
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 6966–6974,
November 16–20, 2020. c©2020 Association for Computational Linguistics

6966

Train No Evil: Selective Masking for Task-Guided Pre-Training

Yuxian Gu1,2,3, Zhengyan Zhang1,2,3, Xiaozhi Wang1,2,3, Zhiyuan Liu1,2,3†, Maosong Sun1,2,3

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Institute for Artificial Intelligence, Tsinghua University, Beijing, China

3State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China
{gu-yx17, zy-z19, wangxz20}@mails.tsinghua.edu.cn

Abstract

Recently, pre-trained language models mostly
follow the pre-train-then-fine-tuning paradigm
and have achieved great performance on vari-
ous downstream tasks. However, since the pre-
training stage is typically task-agnostic and
the fine-tuning stage usually suffers from in-
sufficient supervised data, the models cannot
always well capture the domain-specific and
task-specific patterns. In this paper, we pro-
pose a three-stage framework by adding a
task-guided pre-training stage with selective
masking between general pre-training and fine-
tuning. In this stage, the model is trained
by masked language modeling on in-domain
unsupervised data to learn domain-specific
patterns and we propose a novel selective
masking strategy to learn task-specific pat-
terns. Specifically, we design a method to
measure the importance of each token in se-
quences and selectively mask the important
tokens. Experimental results on two senti-
ment analysis tasks show that our method
can achieve comparable or even better per-
formance with less than 50% of computation
cost, which indicates our method is both effec-
tive and efficient. The source code of this pa-
per can be obtained from https://github.

com/thunlp/SelectiveMasking.

1 Introduction

Pre-trained Language Models (PLMs) have
achieved superior performances on various NLP
tasks (Baevski et al., 2019; Joshi et al., 2020; Liu
et al., 2019; Yang et al., 2019; Clark et al., 2020)
and have attracted wide research interests. Inspired
by the success of GPT (Radford et al., 2018) and
BERT (Devlin et al., 2019), most PLMs follow the
pre-train-then-fine-tuning paradigm, which adopts
unsupervised pre-training on large general-domain

† Corresponding author: Z.Liu (liuzy@tsinghua.edu.cn)

General
Pre-train

In-domain
Unsupervised Data

General
Unsupervised Data

Downstream
Supervised Data

Fine-tune

Selective MaskingRandom Masking

Task-guided
Pre-train

Figure 1: The overall three-stage framework. We add
task-guided pre-training between general pre-training
and fine-tuning to efficiently and effectively learn the
domain-specific and task-specific language patterns.

corpora to learn general language patterns and su-
pervised fine-tuning to adapt to downstream tasks.

Recently, Gururangan et al. (2020) shows that
learning domain-specific and task-specific patterns
during pre-training can be helpful to the models
for certain domains and tasks. However, conven-
tional pre-training is aimless with respect to spe-
cific downstream tasks, and fine-tuning usually suf-
fers from insufficient supervised data, preventing
PLMs from effectively capturing these patterns.

To learn domain-specific language patterns,
some previous works (Beltagy et al., 2019; Huang
et al., 2020) pre-train a BERT-like model from
scratch using large-scale in-domain data. However,
they are computation-intensive and require large-
scale in-domain data, which is hard to obtain in
many domains. To learn task-specific language pat-
terns, some previous works (Phang et al., 2018) add
intermediate supervised pre-training after general
pre-training, whose pre-training task is similar to
the downstream task but has a larger dataset. How-
ever, Wang et al. (2019) shows that this kind of
intermediate pre-training often negatively impacts

https://github.com/thunlp/SelectiveMasking
https://github.com/thunlp/SelectiveMasking

6967

the transferability to downstream tasks.

To better capture domain-specific and task-
specific patterns, we propose a three-stage frame-
work by adding a task-guided pre-training stage
with selective masking between the general pre-
training and fine-tuning. The overall framework
is shown in Figure 1. In the stage of task-guided
pre-training, the model is trained by masked lan-
guage modeling (Masked LM) (Devlin et al., 2019)
on mid-scale in-domain unsupervised data, which
is constructed by collecting other corpora in the
same domain. In this way, PLMs can utilize more
data to better learn domain-specific language pat-
terns (Alsentzer et al., 2019; Lee et al., 2019; Sung
et al., 2019; Xu et al., 2019; Aharoni and Goldberg,
2020). However, the conventional Masked LM ran-
domly masks tokens, which is inefficient to learn
task-specific language patterns. Hence, we propose
a selective masking strategy for task-guided pre-
training, whose main idea is selectively masking
the important tokens for downstream tasks.

