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Abstract

(T)ACSA tasks, including aspect-category sen-
timent analysis (ACSA) and targeted aspect-
category sentiment analysis (TACSA), aims at
identifying sentiment polarity on predefined
categories. Incremental learning on new cat-
egories is necessary for (T)ACSA real applica-
tions. Though current multi-task learning mod-
els achieve good performance in (T)ACSA
tasks, they suffer from catastrophic forget-
ting problems in (T)ACSA incremental learn-
ing tasks. In this paper, to make multi-task
learning feasible for incremental learning, we
proposed Category Name Embedding network
(CNE-net). We set both encoder and decoder
shared among all categories to weaken the
catastrophic forgetting problem. Besides the
origin input sentence, we applied another in-
put feature, i.e., category name, for task dis-
crimination. Our model achieved state-of-the-
art on two (T)ACSA benchmark datasets. Fur-
thermore, we proposed a dataset for (T)ACSA
incremental learning and achieved the best per-
formance compared with other strong base-
lines.

1 Introduction

Sentiment analysis has become an increasingly
popular natural language processing (NLP) task
in academia and industry. It provides real-time
feedback on consumer experience and their needs,
which helps producers to offer better services. To
deal with the presence of multiple categories in
one document, (T)ACSA tasks, including aspect-
category sentiment analysis (ACSA) and targeted
aspect-category sentiment analysis (TACSA), were
introduced.

The main purpose for ACSA task is to identify
sentiment polarity (i.e. positive, neutral, negative
and none) of an input sentence upon specific pre-
defined categories (Mohammad et al., 2018; Wu
et al., 2018). For example, as shown in Table 1,

giving an input sentence “Food is always fresh and
hot-ready to eat, but it is too expensive.” and pre-
defined categories {food, service, price, ambience
and anecdotes/miscellaneous}, the sentiment of
category food is positive, the polarity regarding to
category price is negative, while is none for oth-
ers. In this task, the models should capture both
explicit expressions and implicit expressions. For
example, the phrase “too expensive” indicates the
negative polarity in the price category, without a
direct indication of “price”.

In order to deal with ACSA with both multi-
ple categories and multiple targets, TACSA task
was introduced (Saeidi et al., 2016) to analyze
sentiment polarity on a set of predefined target-
category pairs. An example is shown in Table 1,
given targets “restaurant-1” and “restaurant-2”, in
the case “I like restaurant-1 because it’s cheap, but
restaurant-2 is too expansive”, the category price
for target “restaurant-1” is positive, but is negative
for target “restaurant-2”, while is none for other
target-category pairs. A mathematical definition
for (T)ACSA is given as follows: giving a sentence
s as input, a predefined set of targets T and a pre-
defined set of aspect categories A, a model predicts
the sentiment polarity y for each target-category
pair {(t, a) : t ∈ T, a ∈ A}. For ACSA task,
there is only one target t in all (t, a) categories.
In this paper, in order to simplify the expression
in TACSA, we use predefined categories, which is
short for predefined target-category pairs.

Multi-task learning, with shared encoders but
individual decoders for each category, is an ap-
proach to analyze all the categories in one sample
simultaneously for (T)ACSA (Akhtar et al., 2018;
Schmitt et al., 2018). Compared with single-task
ways (Liang et al., 2019), multi-task approaches uti-
lize category-specific knowledge in training signals
from each task and get better performance. How-
ever, current multi-task models still suffer from a
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Task Sentence Labels

ACSA
Food is always fresh and hot-ready to eat,

but it is too expensive

(food,positive),
(service, none),

(price, negative),
(ambience, none)

(anecdotes/miscellaneous, none)

TACSA
I like restaurant-1 because it’s cheap,

but restaurant-2 is too expansive.

(restaurant-1-general, none),
(restaurant-1-price,positive),
(restaurant-1-location, none),

(restaurant-1-safety,none),
(restaurant-2-general, none),
(restaurant-2-price,negative),
(restaurant-2-location, none),

(restaurant-2-safety,none)

Table 1: Example and gold standard for (T)ACSA examples.

lack of features such as category name (Meisheri
and Khadilkar, 2018). Models with category name
features encoded in the model may further improve
the performance.

