with MCTS of 26% on the TREC-
6 Questions dataset, and 10% on the Stanford
Sentiment Treebank SST-2 dataset. Compared
with NGDG, we are able to achieve increases
of 3% and 5% on TREC-6 and SST-2.

1 Introduction

Active learning (AL) is a well applied approach in
areas where unlabeled data is abundantly available,
but labels are either scarce or costly to obtain (Set-
tles, 2009). In AL, a classifier is improved upon
through an iterative learning process; at each cycle,
a subset of the original dataset with the most infor-
mative examples is selected to be labeled, typically
by a human expert, before it is then added to the
existing training data (Settles, 2009).

Previous active learning research on textual data
to our knowledge has always assumed the availabil-
ity of datasets containing large pools of unlabeled
data. In cases where the available data is insuffi-
cient for active learning, the burden is transferred
to the data collection process, where additional

∗ Corresponding author

data must either be manually created, or collected
from real world interactions. One strategy for cre-
ating data is to transform existing examples in cer-
tain ways in order to produce new data items and
hence increase the size of the training dataset. This
approach has been applied successfully in com-
puter vision for example, by manipulating exist-
ing images while preserving the label to create
additional data points (Shorten and Khoshgoftaar,
2019). However, in NLP, augmenting data is a
very difficult task due to the complex nature of
language (Wei and Zou, 2019). In this paper we
assume a real-life scenario where the data at hand
is insufficient for running a typical active learning
algorithm. We introduce a method that enables us
to automatically generate artificial text examples
that complement an existing dataset. Our approach
minimizes the human factor in data creation by au-
tomating the process through a guided searching
procedure.

Once a set of examples is generated, it is required
to be manually labeled before it is added to the orig-
inal training set. The classifier is then retrained on
the new, augmented training set. This procedure
is repeated multiple times until the desired perfor-
mance is either achieved or until performance no
longer improves. We do this in active learning cy-
cles, where only a subset of the generated data is
used; this involves selecting examples in terms of
how much information they would add to an exist-
ing classifier. In our experiments we use entropy
as a measure of informativeness.

As our aim is to find the most informative exam-
ples, we tackle this problem by applying a search
approach. Given that text examples are generated
from an extremely large number of possible com-
binations, we apply the Monte Carlo Tree Search
MCTS algorithm (Browne et al., 2012) to limit the

7401

search space. Here MCTS is expected to guide a
language generation model to output informative
examples. In this context, MCTS assigns values
to previously generated examples using a scoring
function that incorporates the learning classifier of
the previous active learning cycle, starting with a
baseline classifier trained on the initial dataset for
the first active learning run. In our experiments,
we test MCTS with two different scoring functions:
one that only measures the uncertainty of the gen-
erated examples through entropy, and another that
combines the measure of uncertainty with a mea-
sure of diversity by computing the cosine similarity
of every newly generated example with the pre-
vious content. These scores determine the text
premise that is passed to the language model when
generating newer examples.

We compare MCTS to Non-Guided Data Gener-
ation (NGDG), an approach where the knowledge
of the learning classifier is not involved in the data
generation process. Here, for each newly gener-
ated example, the text premise is always a token
representing the beginning of a sentence, <bos>.

The remainder of this paper is organized as fol-
lows; Section 2 provides a background as well as an
overview of related literature. Section 3 describes
the proposed approach. Section 4 presents the ex-
periments which were carried out. Section 5 gives
conclusions and plans for future work.

2 Background

2.1 Active Learning

In this paper we consider the pool-based AL model,
a commonly adapted approach in text classification
problems (Hu et al., 2016; Krithara et al., 2006;
Tong and Koller, 2001; Nigam and McCallum,
1998). This approach assumes the availability of all
the data from the beginning of the process. We start
with a set of data SD, where a large pool of it is
unlabeled SU , leaving only a small subset SL with
labels l1, l2, .., ln ∈ L . Hence, SD = SU + SL. A
classifier is first trained on SL. Then, at each AL
iteration, a selection strategy is applied to select
a pool of data SP from SU to be labeled by the
expert. Examples in SP are chosen on the basis
of being the most informative of SU , such that, if
added to the training data, an improvement in the
classifier’s performance is to be expected.

As described by Yoo and Kweon (2019); Sid-
diqui et al. (2019), there are three main selec-
tion strategies that can be applied to obtain SP :

uncertainty-based approaches, diversity-based ap-
proaches, and expected model change. In an
uncertainty-based selection strategy, the active
learner chooses the examples that it is most uncer-
tain about. This assumes a probabilistic framework
where the learner predicts a probability distribution
P = (p1, p2, ..., pn) for labels L = (l1, l2, ..., ln)
for a given example ei ∈ SU . In a binary clas-
sification setting, Lewis et al. presume that the
most uncertain examples have a posterior proba-
bility closest to 0.5 for any label li ∈ {0, 1}∀i
(Lewis and Gale, 1994; Lewis and Catlett, 1994).
In a multi-class setting, a selection strategy could
choose examples with the lowest posterior probabil-
ity or be based on entropy (eq. 5) as in (Hwa, 2004;
Settles and Craven, 2008; Joshi et al., 2009). Given
that the difference in degree of certainty for simi-
lar examples can be small, uncertainty selections
are prone to return similar examples (Wang et al.,
2017). To address this issue, some works incorpo-
rate measures to exploit the diversity information
of the examples in the selection process (Sener and
Savarese, 2017; Wang et al., 2017; Sinha et al.,
2019). Finally, expected-model change selects ex-
amples that would cause the greatest change to a
model’s output if their labels were known (Freytag
et al., 2014; Roy and McCallum, 2001; Settles et al.,
2008). This approach however, can be computa-
tionally expensive for big data and large feature
spaces (Settles, 2009). Hence, this approach has
not been very successful with deep learning models
(Siddiqui et al., 2019).