Intuitively, some tokens are more important than
others for a specific task and the important tokens
vary among different tasks (Ziser and Reichart,
2018; Feng et al., 2018; Rietzler et al., 2020). For
instance, in sentiment analysis, sentiment tokens
such as “like” and “hate” are critical for sentiments
classification (Ke et al., 2020). And, in relation
extraction, predicates and verbs are typically more
significant. If PLMs can selectively mask and pre-
dict the important tokens instead of a mass of ran-
dom tokens, they can effectively learn task-specific
language patterns and the computation cost of pre-
training can be significantly reduced.

For the selective masking strategy, we propose a
simple method to find important tokens for down-
stream tasks. Specifically, we define a task-specific
score for each token and if the score is lower than
a certain threshold, we regard the token as impor-
tant. However, this method relies on the supervised
downstream datasets whose sizes are limited for
pre-training. To better utilize mid-scale in-domain
unsupervised data as shown in Figure 1, we train a
neural network on downstream datasets where the
important tokens are annotated using the method
mentioned above. This neural network can learn
the implicit token-selecting rules, which enables us
to select tokens without supervision.

We conduct experiments on two sentiment analy-
sis tasks: MR (Pang and Lee, 2005) and SemEval14
task 4 (Pontiki et al., 2014). Experimental results

show that our method is both efficient and effec-
tive. Our method can achieve comparable and even
better performances than the conventional pre-train-
then-fine-tune method with less than 50% of the
overall computation cost.

2 Methodology

In this section, we describe task-guided pre-
training and selective masking strategy in detail.
For convenience, we denote general unsupervised
data, in-domain unsupervised data, downstream
supervised data as DGeneral, DDomain and DTask.
They generally contain about 1000M words, 10M
words, and 10K words respectively.

2.1 Training Framework

As shown in Figure 1, our overall training frame-
work consists of three stages:

General pre-training (GenePT) is identical to
the pre-training of BERT (Devlin et al., 2019). We
randomly mask 15% tokens of DGeneral and train
the model to reconstruct the original text.

Task-guided pre-training (TaskPT) trains the
model on the mid-scale DDomain with selective
masking to efficiently learn domain-specific and
task-specific language patterns. In this stage, we ap-
ply a selective masking strategy to focus on mask-
ing the important tokens and then train the model
to reconstruct the input. The details of selective
masking are introduced in Section 2.2.

Fine-tuning is to adapt the model to the down-
stream task. This stage is identical to the fine-
tuning of the conventional PLMs.

Since TaskPT enables the model to efficiently
learn the domain-specific and task-specific patterns,
it is unnecessary to fully train the model in the stage
of GenePT. Hence, our overall pre-training time
cost of the two pre-training stages can be much
smaller than those of conventional PLMs.

2.2 Selective Masking

In our TaskPT, we select important tokens ofDTask

by their impacts on the classification results. How-
ever, this method relies on the supervised labels of
DTask. To selectively mask on mid-scale unlabeled
in-domain data DDomain, we adopt a neural model
to learn the implicit scoring function from the se-
lection results on DTask and use the model to find
important tokens of DDomain.

6968

Finding important tokens

We propose a simple method to find important to-
kens of DTask. Given the n-token input sequence
s = (w1, w2, . . . , wn), we use an auxiliary se-
quence buffer s′ to help evaluating these tokens
one by one. At time step 0, s′ is initialized to
empty. Then, we sequentially add each token wi

to s′ and calculate the task-specific score of wi,
which is denoted by S(wi). If the score is lower
than a threshold δ, we regard wi as an important
token. Note that we will remove previous impor-
tant tokens from s′ to make sure the score is not
influenced by previous important tokens.