On the other hand, the predefined categories in
(T)ACSA task make the application in new cat-
egories inflexible, as for (T)ACSA applications,
the number of categories maybe varied over time.
For example, fuel consumption, price level, engine
power, space and so on are source categories to be
analyzed in the gasoline automotive domain. For
electromotive domain, source categories in the au-
tomotive domain will still be used, while new tar-
get category such as battery duration should also
be analyzed. Incremental learning is a way to solve
this problem. Therefore, it is necessary to propose
an incremental learning task and an incremental
learning model concerned with new category for
(T)ACSA tasks.

Unfortunately, in the current multi-task learn-
ing (T)ACSA models, the encoder is shared but
the decoders for each category are individual.
This parameter sharing mechanism results in only
the shared encoder and target-category-related de-
coders are finetuned during the finetuning process,
while the decoder of source categories remains un-
changed. The finetuned encoder and original de-
coder of source categories may cause catastrophic
forgetting problem in the origin categories. For real
applications, high accuracy is excepted in source
categories and target categories. Based on the pre-
vious researches that decoders between different
tasks are usually modeled by mean regularization
(Evgeniou and Pontil, 2004) , an idea comes up
to further make the decoders the same by shar-
ing the decoders in all categories to decrease the

catastrophic forgetting problem. But here raises
another question, how to identify each category
in the encoder and decoder shared network? In
our approach, we solve the category discrimination
problem by the input category name feature.

In this paper, we proposed a multi-task cate-
gory name embedding network (CNE-net). The
multi-task learning framework makes full use of
training signals from all categories. To make it
feasible for incremental learning, both encoder and
decoders for each category are shared. The cate-
gory names were applied as another input feature
for task discrimination. We also present a new task
for (T)ACSA incremental learning. In particular,
our contribution is three-folded:

(1) We proposed a multi-task CNE-net frame-
work with both encoder and decoder shared to
weaken catastrophic forgetting problem in multi-
task learning (T)ACSA model.

(2) We achieved state-of-the-art on the two
(T)ACSA datasets, SemEval14-Task4 and Senti-
hood.

(3) We proposed a new task for incremental
learning in (T)ACSA. By sharing both encoder lay-
ers and decoder layers of all the tasks, we achieved
better results compared with other baselines both
in source categories and in the target category.

2 Related Work

2.1 Aspect-category Sentiment Analysis

(T)ACSA task is to predict sentiment polarity on
a set of predefined categories. It is able to ana-
lyze sentiment in an end-to-end way with explicit
expressions or implicit expressions (Mohammad
et al., 2018; Wu et al., 2018). The earliest works
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most concerned on feature engineering (Zirn et al.,
2011; Wiebe, 2012; Wagner et al., 2014). Sub-
sequently, Nguyen and Shirai (2015); Wang et al.
(2017); Meisheri and Khadilkar (2018) applied neu-
ral network models to achieve higher accuracy. Ma
et al. (2018) then involved commonsense knowl-
edge as additional features. The current approaches
consist of multi-task models (Akhtar et al., 2018;
Schmitt et al., 2018), which analyze all the cate-
gories simultaneously in one sample to make full
use of all the features and labels in the training sam-
ple, and single-task models that treat one category
in one sample (Jiang et al., 2019).

2.2 Multi-Task Learning

Multi-task learning(MTL) utilizes all the related
tasks by sharing the commonalities while learning
individual features for each sub-task. MTL has
been proven to be effective in many NLP tasks,
such as information retrieval (Liu et al., 2015), ma-
chine translation (Dong et al., 2015), and semantic
role labeling (Collobert and Weston, 2008). For
ACSA task, Schmitt et al. (2018) applied MTL
framework with a shared LSTM encoder and indi-
vidual decoder classifiers for each category. The
multiple aspects in MTL were handled by con-
strained attention networks with orthogonal and
sparse regularization (Hu et al., 2019).