In sum, research on active learning has focused
on applications where a large pool of unlabeled
data already exists. However, we are interested
in real-life scenarios where this data may not be
available. Other approaches such as Snorkel1 use
heuristics to generate data (Ratner et al., 2017) but
this can prove impractical for text. In this paper
we consider the case were the number of available
data SD is extremely small, so that typical active
learning approaches become inapplicable due to
the absence of SU . Our aim is to generate synthetic
data for SU that can then be queried by an active
learning algorithm to select an informative subset
SP for labeling. The selection process we apply
can be classed as an uncertainty approach, except
for the Diversity-Based MCTS (described in sec-
tion 3.1.4) which incorporates a similarity check
that could also be classed as a diversity approach.

1https://www.snorkel.org/

https://www.snorkel.org/

7402

2.2 Language Models
The year 2018 proved to be an exceptional one
for the NLP community as research shifted rapidly
from pretrained shallow embeddings to more com-
plex pretrained language models adopted from the
computer vision field. This is evident in develop-
ments such as Embeddings from Language Models
(ELMO) (Peters et al., 2018), Universal Language
Model Fine-tuning for Text Classification (ULM-
FIT) (Howard and Ruder, 2018), generative pre-
training (Radford et al., 2018), Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2018) and many more.

In the same year, OpenAI released a transformer-
based language model, GPT (Radford et al., 2018),
which was trained with a traditional language mod-
eling approach by predicting the next word in a
sequence. In language modeling, the objective is
to estimate the probability of a next token in a se-
quence conditioned on the context tokens (Bengio
et al., 2003). In a unidirectional training approach
such as GPT-2, the context is the history or past
tokens. The probability of the sequence for tokens
w = w1, ..., wn can be defined as:

p(w) =
i=n∏
i=1

p(w(i)|w(1), . . . , w(i−1)) (1)

As such, given a set of sentences as input, the objec-
tive of the language model is to find the parameters
θ that maximize the log-likelihood:

θ∗ = argmax
θ

{log p(w; θ)} (2)

This training procedure did not give GPT the edge
over other state-of-the-art models like BERT on
classification tasks, possibly due to BERT taking
advantage of a bidirectional architecture. However,
this did not stop OpenAI’s GPT from prevailing
in other departments. As it turns out, compared
to BERT, GPT is able to generate text sequences
of higher quality (Wang and Cho, 2019). In 2019,
OpenAI released a successor, GPT-2 (Radford et al.,
2019) that included slight adjustments to the orig-
inal GPT model and was trained on larger data
collections. Although its architecture was very sim-
ilar to its predecessor, GPT-2 presented significant
progress in language generation. The main contri-
bution of GPT-2 was its ability to scale up training
parameters from 110 Million to 1.5 Billion. In our
experiments we were able to achieve satisfactory re-
sults with the smallest version of the GPT-2 model;
12 hidden layers and 124M parameters.

2.3 Monte Carlo Tree Search MCTS

MCTS is a tree search method that attempts to
find compelling solutions without having to run to
completion. It does so by walking through random
paths in the search space while constructing a tree
using the results of a predefined reward function.
Due its ability to find paths leading to an optimal
solution when the search space is infinitely large,
MCTS has been widely adopted by the AI gaming
community (Arneson et al., 2010; Perez et al., 2013;
Chang et al., 2016).

The longer MCTS runs, the stronger its moves
get. This is because it manages to balance be-
tween two main criteria: exploring new search
paths and exploiting paths that have been already
explored. MCTS consists of four major steps: Se-
lection, Expansion, Simulation, and Backpropaga-
tion (Chaslot et al., 2008). When applied to board
games, MCTS constructs a tree to determine a win-
ning strategy. In this setting, a node represents a
board position, an edge represents a move, and a
path represents a sequence of moves.

Selection: Starting from a root node R, the al-
gorithm selects a move that leads to a node N that
has no identified children. On the one hand, the se-
lected move could be random, ignoring the scores
of already visited paths; in this case, some paths
are not visited. On the other hand, the selected
move could be completely based on already vis-
ited nodes (e.g. by storing average wins for each
node); here, the algorithm might miss other nodes
that could lead to higher win rates. In order to
balance between the benefits of exploration and
exploitation, a selection policy such as the Upper
Confidence Bound (UCB) can be used (Auer et al.,
2002). UCB makes sure that as many nodes as pos-
sible are explored while still favouring branches
that are visited more often than their counterparts.
The selection is then done by choosing the nodes
with the highest UCB value. In our implementa-
tion, given that the scoring criterion is an entropy
value ranging between 0 and 1, we apply a small
adjustment to the vanilla UCB policy, described in
section 3.1.1:

UCB =
Wi

Si
+ C

√
2× lnSp

Si
(3)

where Wi is the number of simulations generated
from node i which resulted with a win, Si the total
number of simulations generated from node i, Sp

7403

the total number of simulations generated from the
parent node, and C an exploration parameter.