Assume the buffer at the time step i− 1 is s′i−1.
We define the token wi’s score as the difference
of classification confidences between the original
input sequence s and the buffer after adding wi,
which is denoted by s′i−1wi:

S(wi) = P (yt | s)− P (yt | s′i−1wi), (1)

where yt is the target classification label of the in-
put s and P (yt | ∗) is the classification confidence
computed by a PLM fine-tuned on the task. Note
that the PLM used here is the model with GenePT
introduced in Section 2.1, not a fully pre-trained
PLM. In experiments, we set δ = 0.05. The impor-
tant token criterion S(wi) < δ means after adding
wi, the fine-tuned PLM can correctly classify the
incomplete sequence buffer with a close confidence
to the complete sequence.

Masking on in-domain unsupervised data

For DDomain, text classification labels needed for
computing P (yt | ∗) are unavailable to perform
the method stated above.

To find and mask important tokens of DDomain,
we apply the above method to DTask to generate a
small scale of data where important tokens are an-
notated. Then we fine-tune a PLM on the annotated
data to learn the implicit rules for selecting the im-
portant tokens of DDomain. The PLM used here is
also the model with GenePT. The fine-tuning task
here is a binary classification to classify whether
a token is importent or not. With this fine-tuned
PLM as a scoring function, we can efficiently score
each token of DDomain without labels and select
the important tokens to be masked. After masking
the important tokens, DDomain can be used as the
training corpus for our task-guided pre-training.

3 Experiments

3.1 Experimental Settings
We evaluate our method on two sentiment anal-
ysis tasks: MR (Pang and Lee, 2005) and Se-
mEval14 task 4 restaurant and laptop datasets (Pon-
tiki et al., 2014), using the model architecture of
BERTBASE in Devlin et al. (2019). Consider-
ing the space limit, we only report the results on
SemEval14-Restaurant in the main paper. The re-
sults on SemEval14-Laptop can be found in the ap-
pendix. For simplicity, we abbreviate SemEval14-
Restaurant to Sem14-Rest in the rest of the paper.

In GenePT, we adopt BookCorpus (Zhu et al.,
2015) and English Wikipedia as our DGeneral. To
show that our strategy can significantly reduce the
computation cost of pre-training, we choose the
model which early stopped at 100k, 200k, and 300k
steps and the fully pre-trained model (1M steps).

In TaskPT, we use the pure text of Yelp (Zhang
et al., 2015) and Amazon (He and McAuley,
2016) as our in-domain unsupervised dataDDomain.
These two datasets are both 1000 times larger than
MR & Sem14-Rest (DTask), and 100 times smaller
than BookCorpus & English Wikipedia (DGeneral).

In fine-tuning, we fine-tune the model for 10
epochs and choose the version with the highest
accuracy on the dev set.

3.2 Experimental Results
Efficiency
We report our accuracy-pre-training-step lines of
all four combinations of downstream tasks and
DDomain in Figure 2. Note that since the cost of the
selective masking is insignificant compared with
that of the task-specific pre-training, it is ignored
in Figure 2. The detailed analysis of the computa-
tion cost in selective masking can be found in the
Appendix. From the experimental results, we can
observe that

(1) Our method achieves comparable or even
better performances on all 4 settings with less than
50% pre-training costs, which indicates our task-
guided pre-training method with selective masking
is both efficient and effective.

(2) Our selective masking strategy consistently
outperforms the random selecting strategy that
most previous works use, which indicates that our
selective masking works well for capturing task-
specific language patterns.

(3) In the 4 settings, our model performs best
in Sem14-Rest + Yelp, in which our model outper-

6969

100 200 300 400 500
k Steps

82

84

86

88

Ac
c.

(%
)

300k
Task

300k
Rand.

200k
Task
200k
Rand.

100k
Task

100k
Rand.

100k
200k

300k

Fully-trained (1M steps)88.6-

General Pre-train
Selective Mask
Random Mask

(a) Sem14-Rest + Yelp

100 200 300 400 500
k Steps

82

84

86

88

Ac
c.

(%
)

300k
Task

300k
Rand.

200k
Task

200k
Rand.

100k
Task

100k
Rand.