2.3 Incremental Learning

Incremental learning was inspired by adding new
abilities to a model without having to retrain the
entire model. For example, Doan and Kalita (2016)
presented several random forest models to perform
sentiment analysis on customers’ reviews. Many
domain adaptation approaches utilizing transfer
learning suffer from “catastrophic forgetting” prob-
lem (French and Chater, 2002). To solve this prob-
lem, Rosenfeld and Tsotsos (2017) proposed an
incremental learning Deep-Adaption-Network that
constrains newly learned filters to be linear combi-
nations of existing ones.

To the best of our knowledge, for (T)ACSA task,
few researches concerned with incremental learn-
ing in new categories. In this paper, we proposed a
(T)ACSA incremental learning task and the CNE-
net model to solve this problem in a multi-task
learning approach with a shared encoder and shared
decoders. We also apply category name for task
discrimination.

3 Datasets

This section describes the benchmark datasets we
used to evaluate our model, the incremental learn-
ing task definition, the methodology to prepare the
incremental learning dataset, and the evaluation
metric.

3.1 Evaluation Benchmark Datasets

We evaluated the performance of the CNE-net
model on two benchmark datasets, i.e., ACSA task
on SemEval-2014 Task4 (Pontiki et al., 2014) and
TACSA task on SentiHood (Saeidi et al., 2016).

The ACSA task was evaluated on SemEval-
2014 Task4, a dataset on restaurant reviews. Our
model provides a joint solution for sub-task 3 (As-
pect Category Detection) and sub-task 4 (Aspect
Category Sentiment Analysis). The sentiment po-
larities are y ∈ Y = {positive, neutral, nega-
tive, conflict and none}, and the categories are
a ∈ A = {food, service, price, ambience and anec-
dotes/miscellaneous}. The conflict label indicates
both positive and negative sentiment is expressed
in one category (Pontiki et al., 2014).

The TACSA task was evaluated on the Senti-
hood dataset, which describes locations or neigh-
borhoods of London and was collected from ques-
tion answering platform of Yahoo. The sentiment
polarities are y ∈ Y = {positive, negative and
none}, the targets are t ∈ T = {Location1, and
Location2}, and the aspect categories are a ∈ A =
{general, price, transit-location, and safety}.

3.2 Evaluation Transfer Learning Datasets

Besides evaluating the model on existing (T)ACSA
tasks, we also proposed incremental learning tasks
for (T)ACSA1 in new category based on SemEval-
2014 Task4 and Sentihood dataset, respectively.

Firstly, we split the categories into source cat-
egories and target categories. For ACSA task,
the source categories are {food, price, ambience
and anecdotes/miscellaneous}, while the target
category is {service}. For TACSA task, the
source categories are {general, transit-location,
and safety}, while the target category is {price}.
This was considered by the amount of data with
positive/negative/neutral polarity in this category,
as well as the sense of this category for real appli-
cations.

1The dataset can be found at https://github.com/
flak300S/emnlp2020_CNE-net.

https://github.com/flak300S/emnlp2020_CNE-net
https://github.com/flak300S/emnlp2020_CNE-net
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origin ACSA sample
{“text”: “The only thing more wonderful than the food is the service.”,
”sentiment”: {“food”: “Positive”, “service”: “Positive”, “price”: None,

“ambience”: None, “anecdotes/miscellaneous”: None } }

ACSA Sample-Source
{“text”: “The only thing more wonderful than the food is the service.”,

”sentiment”: {“food”: “Positive”, “price”: None,
“ambience”: None, “anecdotes/miscellaneous”: None } }

ACSA Sample-Target
{“text”: “The only thing more wonderful than the food is the service.”,

”sentiment”: {“service”: “Positive” } }

Table 2: An example for generating ACSA incremental learning task.