Expansion: In this phase, a new child node is
added to the node selected in the previous step.
This new node is based on a random selection of
one of the possible moves. The values for this new
node are initialized to 0 wins out of 0 simulations
where Wi = 0 and Si = 0.

Simulation (Roll-out): A simulation is run from
the root node R until a terminal node T is found.
The terminal node will output a value that is then
passed upwards in the backpropagation phase.

Backpropagation: A simulation stops when a
terminal node T is reached. The values for each
node leading to T are then updated by adding 1 to
the number of visits Si and number of wins Wi.

2.4 Related Work

In previous work, our group applied a similar
framework to a private dataset, where instead of
GPT-2, a recurrent neural network was used to gen-
erate words, and the reward function was solely
based on entropy (Sankarpandi et al., 2019). Fur-
thermore, experiments were based on a much larger
initial training set, and there was an added burden
on the user to manually correct ill-formed outputs.
To our knowledge, the next closest work to ours is
Anaby-Tavor et al. (2019), where GPT-2 and a clas-
sifier are applied to generate new weakly-labeled
examples. This process involves fine-tuning GPT-
2 on existing training examples while providing
the class labels as part of the input. Examples are
then selected and kept as training data based on the
classifier’s confidence score. Kumar et al. (2020)
further explores this approach with different trans-
former based models (Vaswani et al., 2017) for data
generation. This approach however, relies on GPT-
2 to provide weak labels as it generates data. It also
does not employ a guided search to generate the
best examples at a given stage. By excluding the
process of generating weak labels, this approach
could be considered analogous to our Non-Guided
Data Generation method in section 4.2.

Other data augmentation work in NLP relies on
generating examples that are simply different forms
of the existing text. Two approaches are word ma-
nipulation and the use of back-translations. Word
manipulation involves techniques like randomly
swapping words, replacing words with their syn-
onyms, or deleting random words (Wei and Zou,

2019). In the same vein, Wang and Yang (2015)
randomly replace words with neighboring ones
from an embedding space. Kobayashi (2018) uses
a bidirectional language model to randomly replace
words with alternatives. Here the language model
is fed the sentence input excluding the word at po-
sition x, to predict an alternative word at position x.
Another word replacement approach is applied by
Wang et al. (2018b) in a machine translation task,
where words in both the source and target sentence
are replaced with other random words. In back-
translation, also known as round-trip translation
(Aiken and Park, 2010), an input text is translated
into an intermediate language and then the result
is translated back to the original language. This
technique is applied in the works of Sennrich et al.
(2015); Aroyehun and Gelbukh (2018).

3 Proposed Method

In games, MCTS can be applied to predict moves
in order to counter an opponent’s strategy so that a
winnable state is reached. However, text generation
is more similar to a single player scenario, where
decisions are based on which token to select when
moving from one state to the other.

A language model calculates a probability dis-
tribution over a sequence of words. When pass-
ing over a stream of text, each vocabulary token
is assigned a probability score for occurring next.
Hence, tokens with higher probability scores are
more likely to appear next in the sequence. In our
setting, we are interested in multiple token candi-
dates for all remaining words in the sequence. To
achieve this we use a top-k sampling scheme as
used by Fan et al. (2018). At each time step, each
token in the vocabulary is assigned a probability
score for coming next in the sequence. To get the
top k candidates, vocabulary tokens are sorted by
their probability scores and anything below the k’th
token is then zeroed out. The probability mass is
then redistributed among the k token candidates.

This process can be modeled as a tree where each
node represents a token linked to k child nodes rep-
resenting the top k candidate tokens that are likely
to appear next in the sequence. Hence, this is sim-
ilar to a board game where each board position is
represented by a node: The root node corresponds
to an empty board while a terminal node is where
no further moves can be made. In our setting, we
use a special token for both the root and terminal
nodes. We represent the starting token with<bos>

7404

and the ending token with <eos>.
As an example, a language model that is fine-

tuned on a survey on pet adoption could be used
to generate the tree of predictions in Figure 1. A
full version of this tree would represent all the pos-
sible combinations of text that can be generated
by the language model. In an ideal setting, we
would search this tree for the paths that represent
the most informative examples. However, given
that the tree will grow exponentially as the number
of next token candidates is increased, it would be
computationally expensive to apply a brute force
search algorithm where every path is examined.
For this reason, we apply the Monte Carlo Tree
Search (MCTS) algorithm in the data generation
process, as discussed next.

Figure 1: MCTS traverses down the tree as it creates
paths spanning from the root node <bos> until a ter-
minal node<eos> is reached. Tokens of the same path
form a sentence when concatenated e.g. the path in red.