100k
200k

300k

Fully-trained (1M steps)88.6-

General Pre-train
Selective Mask
Random Mask

(b) Sem14-Rest + Amazon

100 200 300 400 500
k Steps

80

82

84

86

Ac
c.

(%
)

300k
Task

300k
Rand.

200k
Task
200k
Rand.

100k
Task

100k
Rand.

100k

200k 300k

Fully-trained (1M steps)87.4-

General Pre-train
Selective Mask
Random Mask

(c) MR + Yelp

100 200 300 400 500
k Steps

80

82

84

86

Ac
c.

(%
)

300k
Task

300k
Rand.

200k
Task200k

Rand.
100k
Task100k

Rand.

100k

200k 300k

Fully-trained (1M steps)87.4-

General Pre-train
Selective Mask
Random Mask

(d) MR + Amazon

Figure 2: Experimental results on 4 different combinations (Task + DDomain). The y-axis indicates the test accu-
racy. The x-axis indicates the overall pre-training steps. The general pre-training starts at 0 steps and stops at 100k,
200k and 300k steps, corresponding to the “General Pre-train” line. Then task-guided pre-training or random mask
pre-training runs for about 200k steps, corresponding to the “Selective Mask” line and “Random Mask” line.

MR Sem14-Rest

w/o Task-guided pre-training 87.37 88.60

Amazon Random 88.35 90.40
Selective 89.51** 91.56**

Yelp Random 87.20 90.70
Selective 88.15** 91.87*

Table 1: Test accuracies of models trained with differ-
ent methods (without task-guided pre-training or task-
guided pre-training with different masking strategies)
after full general pre-training (1M steps). ∗ and ∗∗ in-
dicate statistically significant (p < .05 and p < .001).

forms the fully pre-trained BERTBASE by 1.4%
with only half of the training steps. While in
MR+Yelp, the model performs worst, in which our
accuracy drops 1.94% compared with the fully pre-
trained model. This is because the text domains
of Sem14-Rest and Yelp are much more similar
(both restaurant reviews) than those of MR and
Yelp (movie reviews and restaurant reviews). It
indicates that the similarity between DDomain and
DTask is critical for our task-guided pre-training
to capture the domain-specific and task-specific
patterns, which is intuitive.

Effectiveness
To evaluate the effectiveness of task-guided pre-
training, we continue to pre-train the fully pre-
trained BERTBASE on the in-domain data. We
use the official model in (Devlin et al., 2019) as the
fully pre-trained BERTBASE. From Table 1, we
have the following observations:

(1) Compared with the fully trained GenePT,
our model with TaskPT achieves significant im-
provements in 3 settings no matter which kind of

Downstream Dataset: MR

Text: Constently touching, surprisingly
funny, semi-surreal ##ist exploration of the
creative act.

In-domain Dataset: Yelp

Text: Nice, clean, simple setup. Limited seating.
Cakes are aw ##sum! Very fresh. Even
have egg ##less cakes. Food is good as well.
Really like the pan ##ner pan ##ini. Also
other items are worth checking out.

Table 2: The former one is a sequence masked by our
selective method on downstream data. The latter one is
a sequence masked by the PLM scoring function. The
bold tokens are selected to be masked.

masking strategies is used, which shows the task-
guided pre-training can help the model to capture
the domain-specific and task-specific patterns. In
the MR+Yelp setting, the random masking harms
the model performance, which indicates not all
patterns in DDomain can benefit downstream tasks.

(2) In all settings, our selective masking strategy
consistently outperforms the random masking strat-
egy, even on the setting of MR+Yelp. It indicates
that our selective masking strategy can still effec-
tively capture helpful task-specific patterns even
when the DDomain is not so close to the DTask.

3.3 Case Study
To analyze whether our selective masking strategy
can successfully find important tokens, we conduct
a case study, as shown in Table 2. In this case,
we use MR as the supervised data and Yelp as
the unsupervised in-domain data. It shows that
our selective masking strategy successfully selects
sentiment tokens, which are important for this task,

6970

on both supervised and unsupervised data.