Secondly, we prepare training, validation and
testing data for incremental learning task by inde-
pendently splitting the origin training data, valida-
tion data and test data into source-category data
(Sample-Source) containing label only in source
categories and target-category data (Sample-
Target) with target-category label only. For exam-
ple, as shown in Table 2, in ACSA task, the origin
labels {food: positive, service:positive, price:none,
ambience:none, anecdotes/miscellaneous:none}
were transformed to {food: positive, price:none,
ambience:none, anecdotes/miscellaneous:none} in
Sample-Source and {service:positive} in Sample-
Target. The input sentences were kept the same
as origin dataset. For other researches to investi-
gate the influence of target-category training data
amount quantitatively, we also created incremental
learning data by combining all the Sample-Source
and sampled Sample-Target. The sampling rate is
a range from 0.0 to 1.0.

In this paper, the ACSA incremental learning
dataset is created from SemEval14-Task ACSA
dataset, and it is called SemEval14-Task-inc. The
TACSA incremental learning dataset is created
from Sentihood TACSA dataset, and it is called
Sentihood-inc.

3.3 Evaluation Metrics

We evaluated the aspect category extraction (to de-
termine whether the sentiment is none for each
category) and sentiment analysis (to predict the
sentiment polarity) on the two datasets. For as-
pect category extraction evaluation, we applied the
probability 1 − p as the not none probability for
each category, where p is the probability of the
“none” class in this category. The evaluation metric
is the same as Sun et al. (2019). For the origin
SemEval-14 Task4 dataset, we use Micro-F1 for
category extraction evaluation and accuracy for
sentiment analysis evaluation. For the origin Sen-
tihood dataset, we use Macro-F1, strict accuracy,

and area-under-curve(AUC) for category extraction
evaluation while use AUC, and strict accuracy for
sentiment analysis evaluation. When evaluating
the incremental learning task, we use the F1 met-
ric (Micro-F1 for SemEval-14 and Macro-F1 for
Sentihood) for category extraction and accuracy for
sentiment analysis.

4 Approach

In this section, we describe the architecture of
CNE-net for (T)ACSA task. In BERT classifica-
tion tasks, the typical approach is feeding sentence
“[CLS]tokens in sentence[SEP]” into the model,
while the token “[CLS]” is used as a feature for
classification. In order to encode category names
into BERT model, as well as analyze sentiment
polarity of all the categories simultaneously, we
made two significant differences from the original
BERT, one on the encoder module and another on
the decoder module.

4.1 Encoder with Category Name
Embedding

In order to get a better category name embedding,
as well as to make it feasible for incremental learn-
ing cross categories, the category names are en-
coded into the model, along with the origin sen-
tence like “[CLS] sentence words input [SEP] cate-
gory1 input [SEP] category2 input [SEP]...[SEP]
categoryN input[SEP]”, as shown in the BERT en-
coder module in Figure 1. In ACSA task, the cat-
egory names are “{food, service, price, ambiance,
and anecdotes/miscellaneous}”, while in TACSA
task, the category names are “{location-1 gen-
eral, location-1 price, location-1 transit-location,
location-1 safety, location-2 general, location-2
price, location-2 transit-location, and location-2
safety}”.

We mark output states of the BERT encoder as
follows: the hidden state of [CLS] ~h[CLS] ∈ Rd,
the hidden states of words in origin sentences
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Figure 1: CNE-net model architecture

Hsent ∈ RLsent×d, the hidden states of separators
H[SEP ] ∈ Rncat×d, and the hidden states of cate-
gory words Hcat−i ∈ RLcat−i×d for the i-th cate-
gory (0 < i ≤ ncat), where Lsent is the length of
the input sentence, d is the dimension of hidden
states, ncat is the number of categories feed into the
model, and Lcat−i is the length of the i-th category
input words.

4.2 Multi-Task Decoders

We proposed three types of decoder for (T)ACSA
task, as shown in Figure 1 1©, 2© and 3©. These
decoders are multi-label classifiers, which apply
a softmax classifier for sentiment analysis in each
category.