3.1 MCTS for Data Generation
In a typical MCTS application, a separate tree is
formed for every decision. Applying this to our
approach would require us to build a tree for each
next word in the sequence. This would be com-
putationally expensive due to the overhead of gen-
erating candidates and computing reward values.
An alternative would be to construct a single tree
only, while allowing MCTS to run for a longer pe-
riod. This would result in a tree where each path
is a possible output. However, given the nature of
MCTS where the paths generated in the roll-out

phase are not stored, we would be left with many
incomplete paths which did not reach a terminal
node (see Figure 1). To account for this, we keep
track of all the simulations without impacting the
selection policy. Thus we still have the same tree as
in Figure 1, but we also have a record of the paths
generated from non-terminal leaf nodes. The Se-
lection, Expansion, Simulation and Backprogation
phases for each MCTS iteration are described in
the following sections.

3.1.1 Selection
The vanilla UCB function is mostly adopted in
strategies where the outcome is chosen from a fixed
set of categorical values, win, lose or tie. The ob-
jective is to reach a winnable state with the min-
imum number of visits. This is reflected in the
UCB equation (eq. 3). By contrast, our purpose is
to maximize the importance of nodes that lead to
higher reward values (section 3.1.4), as shown in
eq. 4, adopted from Chaudhry and Lee (2018):

UCB = max(Ni) + C

√
2× lnSp

Si
(4)

where max(Ni) is the maximum reward at node i,
C is an exploration constant, Si is the total number
of visits to node i, and Pi is the total number of
visits to the parent node for node i.

3.1.2 Expansion
Once a node is selected, we add all its immediate
child nodes. These are the allowed moves from a
given state, that is the top k token candidates gener-
ated by a language model, given the state’s context
history. Figure 2 illustrates the process. For k = 3,
the context history for the state at the root node
is the token <bos>. When passed to a language
generation model, the words “Where”, “What” and
“Who” are examples of the top three candidates to
follow <bos>. Assume the node “Who” is picked
in the selection phase at i = 1. Its state context
history “<bos> Who” returns the candidate tokens
“discovered”, “is”, and “invented”; these are added
as child nodes in the expansion phase.

3.1.3 Simulation (Roll-out)
A simulation starts from the added child node in the
expansion phase. During this process, a sequence
is generated by picking at random a possible can-
didate for each next token until a terminal state
is reached. Given that candidate tokens are gen-
erated over a probability distribution, we apply a

7405

Figure 2: A possible MCTS output after 2 iterations

weighted choice method, enforcing non-uniform
randomness. As explained earlier in 3.1, simula-
tions are tracked without affecting the growth of
the tree. Taking this into account, we are able to
modify the value of k for the tokens, without affect-
ing the functionality of MCTS. We will refer to this
as Ks to distinguish it from the K in the expansion
phase. If Ks >> K, we are able to achieve higher
variance in the generated data while maintaining
the width of the tree.

3.1.4 Backpropagation
Once an example is generated, its reward value is
computed. The path of the expanded node is then
updated by backpropagating the reward value and
increasing the number of visits by one.

For the reward function, we implement two vari-
ants of MCTS, hereafter referred to as Uncertainty-
Based MCTS and Diversity-Based MCTS, where
the only difference is in the reward function.

In Uncertainty-Based MCTS, given the learn-
ing classifier’s softmax probabilities over the possi-
ble class labels, we compute the normalized form
of Shannon’s entropy as shown in eq. 5:

Hn(P) = −
n∑
i=1

pi logb pi ·
1

logb n
(5)

where P is a set of probabilities P = {pi; i =
1, ..., n}, with

∑n
i=1 pi = 1 for n labels, normal-

ized by logbn. We expect meaningless content in
regions of higher entropy, and so limit the search
space to a predefined value for maximum entropy,
θent. Examples with an entropy above this thresh-
old become less important by returning a lowered
reward value (e.g. 0), as shown in eq. 6.

f(xent) =

{
0, if xent ≥ θent
xent, otherwise

(6)

where xent is the entropy value for example x, and
θent the entropy cut-off threshold.

In Diversity-Based MCTS, in addition to en-
tropy, we compute the cosine similarity between
each generated candidate and a comparison list ini-
tialized with the classifier’s training data. This is
to ensure the diversity of the generated examples.
If the similarity score is above a certain threshold
θsim, the reward for the candidate will be set to 0,
as shown in eq. 7. Conversely, if it is below θsim,
the candidate is added to the comparison list, so
that future candidates will be penalized if they are
too similar to it.

f(xent, xsim) =

0, if xent ≥ θent
0, if xsim > θsim

xent, otherwise

(7)

where xsim is the maximum cosine similarity score
between example x and the comparison list, and
θsim the cosine similarity threshold.

3.2 Data Selection and Active Learning

Once MCTS reaches completion, all leaf nodes
from the final tree are selected. Given that we
have kept track of the generated simulations from
a node, each non-terminal leaf node is now linked
to a generated sequence of text. The final set of
text examples is then sorted by the values from
their corresponding nodes. The top n examples
are selected, labeled by hand and appended to the
original training set. We then retrain the learning
classifier on the new dataset.