4 Conclusion

In this paper, we design task-guided pre-training
with selective masking and present a three-stage
training framework for PLMs. With task-guided
pre-training, models can effectively and efficiently
learn domain-specific and task-specific patterns,
which benefits downstream tasks. Experimental
results show that our methods can achieve better
performances with less computation cost. Note
that although we only conduct experiments on two
sentiment classification tasks using BERT as the
base model, our method can easily generalize to
other models using masked language modeling or
its variants and other text classification tasks.

Besides, there are still two important directions
for future work: (1) How to apply task-guided
pre-training to general domain data when the in-
domain data is limited. (2) How to design more
effective strategies to capture domain-specific and
task-specific patterns for selective masking.

Acknowledgement

This work is supported by the National Key Re-
search and Development Program of China (No.
2018YFB1004503), the National Natural Science
Foundation of China (NSFC No. 61732008) and
Beijing Academy of Artificial Intelligence (BAAI).

References
Roee Aharoni and Yoav Goldberg. 2020. Unsupervised

domain clusters in pretrained language models. In
Proceedings of ACL.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clin-
ical BERT embeddings. In Proceedings of Clini-
calNLP.

Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke
Zettlemoyer, and Michael Auli. 2019. Cloze-driven
pretraining of self-attention networks. In Proceed-
ings of EMNLP.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: Pretrained language model for scientific text.
In Proceedings of EMNLP.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-
training text encoders as discriminators rather than
generators. In Proceedings of ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. In Proceedings of EMNLP.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of ACL.

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In Proceedings of
WWW.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2020. ClinicalBERT: Modeling clinical notes and
predicting hospital readmission. In Proceedings of
ACM-CHIL.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association
for Computational Linguistics, 8:64–77.

Pei Ke, Haozhe Ji, Siyang Liu, Xiaoyan Zhu, and Min-
lie Huang. 2020. SentiLARE: Sentiment-aware lan-
guage representation learning with linguistic knowl-
edge. In Proceedings of EMNLP.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of ACL.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. SemEval-2014 task 4: As-
pect based sentiment analysis. In Proceedings of Se-
mEval14.

https://arxiv.org/pdf/2004.02105
https://arxiv.org/pdf/2004.02105
https://www.aclweb.org/anthology/W19-1909
https://www.aclweb.org/anthology/W19-1909
https://www.aclweb.org/anthology/D19-1539
https://www.aclweb.org/anthology/D19-1539
https://www.aclweb.org/anthology/D19-1371
https://www.aclweb.org/anthology/D19-1371
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/D18-1407/
https://www.aclweb.org/anthology/D18-1407/
https://arxiv.org/pdf/2004.10964
https://arxiv.org/pdf/2004.10964
https://dl.acm.org/doi/10.1145/2872427.2883037
https://dl.acm.org/doi/10.1145/2872427.2883037
https://dl.acm.org/doi/10.1145/2872427.2883037
https://www.chilconference.org/workshop_ws13.html
https://www.chilconference.org/workshop_ws13.html
https://www.aclweb.org/anthology/2020.tacl-1.5/
https://www.aclweb.org/anthology/2020.tacl-1.5/
https://www.aclweb.org/anthology/2020.tacl-1.5/
https://arxiv.org/abs/1911.02493
https://arxiv.org/abs/1911.02493
https://arxiv.org/abs/1911.02493
https://academic.oup.com/bioinformatics/article/36/4/1234/5566506
https://academic.oup.com/bioinformatics/article/36/4/1234/5566506
https://academic.oup.com/bioinformatics/article/36/4/1234/5566506
http://arxiv.org/pdf/1907.11692.pdf
http://arxiv.org/pdf/1907.11692.pdf
http://www.cs.cornell.edu/home/llee/papers/pang-lee-stars.pdf
http://www.cs.cornell.edu/home/llee/papers/pang-lee-stars.pdf
http://www.cs.cornell.edu/home/llee/papers/pang-lee-stars.pdf
http://arxiv.org/pdf/1811.01088.pdf
http://arxiv.org/pdf/1811.01088.pdf
https://www.aclweb.org/anthology/S14-2004
https://www.aclweb.org/anthology/S14-2004

6971

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. In Proceedings
of Technical report, OpenAI.