Type 1, CNE-net-SEP, as shown in Figure 1 1©,
the separator token ~h[SEP−i] is applied as feature
representation for sentiment polarity analysis in
each category directly. The probability for each
polarity in category i is calculated as follows where
~h = ~h[SEP−i]:

~fi = Wi · ~h+ ~bi; ~pi = softmax(~fi) (1)

where ~fi ∈ Rs is the output logits for category i,
~pi ∈ Rs is the output probability for category i,
Wi ∈ Rd×s and ~bi ∈ Rs are randomly initialized
parameters to be trained, and s is the number of
sentiment classes. s = 5 for {positive, neutral,
negative, conflict and none} in SemEval14-Task4,
while s = 3 for {positive, negative and none} in
Sentihood dataset. In our approach, W1 = W2 =
... = Wncat and~b1 = ~b2 = ... = ~bncat .

Type 2, CNE-net-CLS-att., in order to get
content-aware category embedding vector, we ap-
plied attention mechanism with ~h[CLS] serves as
query vector, and Hcat−i serves as both key and
value matrix, as shown in Figure 1 2©. The category
embedding vector ~ecat−i for the i-th category is as
follows:

~ecati = softmax(~h[CLS] ·Hcat−i) ·Hcat−i (2)

The probability for category i in type 2 is calculated
following equation(1) where ~h = ~ecati .

Type 3, CNE-net-SEP-sent.-att. applied atten-
tion mechanism for both sentence embedding and
category name embedding. As it is shown in Fig-
ure 1 3©. Firstly, sentence vector correlated with
the i-th category is calculated by attention with
separator embedding ~h[SEP−i] serving as query,
and sentence embedding Hsent serving as key and
value matrix. Sentence vector ~hsent−i correlated
with the i-th category is as follows:

~hsent−i = softmax(~h[SEP−i] ·Hsent) ·Hsent

(3)

Secondly, similar to that in type 2, the category
embedding vector ~ecat−i for the i-th category cal-
culated by attention mechanism is as follows:

~ecati = softmax(~hsent−i ·Hcat−i) ·Hcat−i (4)

The probability for for category i in type 3 is calcu-
lated following equation(1) where ~h = ~ecati .
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4.3 Model Training

The CNE-net multi-task framework was trained
in an end-to-end way by minimizing the sum of
cross-entropy loss of all the categories. We em-
ployed L2 regularization to ease over-fitting. The
loss function is given as follows:

L = − 1

|D|
∑

x,y∈D

N∑
i=1

~yi · log ~pi(x; θ) +
λ

2
||θ||2

(5)

where D is the training dataset, N is the num-
ber of categories, Y is the sentiment classes
Y = {positive, neutral, negative, conflict, none}
(neutral and conflict is not included in TACSA
task), ~yi ∈ R|Y | is the one-hot label vector for the
i-th category with true label marked as 1 and others
marked as 0, ~pi(x; θ) is the probability for the i-th
category, and λ is the L2 regularization weight. Be-
sides L2 regularization, we also employed dropout
and early stopping to ease over-fitting.

During training incremental learning models,
we follow the workflow of the incremental learn-
ing application. We firstly train a source-category
model with the Sample-Source training data. Then
finetuned the source-category model with Sample-
Target training data to get incremental learning
model.

5 Experiments

5.1 Experiment Settings

The pretrained uncased BERT-base2 was used as
the encoder in CNE-net. The number of Trans-
former blocks is 12, the number of self-attention
heads is 12, and the hidden layer size in each self-
attention head is 64. The total amount of parame-
ters in BERT encoder is about 110M. The dropout
ratio is 0.1 during training, the traning epochs is 10,
and the learning rate is 5e-5 with a warm-up ratio
of 0.25.

5.2 Compared Methods

We compare the performance of our model with
some state-of-the-art models.

For ACSA task:
• XRCE (Brun et al., 2014): a hybrid classifier

based on linguistic features.