4 Experiments

4.1 Datasets

In our experiments, we attempt to emulate real life
scenarios where training data is scarce. So from
each dataset below, we create an initial training set
by randomly selecting a very small subset of the
available training data. We then fine-tune GPT-2 on
the created subset and use our method from section
3 to generate new training examples. Once data is
generated, we label the top n examples, sorted by
the max reward value, as described in 3.2.

We study the effectiveness of our methods on
two different tasks, question classification and sen-
timent analysis.

Question Classification: For this task we use
the 6-label version of the TREC Questions dataset,
TREC-6 (Li and Roth, 2002). TREC-6 divides

7406

questions into 6 categories: HUM, DESC, ENTY,
LOC, NUM, and ABBR. From the available train-
ing data, we randomly select only 5 examples per
label, making a total of 30 examples for training
the baseline classifier. Evaluation is done over the
provided test set of 500 questions.

Sentiment Analysis: For this task we use
the Stanford Sentiment Treebank SST-2 Dataset
(Socher et al., 2013), with sentiments divided into
2 labels, positive and negative. We use the data split
from the GLUE SST task (Wang et al., 2018a), and
evaluate on the provided development set. From the
available training data, we only select 10 random
examples per label and discard the rest.

4.2 Model Comparison

In our experiments we compare two variants of
MCTS with only a minor difference in the reward
function, one with the effect of θsim as described in
section 3.1.4, and one without its effect. We further
test the effectiveness of MCTS for data augmenta-
tion by comparing it to a data generation approach
that does not optimize for a reward value. We re-
fer to this approach as non-guided data generation
(NGDG). Similar to MCTS, NGDG applies a top-k
sampling procedure to generate candidate tokens.
However, unlike MCTS, the selection of the next
token is entirely based on the distribution of the
candidate tokens. This is exactly the same proce-
dure as the simulation phase in MCTS, but instead
of constructing a tree search, simulations are run
independently of one another. To emulate the flexi-
bility of having higher variance over the latter parts
of the generated text in MCTS (section 3.1.3), we
increased k for the number of candidate tokens af-
ter the first n output tokens in the sequence. Here
n is fixed at 3 in all our experiments. After the data
is generated, we apply the classifier of the previous
active learning cycle to compute an entropy value
(eq. 5) for each example. Data is then sorted by
the entropy, and the top n examples below θent are
then selected for labeling.

The classifier used for our experiments is a relu
layer neural network with the Universal Sentence
Encoder (USE) for the embedding layer. We im-
plement this classifier using the Keras2 toolkit.
The classifier contains an embedding layer with
512 neurons, a 600-neuron fully-connected dense
layer, a dropout layer with a 0.2 dropout rate,
a softmax activation output and optimized using

2https://keras.io/

Adam (Kingma and Ba, 2014). We fixed the
classifier’s hyper-parameters following a hyper-
parameter search to a batch-size of 2, 0.0001 learn-
ing rate, and trained over 15 epochs.

4.3 Data Generation Parameters

We fix the MCTS UCB policy constant C to 2, θent
to 0.95, and θsim to 0.9 for all experiments. To
achieve fairness in the comparison, when using the
NGDG method (section 4.2), we discard examples
with entropy above θent = 0.95 in the experiments.

4.4 Data Selection

For MCTS, as the learning classifier is part of the
data generation process, the output examples are
already mapped to their reward values and to the
classifier’s predicted labels. For NGDG, however,
because the classifier does not take part in the gen-
eration process, it must be applied to the generated
data afterwards, to predict labels and compute val-
ues for entropy. After classification, the data is
sorted by entropy (for NGDG) or reward value (for
MCTS), and the labels of the top n examples are
corrected manually. Finally, to limit the effect of
an imbalanced dataset, we restrict the number of
the selected examples xmax, to the first 10 per la-
bel. In the event where all labels have more than
10 examples, xmax corresponds to the count of the
label with the least number of examples.

4.5 Experiment 1: TREC-6 Question Data

For this experiment, we fixed the number of simu-
lations at 3000 and the top n examples for labelling
to 50 for both MCTS and NGDG. We set the num-
ber of candidate tokens K to 6 and Ks to 20. For
NGDG, K changes from 6 to 20 after the first 3
tokens are generated from the sequence. Table 1
shows the average accuracy achieved over the 6
labels throughout 8 Active Learning runs on the
TREC-6 test set, as well as giving the added num-
ber of examples after each AL cycle.

4.6 Experiment 2: SST-2 Sentiment Data

Similar to experiment 1, we kept the number of
simulations at 3000 and top n at 50 for both MCTS
and NGDG. Whereas, we set the number of candi-
date tokens K = 15 and Ks = 30 for MCTS. In
NGDG, K changes from 15 to 30 after the first 3
tokens are generated. Results are in Table 2.

https://keras.io/

7407

AL Run
MCTS

NGDG
Diversity Uncert.