Alexander Rietzler, Sebastian Stabinger, Paul Opitz,
and Stefan Engl. 2020. Adapt or get left behind: Do-
main adaptation through bert language model fine-
tuning for aspect-target sentiment classification. In
Proceedings of LREC.

Chul Sung, Tejas Dhamecha, Swarnadeep Saha,
Tengfei Ma, Vinay Reddy, and Rishi Arora. 2019.
Pre-training BERT on domain resources for short an-
swer grading. In Proceedings of EMNLP.

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pappa-
gari, R. Thomas McCoy, Roma Patel, Najoung Kim,
Ian Tenney, Yinghui Huang, Katherin Yu, Shuning
Jin, Berlin Chen, Benjamin Van Durme, Edouard
Grave, Ellie Pavlick, and Samuel R. Bowman. 2019.
Can you tell me how to get past sesame street?
Sentence-level pretraining beyond language model-
ing. In Proceedings of ACL.

Yichong Xu, Xiaodong Liu, Chunyuan Li, Hoifung
Poon, and Jianfeng Gao. 2019. DoubleTransfer at
MEDIQA 2019: Multi-source transfer learning for
natural language understanding in the medical do-
main. In Proceedings of BioNLP.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. XLNet: Generalized autoregressive pretrain-
ing for language understanding. In Proceedings of
NeurlPS.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of NeurlPS.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of ICCV.

Yftah Ziser and Roi Reichart. 2018. Pivot based lan-
guage modeling for improved neural domain adapta-
tion. In Proceedings of NAACL.

Appendices

A Cost of Selective Masking

In practice, our selective masking method de-
scribed in Section 2.2 can be implemented in the
following 4 steps:

• Fine-tune BERT. Fine-tune a checkpoint af-
ter the GenePT on downstream supervised
datasets (i.e., MR & SemEval14).

• Downstream Mask. Selectively annotate
important tokens on downstream supervised
datasets using the method stated in “Finding
important tokens”.

• Train NN. Train a token-level binary classifi-
cation BERT model from the checkpoint af-
ter the GenePT on downstream supervised
datasets where important tokens are anno-
tated.

• In-domain Mask. Use the token-level binary
classification model trained in the Train NN
step to select important tokens on in-domain
unsupervised datasets (i.e., Yelp & Amazon),
and mask them.

The additional time cost introduced by the 4
steps in selective masking strategy is shown in Ta-
ble 3. From the table, we conclude that the extra
computation time cost of our selective masking
strategy is insignificant compared with the cost
saved in the pre-training stage, so we ignore it in the
calculation and comparison of pre-training steps.

MR SemEval14
Yelp Amazon Yelp Amazon

Finetune BERT 10 10 3 3
Downstream Mask 20 20 10 10

Train NN 10 10 3 3
In-domain Mask 40 120 40 120

Sum 70 150 56 136

Saved Cost 2160 2160 2160 2160

Table 3: The comparison between the cost of the 4
steps for tokens selection and that saved by our selec-
tive masking method (in minutes). The 1-5 lines are
the time for every stage and their summation of token
selection. The last line is the saved pre-training time.

In Figure 3, we also illustrate the proportion of
different stages according to the time they spend in
our experiments. The whole pie is the conventional
random-masking pre-training cost and the colored
sectors are the time cost of the proposed GenePT,
selective masking strategy, and TaskPT. The white
sector, as a result, indicates the pre-training time
saved in our training framework. From the figures,
we can see that the cost of selective masking only
contributes a small part of the whole pre-training
time and about half of the conventional pre-training
cost (about 36 hours in our experiments) is saved
with our method.