2https://storage.googleapis.com/bert models
/2018 10 18/uncased L-12 H-768 A-12.zip

• NRC-Canada (Kiritchenko et al., 2014): sev-
eral binary one-vs-all SVM classifiers for this
multi-class multi-label classification problem.
• AT-LSTM and ATAE-LSTM (Wang et al.,

2016): a LSTM attention framework with
aspect word embeddings concatenated with
sentence word embeddings.
• BERT-pair-QA-B (Sun et al., 2019): a ques-

tion answering and natural language inference
model based on BERT.
• Multi-task framework (MTL) (Schmitt et al.,

2018): a LSTM multi-task learning frame-
work with an individual attention head for
each category. To better compare our model
with this approach, we changed the encoder
to BERT-base.

For TACSA task:
• LR (Saeidi et al., 2016): a logistic regression

classfier with linguistic features.
• LSTM-final (Saeidi et al., 2016): a BiLSTM

encoder with final states served as feature rep-
resentation.
• LSTM+TA+SA (Ma et al., 2018): a BiL-

STM encoder with complex target-level and
sentence-level attention mechanisms.
• SenitcLSTM (Ma et al., 2018):

LSTM+TA+SA model upgraded by in-
troducing external knowledge.
• Dmu-Entnet (Liu et al., 2018): model with

delayed memory update mechanism to track
different targets.
• Recurrent Entity Network (REN) (Ye and Li,

2020): a recurrent entity memory network
that employs both word-level information and
sentence-level hidden memory for entity state
tracking.

In TACSA task, besides these models, we also com-
pared our model with the BERT-pair-QA-B model
and MTL model mentioned in ACSA comparison
methods.

5.3 Main Results

The performances of compared methods and three
types of CNE-net are shown in Table 3 (ACSA
task) and Table 4 (TACSA task). All the mod-
els with BERT encoder (QA-B, MTL and our
CNE-net) achieved better performance compared
with models without BERT encoder (XRCE, NCR-
Canada, AT-LSTM, ATAE-LSTM, SenitcLSTM,
Dmu entnet, and REN). Our CNE-net performs
better compared with QA-B and MTL framework
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Model
Category Extraction Sentiment Analysis
P R F binary 3-way 4-way

XRCE (Brun et al., 2014) 83.23 81.37 82.29 - - 78.1
NRC-Canada (Kiritchenko et al., 2014) 91.04 86.24 88.58 - - 82.9

AT-LSTM (Wang et al., 2016) - - - 89.6 83.1 -
ATAE-LSTM (Wang et al., 2016) - - - 89.9 84.0 -

QA-B (Sun et al., 2019) 93.04 89.95 91.47 95.6 89.9 85.9
MTL 91.87 90.44 91.15 95.0 88.8 85.3

CNE-net-SEP (ours) 92.26 90.73 91.49 95.8 90.2 86.3
CNE-net-CLS-att. (ours) 93.37 90.93 91.98 96.1 91.0 87.0

CNE-net-SEP-sent.-att. (ours) 93.76 90.83 92.27 96.4 91.3 87.1

Table 3: Performance on SemEval-14 Task4, ACSA task. (“-” means not reported.)

Model
Category Extraction Sentiment Analysis
Acc. F1 AUC Acc. AUC

LR (Saeidi et al., 2016) - 39.3 92.4 87.5 90.5
LSTM-final (Saeidi et al., 2016) - 68.9 89.8 82.0 85.4
LSTM+TA+SA (Ma et al., 2018) 66.4 76.7 - 86.8 -

SenticLSTM (Ma et al., 2018) 67.4 78.2 - 89.3 -
Dmu-Entnet (Liu et al., 2018) 73.5 78.5 94.4 91.0 94.8

REN (Ye and Li, 2020) 75.7 80.4 96.0 92.5 95.9
QA-B (Sun et al., 2019) 79.2 87.9 97.1 93.3 97.0