Start 65 (30#) 65 (30#) 65 (30#)
1 68 (48#) 78 (49#) 78 (47#)
2 86 (68#) 82 (52#) 86 (61#)
3 92 (73#) 87 (55#) 87 (72#)
4 91 (76#) 89 (59#) 88 (83#)
5 92 (83#) 91 (71#) 86 (89#)
6 91 (91#) 90 (76#) 84 (103#)
7 90 (94#) 89 (87#) 84 (113#)
8 91 (98#) 90 (94#) 88 (126#)

Table 1: Classification results after each Active Learn-
ing (AL) run for the TREC-6 question classification
task. Before AL, 30 training examples result in 65%
classification accuracy. After AL 1, under Diversity-
Based MCTS for example, 18 new examples are
added (total 48#), giving 68% accuracy, while under
Uncertainty-Based MCTS (Uncert.), 19 new examples
are added (total 49), giving accuracy 78%. The rest of
the table is analogous.

AL Run
MCTS

NGDG
Diversity Uncert.

Start 73 (20#) 73 (20#) 73 (20#)
1 74 (34#) 77 (34#) 69 (32#)
2 79 (41#) 76 (44#) 72 (43#)
3 79 (50#) 78 (48#) 75 (55#)
4 80 (60#) 80 (54#) 76 (79#)
5 80 (65#) 80 (55#) 75 (92#)
6 80 (79#) 80 (62#) 76 (103#)
7 83 (87#) 80 (64#) 79 (116#)
8 83 (95#) 79 (69#) 78 (124#)

Table 2: Classification results after each AL run for the
SST-2 sentiment analysis task with top n = 50.

4.7 Experiment 3: SST-2 Sentiment Data

We repeated experiment 2 with the same configura-
tions, except that top n, is now 20 (not 50) for both
MCTS and NGDG. Results are shown in Table 3.

4.8 Discussion

Table 4 shows twelve sentences generated by the
Diversity-Based MCTS. These can give us insights
concerning our approach and the role of GPT-2 in
it. First, consider example 1 in the table (“Why did
Einstein lose a fight with cancer?” – type DESC).
In the initial training set, there is only one mention
of Einstein (“What was Einstein’s IQ?” – NUM),
and one of cancer (“How do doctors diagnose bone
cancer?” – DESC). Nevertheless, example 1 com-

AL Run
MCTS

NGDG
Diversity Uncert.

Start 73 (20#) 73 (20#) 73 (20#)
1 77 (26#) 72 (24#) 68 (30#)
2 74 (29#) 74 (27#) 75 (41#)
3 78 (37#) 74 (34#) 77 (49#)
4 79 (43#) 73 (38#) 76 (56#)
5 80 (46#) 76 (39#) 81 (60#)
6 80 (49#) 78 (42#) 81 (64#)
7 81 (52#) 76 (44#) 79 (72#)
8 81 (57#) 78 (45#) 80 (77#)

Table 3: Classification results after each AL run for the
SST-2 sentiment analysis task with top n = 20.

Example
1 Why did Einstein lose a fight with cancer?
2 Why did Lincole Ljungberg retire?
3 Why was Lorne L. Huntington’s IQ so low?
4 What are three fundamental principles of

socialism?
5 What is D.C.’s major metropolitan area?
6 When was Antarctica formed?
7 When did animals roam the earth?
8 Where can a geologist find fossils?
9 Where can an electrician find work?
10 How did Moses rule the ancient tribes?
11 How often have animals been killed by car

crashes?
12 Which is Fordham’s largest engineering

college?

Table 4: Some examples generated on TREC-6 through
the Diversity-Based MCTS for experiment 1.

bines information from two different sentence types
NUM and DESC in a coherent way. Example 3
again demonstrates a form of ‘cross-type’ learning:
The Einstein training sentence above is the only
mention of IQ and is of type NUM. Yet example
3 is a well-formed DESC sentence. For example
4, perhaps the most related training instances are
“What are the four elements?” and “What are the
chemicals used in glowsticks?”. These are asking
for lists but concerning elements and chemicals,
not abstract concepts like socialism.

Interestingly, even though the training set con-
tains no ‘When’ sentences, examples such as 6
and 7 could still be created; because MCTS pushes
GPT-2 to generate novel sentences as it constructs
the tree, those of the form “What kind, when...”

7408

were created during the path traversal process.
These were then corrected during the labeling stage.
We did not witness this phenomenon with NGDG,
possibly because MCTS is directed by a reward
function that penalizes sentences of low entropy.
This allows MCTS to search through the space of
possible sentence combinations more efficiently.

Concerning the LOC examples 8 and 9, the only
‘Where’ training question is “Where do hyenas
live?”. Yet, in our experiments, we were able to
expand on this by generating additional ‘Where’
questions which are very different from the hyenas
and different from each other: A fossil is some-
thing which a geologist might find, while work is
something which an electrician might find. Both
are meaningful, while the sense of ‘find’ in each
is quite distinct. Finally, while the remaining ex-
amples in table 4 could not be directly linked to
relevant examples in the training data, this only con-
firms our purpose of using a pretrained model like
GPT-2 that can make use of its external knowledge
while remaining relevant to the target task.