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.607.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.607.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.607.pdf
https://www.aclweb.org/anthology/D19-1628
https://www.aclweb.org/anthology/D19-1628
https://www.aclweb.org/anthology/P19-1439
https://www.aclweb.org/anthology/P19-1439
https://www.aclweb.org/anthology/P19-1439
https://www.aclweb.org/anthology/W19-5042
https://www.aclweb.org/anthology/W19-5042
https://www.aclweb.org/anthology/W19-5042
https://www.aclweb.org/anthology/W19-5042
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification
https://www.computer.org/csdl/proceedings-article/iccv/2015/8391a019/12OmNro0HYa
https://www.computer.org/csdl/proceedings-article/iccv/2015/8391a019/12OmNro0HYa
https://www.computer.org/csdl/proceedings-article/iccv/2015/8391a019/12OmNro0HYa
https://www.aclweb.org/anthology/N18-1112
https://www.aclweb.org/anthology/N18-1112
https://www.aclweb.org/anthology/N18-1112

6972

GenePT

28.8 %

Selective Masking

2.0 %

TaskPT

19.2 %

Saved Cost50.0 %

GenePT
Selective Masking
TaskPT
Saved Cost

(a) SemEval14 + Yelp

GenePT

28.5 %

Selective Masking

3.1 %

TaskPT

19.0 %

Saved Cost

49.4 %

GenePT
Selective Masking
TaskPT
Saved Cost

(b) SemEval14 + Amazon

GenePT

30.6 %

Selective Masking

2.9 %

TaskPT

16.8 %

Saved Cost
49.7 %

GenePT
Selective Masking
TaskPT
Saved Cost

(c) MR + Yelp

GenePT

30.3 %

Selective Masking

4.1 %

TaskPT

16.6 %

Saved Cost

49.0 %

GenePT
Selective Masking
TaskPT
Saved Cost

(d) MR + Amazon

Figure 3: The proportion of the time cost of different pre-training stages 4 different combinations (Task +DDomain).
The whole pie represents the time cost of the conventional pre-training method. The colored sectors represent the
time cost of GenePT, selective masking, and TaskPT respectively. The white sector shows the time saved by our
training framework.

B Detailed Experimental Setup

B.1 GenePT

We generally followed the pre-training procedure
and hyper-parameters of BERTBASE in (Devlin
et al., 2019) except that we set the max tokens
number in a sequence to 256 and utilized FP16
precision1 for efficiency. We pre-trained the model
on 4 NVIDIA V100 GPUs. The whole 1M-step
training completes in about 3 days and we saved
checkpoints at 100k, 200k, and 300k steps during
the process.

1https://github.com/NVIDIA/
DeepLearningExamples/tree/master/
PyTorch/LanguageModeling/BERT

B.2 Selective Masking.
The implementation details of each steps in selec-
tive masking are described as follows.

Fine-tune BERT. We fine-tuned the checkpoint
that stopped GenePT at 100k, 200k, 300k, and
1M steps respectively on downstream supervised
datasets MR and SemEval14 with the same hyper-
parameters. The fine-tuning batch size was 64 with
max tokens number 256. The learning rate was
2e-5 and we used 42 as the random seed. We fine-
tuned for at most 10 epochs and selected the model
with the highest accuracy on valid datasets.

Downstream Mask. We used the models after
being fine-tuned on MR and SemEval14 as clas-
sifiers to perform the important tokens selecting
method on downstream supervised datasets. The
sentences were tokenized by the BERT’s sub-word

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT

6973

tokenizer. We set δ = 0.05 in all circumstances.
After the selection, important tokens were anno-
tated as label “1” while others were labeled as “0”.

Train NN. We added a token-level binary classi-
fication head on the top of the BERT checkpoints
after GenePT and fine-tuned them with the anno-
tated data after the Downstream Mask stage. The
max sequence length was 128, with batch size 64
and learning rate 1e-5. Besides, to balance the two
labels, we set the weight 1.5 for label “1”(important
tokens).

In-domain Mask. The NN-based token selec-
tion was performed by classifying each token
in mid-scale in-domain datasets with the model
trained after the Train NN stage. If the classifica-
tion result was “1”, then the token was regarded as
important and would be masked in the pre-training
stage afterward.

B.3 TaskPT

We then continued pre-training the checkpoints
after GenePT on selectively masked in-domain
datasets. The hyper-parameters were almost the
same as that in GenePT, except that we only pre-
trained for at most 200k steps.

B.4 Fine-tuning

The model after TaskPT was then fine-tuned on
downstream datasets MR and SemEval14. The
hyper-parameters were generally the same with
the Fine-tune BERT stage (B.2) except that we
averaged the model performance over 10 different
random seeds: [13, 43, 83, 181, 271, 347, 433, 659,
727, 859] to provide more convincing results.