MTL 80.4 88.4 97.6 93.6 97.1
CNE-net-SEP (ours) 80.2 88.1 97.6 93.4 97.3

CNE-net-CLS-att. (ours) 80.4 88.8 97.8 93.8 97.4
CNE-net-SEP-sent.-att. (ours) 80.8 89.4 97.9 94.0 97.5

Table 4: Performance on Sentihood, TACSA task. (“-” means not reported.)

in both ACSA and TACSA tasks. QA-B is a single-
task approach, which each category is trained inde-
pendently. Our CNE-net is a multi-task learning
framework. It performs better than QA-B by using
shared semantic features and sentiment labels in
all the categories. CNE-net also performs better
compared with the MTL model since it encodes the
category names as additional features to generate
the representation of each category.

Our CNE-net-SEP-sent.-att. model achieves
state-of-the-art on all the evaluation metrics in both
SemEval14-Task4 and Sentihood dataset. The im-
proved extraction F1 is 0.0080 in the SemEval14-
Task4 (increased from 0.9147 in QA-B to 0.9227
in CNE-net-SEP-sent.att.), while it is 0.010 in
the Sentihood dataset (increased from 0.884 in
MTL to 0.894 in CNE-net-SEP-sent.att.). The
accuracy metrics for sentiment analysis in the
SemEval14-Task4 are binary, 3-way and 4way,
which refers to accuracy with positive/negative (bi-
nary), positive/neutral/negative (3-way) and pos-
itive/neutral/negative/conflict (4-way). The im-
provement of sentiment classification accuracy
is 0.012 in SemEval14-Task4 (4-way setting, in-

creased from 0.859 in QA-B to 0.871 in CNE-
net-SEP-sent.att.), while is 0.004 in the Sentihood
dataset (increased from 0.971 in MTL to 0.975 in
CNE-net-SEP-sent.att.).

CNE-net-SEP uses [SEP] as a feature represen-
tation for sentiment classification. It performs the
poorest among all three types of CNE-net since
representation from only [SEP] token does not
make full use of sentence information and cate-
gory information. CNE-net-CLS-att. uses [CLS]
as sentence representation and applies attention
mechanism to build the relationship between sen-
tence representation and the category name hidden
states to get sentiment classification feature and
achieve better performance. The CNE-net-SEP-
sent.-att. uses attention twice. The first one is to
build category-name-aware sentence embeddings
for each category with [SEP] as query and sentence
hidden states matrix as key and value, while the
second one is to apply each category-name-aware
sentence embedding to generate category represen-
tation like what we do in CNE-net-CLS-att.. This
category-name-aware sentence embedding and the
sentence-aware category embedding makes it per-
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Model
SemEval14-Task4-inc Sentihood-inc
extra. senti. extra. senti.

mix. incre. mix. incre. mix. incre. mix. incre.

AE-LSTM 85.3 85.0 85.2 85.9 86.3 86.5 84.4 84.5
ATAE-LSTM 85.6 85.2 85.4 86.0 86.6 86.9 84.6 84.7
Dmu-Entnet - - - - 87.9 88.0 85.4 85.8

QA-B 92.2 92.5 91.9 92.0 93.7 93.6 90.6 91.0
MTL 92.5 92.6 92.4 92.5 93.8 93.7 90.8 91.4

CNE-SEP(ours) 92.9 92.7 92.5 92.8 94.5 94.8 91.2 91.6
CNE-net-CLS-sent.(ours) 93.0 92.8 92.7 93.0 94.8 95.0 91.6 91.7

CNE-net-SEP-sent.-att. (ours) 93.6 93.7 93.0 93.2 95.2 95.4 91.9 92.0

Table 5: Extraction F1 and sentiment accuracy in target category of incremental learning.

Model
SemEval14-Task4-inc Sentihood-inc
extra. senti. extra. senti.

mix. incre. mix. incre. mix. incre. mix. incre.