In summary, by integrating GPT-2 with our meth-
ods, we gained substantial improvements over the
baseline classifier. This shows how text generation
can improve performance for tasks with scarce data.
Even when starting with just a few examples per
label, we were able to generate informative data
that boosted the accuracy on TREC-6 from 65% to
91% with MCTS and 88% with NGDG, on SST-2
from 73% to 83% and 78% respectively, after 8
AL runs. Even when reducing the number of ex-
amples for labeling from 50 to 20 in experiment
3, we were still able to achieve an improvement of
81% with MCTS and 80% with NGDG. This sug-
gests the effectiveness of our approach in solving
real-world classification tasks when minimal data
is available. Moreover, with MCTS we witnessed
improvements in performance compared to NGDG
on both the TREC-6 and SST-2 datasets. MCTS
guides the growth of the tree by visiting more rel-
evant nodes more frequently. Hence, relevancy is
increased by the paths that maximize the reward
function, those that correspond to high entropy val-
ues in our setting.

However, searching only for high entropy is
more likely to incur noise in the final output such
as ill-formed sentences or content that does not
fall under the labeling criteria. Since ill-formed
sentences are likely to incur high entropy values,
the lack of a sentence quality measure can make

MCTS prone to output meaningless sentences. For
instance, “What kind!!??”, “Which is the abbrev?”,
and “What does IQ be?” were outputs of MCTS in
the TREC-6 experiments. This point is reflected in
the lower overall number of added examples when
comparing MCTS to NGDG over the 8 AL runs.
Moreover, when MCTS over-exploits visited paths,
it can get stuck in certain sub-trees, leading it to
output examples with a high level of similarity. For
instance, “good movie” and “good movie!” are
identical examples with the only difference being
the exclamation mark ‘!’. This issue is especially
noticeable in the MCTS Uncertainty-Based experi-
ment in Table 3, where due to the number of closely
similar examples in the output, a lower proportion
of the top 20 examples could be labeled. Hence, to
diversify the generated output, we introduced θsim
in the MCTS Diversity-Based approach.

Overall, the success of our approach relies on the
quality of the search space, which is determined by
the language model; if it performs less well, this
can result in a noisier space. Hence, in our previous
work (Sankarpandi et al., 2019), our group could
not achieve comparable results. Moreover, addi-
tional user involvement was needed to make sense
of ill-formed outputs, making the whole approach
laborious and more prone to the user’s bias.

5 Conclusion

In this paper we proposed a framework for improv-
ing a classifier’s performance with synthetic data.
We have shown in our experiments that even when
starting with just a few examples, we are able to
achieve noticeable improvements. We believe this
approach is likely to work for any domain or lan-
guage so long as the language model is able to
generate meaningful output. In this work for in-
stance, we did not need more than 20 examples to
fine-tune GPT-2 for the SST-2 experiments, or 30
for the TREC-6 experiments. We expect even better
results when more examples are provided or with
the application of an improved language model like
GPT-3. In future work, we plan to extend our ap-
proach to further improve the reward and policy
functions, and to reduce the human-labeling factor.

Acknowledgments

Husam Quteineh acknowledges the support of the
Business and Local Government Data Research
Centre BLG DRC (ES/S007156/1) funded by the
Economic and Social Research Council (ESRC).

7409

References
Milam Aiken and Mina Park. 2010. The efficacy of

round-trip translation for mt evaluation. Translation
Journal, 14(1):1–10.

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2019. Not enough
data? deep learning to the rescue! arXiv preprint
arXiv:1911.03118.

Broderick Arneson, Ryan B Hayward, and Philip Hen-
derson. 2010. Monte carlo tree search in hex. IEEE
Transactions on Computational Intelligence and AI
in Games, 2(4):251–258.

Segun Taofeek Aroyehun and Alexander Gelbukh.
2018. Aggression detection in social media: Us-
ing deep neural networks, data augmentation, and
pseudo labeling. In Proceedings of the First Work-
shop on Trolling, Aggression and Cyberbullying
(TRAC-2018), pages 90–97, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
2002. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
and Christian Janvin. 2003. A neural proba-
bilistic language model. J. Mach. Learn. Res.,
3(null):1137–1155.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas,
P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. 2012. A survey
of monte carlo tree search methods. IEEE Trans-
actions on Computational Intelligence and AI in
Games, 4(1):1–43.

Hyeong Soo Chang, Michael C Fu, Jiaqiao Hu, and
Steven I Marcus. 2016. Google deep mind’s al-
phago. OR/MS Today, 43(5):24–29.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and
Pieter Spronck. 2008. Monte-carlo tree search: A
new framework for game ai. In AIIDE.

Muhammad Umar Chaudhry and Jee-Hyong Lee. 2018.
Feature selection for high dimensional data using
monte carlo tree search. IEEE Access, 6:76036–
76048.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Angela Fan, Mike Lewis, and Yann N. Dauphin.
2018. Hierarchical neural story generation. CoRR,
abs/1805.04833.

Alexander Freytag, Erik Rodner, and Joachim Denzler.
2014. Selecting influential examples: Active learn-
ing with expected model output changes. In Euro-
pean Conference on Computer Vision, pages 562–
577. Springer.

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. CoRR,
abs/1801.06146.

Rong Hu, Brian Mac Namee, and Sarah Jane De-
lany. 2016. Active learning for text classification
with reusability. Expert systems with applications,
45:438–449.