C Detailed Datasets Description

We utilized 4 sentiment classification datasets in
our experiments. The train/dev/test splits and other
statistical information of the 4 datasets are shown
in Table 4.

Dataset Amount Classes

MR 8534/1078/1050 2
SemEval14 3333/185/973 3

Yelp 700k 5
Amazon 3M 5

Table 4: Datasets statistics. Note that we only use the
pure text in the training set of Yelp and Amazon as in-
domain unsupervised data

100 200 300 400 500
k Steps

69

70

71

72

73

Ac
c.

(%
)

300k
Task

300k
Rand.

200k
Task

200k
Rand.

100k
Task

100k
Rand.

100k
200k

300k

Fully-trained (1M steps)72.6-

General Pre-train
Selective Mask
Random Mask

(a) Sem14-Lap + Yelp

100 200 300 400 500
k Steps

69

70

71

72

73

Ac
c.

(%
)

300k
Task

300k
Rand.

200k
Task

200k
Rand.

100k
Task

100k
Rand.

100k
200k

300k

Fully-trained (1M steps)72.6-

General Pre-train
Selective Mask
Random Mask

(b) Sem14-Lap + Amazon

Figure 4: Experimental results on Sem14-Lap + Yelp
and Sem14-Lap + Amazon. The y-axis indicates the
test accuracy. The x-axis indicates the overall pre-
training steps. The general pre-training starts at 0 steps
and stops at 100k, 200k and 300k steps, correspond-
ing to the “General Pre-train” line. Then task-guided
pre-training or random mask pre-training runs for about
200k steps, corresponding to the “Selective Mask” line
and “Random Mask” line.

MR MR2 is movie-review data for the use in
sentiment-analysis experiments. Since the origi-
nally released data does not provide train/dev/test
split, we randomly sampled 80% of the whole set
for training, 10% for validation, and 10% for test-
ing.

SemEval14 SemEval143 is the restaurant-
domain dataset released by the task 4 in
SemEval14 competition. The original task is
aspect-based sentiment analysis. To convert it into
a conventional sentiment classification task, we
concatenated the aspect tokens and text tokens to
form a full sentence as the input to the model.

Yelp Yelp4 is a 5-class sentiment classification
dataset of reviews about restaurants obtained from
the Yelp Dataset Challenge in 2015. In our exper-
iments, we only used its pure text as in-domain
unsupervised data.

Amazon Amazon5 is composed of different re-
views on the Amazon website. Similar to Yelp,
we only used its pure text to construct in-domain
unsupervised data.

2http://www.cs.cornell.edu/people/
pabo/movie-review-data/

3http://alt.qcri.org/semeval2014/
task4/index.php?id=data-and-tools

4https://www.kaggle.com/yelp-dataset/
yelp-dataset

5http://jmcauley.ucsd.edu/data/amazon/

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
http://jmcauley.ucsd.edu/data/amazon/

6974

D Results on SemEval14-Laptop

Here we present additional experimental results
on the SemEval14 task 4 laptop dataset. We use
SemEval14-Laptop as the downstream task dataset
and use Yelp and Amazon as in-domain datasets
respectively. Similar to Section 3.1, we applied our
task-guided pre-training to the BERTBASE model
early stopped pre-training at 100k, 200k, 300k
steps to evaluate the efficiency of our method
and also continued to pre-train from the fully pre-
trained BERTBASE to evaluate the effectiveness.
The accuracy-pre-training-step lines of the effi-
ciency experiment are reported in Figure 4 and
the accuracies in the effectiveness experiment are
shown in Table 5.

Sem14-Lap

w/o Task-guided pre-training 72.57

Amazon Random 73.22
Selctive 74.15

Yelp Random 73.73
Selective 75.26

Table 5: Test accuracies of models trained with dif-
ferent methods (without task-guided pre-training or
taskguided pre-training with different masking strate-
gies) after full general pre-training (1M steps).

From the results, we can conclude that our
method is also both effective and efficient on the
Sem14-Lap dataset, reaching a better performance
with less than 50% training cost.