Rebecca Hwa. 2004. Sample selection for statistical
parsing. Computational linguistics, 30(3):253–276.

Ajay J Joshi, Fatih Porikli, and Nikolaos Pa-
panikolopoulos. 2009. Multi-class active learning
for image classification. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages
2372–2379. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452–457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Anastasia Krithara, Cyril Goutte, Jean-Michel Renders,
and MR Amini. 2006. Reducing the annotation bur-
den in text classification. In Proceedings of the 1st
International Conference on Multidisciplinary Infor-
mation Sciences and Technologies (InSciT 2006),
Merida, Spain.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. arXiv preprint arXiv:2003.02245.

David D Lewis and Jason Catlett. 1994. Heteroge-
neous uncertainty sampling for supervised learning.
In Machine learning proceedings 1994, pages 148–
156. Elsevier.

David D Lewis and William A Gale. 1994. A sequen-
tial algorithm for training text classifiers. In SI-
GIR’94, pages 3–12. Springer.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1–7. Association for Computational Linguis-
tics.

Kamal Nigam and Andrew McCallum. 1998. Pool-
based active learning for text classification. In
Conference on Automated Learning and Discovery
(CONALD).

Diego Perez, Julian Togelius, Spyridon Samothrakis,
Philipp Rohlfshagen, and Simon M Lucas. 2013.
Automated map generation for the physical traveling
salesman problem. IEEE Transactions on Evolution-
ary Computation, 18(5):708–720.

https://www.aclweb.org/anthology/W18-4411
https://www.aclweb.org/anthology/W18-4411
https://www.aclweb.org/anthology/W18-4411
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1805.04833
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072

7410

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. CoRR, abs/1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. Proc. VLDB Endow., 11(3):269–282.

Nicholas Roy and Andrew McCallum. 2001. Toward
optimal active learning through monte carlo estima-
tion of error reduction. ICML, Williamstown, pages
441–448.

S. K. Sankarpandi, S. Samothrakis, L. Citi, and
P. Brady. 2019. Active learning without unla-
beled samples: generating questions and labels us-
ing monte carlo tree search. In 2019 IEEE Inter-
national Conference on Big Data (Big Data), pages
4628–4631.

Ozan Sener and Silvio Savarese. 2017. Active learn-
ing for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation models
with monolingual data. CoRR, abs/1511.06709.

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

Burr Settles and Mark Craven. 2008. An analysis of ac-
tive learning strategies for sequence labeling tasks.
In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1070–1079.

Burr Settles, Mark Craven, and Soumya Ray. 2008.
Multiple-instance active learning. In J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis, editors, Ad-
vances in Neural Information Processing Systems
20, pages 1289–1296. Curran Associates, Inc.

Connor Shorten and Taghi M Khoshgoftaar. 2019. A
survey on image data augmentation for deep learn-
ing. Journal of Big Data, 6(1):60.

Yawar Siddiqui, Julien Valentin, and Matthias Nießner.
2019. Viewal: Active learning with viewpoint en-
tropy for semantic segmentation. arXiv preprint
arXiv:1911.11789.

Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell.
2019. Variational adversarial active learning. CoRR,
abs/1904.00370.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Simon Tong and Daphne Koller. 2001. Support vec-
tor machine active learning with applications to text
classification. Journal of machine learning research,
2(Nov):45–66.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang and Kyunghyun Cho. 2019. Bert has
a mouth, and it must speak: Bert as a markov
random field language model. arXiv preprint
arXiv:1902.04094.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018a.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Gaoang Wang, Jenq-Neng Hwang, Craig Rose, and Far-
ron Wallace. 2017. Uncertainty sampling based ac-
tive learning with diversity constraint by sparse se-
lection. In 2017 IEEE 19th International Workshop
on Multimedia Signal Processing (MMSP), pages 1–
6. IEEE.

William Yang Wang and Diyi Yang. 2015. That’s so an-
noying!!!: A lexical and frame-semantic embedding
based data augmentation approach to automatic cat-
egorization of annoying behaviors using #petpeeve
tweets. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2557–2563, Lisbon, Portugal. Association for
Computational Linguistics.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham
Neubig. 2018b. SwitchOut: an efficient data aug-
mentation algorithm for neural machine translation.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
856–861, Brussels, Belgium. Association for Com-
putational Linguistics.

Jason W. Wei and Kai Zou. 2019. EDA: easy data aug-
mentation techniques for boosting performance on
text classification tasks. CoRR, abs/1901.11196.

Donggeun Yoo and In So Kweon. 2019. Learning loss
for active learning. CoRR, abs/1905.03677.

http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.14778/3157794.3157797
http://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1511.06709
http://papers.nips.cc/paper/3252-multiple-instance-active-learning.pdf
http://arxiv.org/abs/1904.00370
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D15-1306
https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.18653/v1/D18-1100
http://arxiv.org/abs/1901.11196
http://arxiv.org/abs/1901.11196
http://arxiv.org/abs/1901.11196
http://arxiv.org/abs/1905.03677
http://arxiv.org/abs/1905.03677