AE-LSTM 83.6 83.4 78.3 77.9 82.3 81.5 85.1 84.0
ATAE-LSTM 83.7 83.5 78.7 78.0 82.6 81.6 85.6 85.0
Dmu-Entnet - - - - 83.2 82.3 85.8 85.2

QA-B 90.0 89.2 84.4 83.5 85.2 84.2 91.7 90.7
MTL 89.8 69.8↓ 84.5 82.3 87.0 75.7↓ 92.2 91.0

CNE-SEP(ours) 90.9 90.1 84.8 84.5 87.2 85.8 92.6 91.6
CNE-net-CLS-sent.(ours) 91.2 91.1 85.4 85.0 87.5 86.1 93.0 91.9

CNE-net-SEP-sent.-att. (ours) 91.6 91.3 85.5 85.4 87.7 86.3 93.2 92.3

Table 6: Extraction F1 and sentiment accuracy in source categories of incremental learning.

form the best in the three types of CNE-net.

5.4 Incremental Learning Results

This section describes the performance in the incre-
mental learning task. We trained the model follow-
ing incremental learning workflow, as mentioned in
section 4.3. We compared the results between mix-
training (short as mix.) (mixing Sample-Source
and Sample-Target) and incremental learning (short
as incre.), for both extraction F1 and sentiment ac-
curacy.

Firstly, we compare the performance in target
category, i.e. aspect category extraction F1 (short
as extra.) and sentiment analysis accuracy (short
as senti.) from mix-training process and incremen-
tal learning. As the target category performance
shown in Table 5, there is no significant difference
between mix-training and incremental learning for
both aspect extraction and sentiment analysis. For
example, in SemEval14-Task-inc, the extraction F1

and sentiment accuracy of CNE-net-SEP-sent.-att.
are 0.936 and 0.930 respectively in mix-training,
while they are 0.937 and 0.932 respectively in in-
cremental learning. In Sentihood-inc, the extrac-
tion F1 and sentiment accuracy of CNE-net-SEP-
sent.-att. are 0.952 and 0.919 respectively in mix-

training, while they are 0.954 and 0.920 respec-
tively in incremental learning. This indicates incre-
mental learning does not decrease the performance
in the target category. Our CNE-net-SEP-sent.-att.
performs the best in all the models.

Secondly, we compare aspect extraction and sen-
timent analysis performance in source categories
after incremental learning, since both source cate-
gories and target categories requires high accuracy.
The extraction F1 and sentiment accuracy of source
categories after the incremental learning process
as well as in the mix-training process are shown in
Table 6. There is no significant difference in sen-
timent accuracy of source categories after training
with incremental learning data. For example, in
SemEval14-Task-inc, sentiment accuracy of CNE-
net-SEP-sent.-att. is 0.855 in mix-training, while it
is 0.854 in incremental learning. This is probably
because of the similar sentiment features between
categories, in which the fine-tuning process does
not make a great difference.

However, for category extraction, MTL suf-
fers from catastrophic forgetting after fine-tuning.
In SemEval14-Task4-inc, extraction F1 of MTL
model of source categories decreases from 0.898
in mix-training to 0.698 after incremental learning,
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CNE-net-SEP-sent.-att.
SemEval14-Task4-inc Sentihood-inc

Source Categories Target Category Source Categories Target Category
extra. senti. extra. senti. extra. senti. extra. senti.

shared decoder 91.3 85.4 93.7 93.2 86.3 92.3 95.4 92.0
unshared decoder 84.2↓ 84.0 93.4 93.0 79.6↓ 91.5 94.9 91.6

Table 7: Extraction F1 and sentiment accuracy after incremental learning of CNE-net-SEP-sent.-att. with shared
and unshared decoder.

while in Sentihood-inc, F1 metric of MTL model
of source categories decreases from 0.870 in mix-
training to 0.757 after incremental learning. Fortu-
nately, the QA-B model, as well as our CNE-nets,
suffer less from this problem. In SemEval14-Task4-
inc, extraction F1 metric of CNE-SEP-sent.-att. is
0.913 in source categories after fine-tuning, while
it is 0.916 in mix-training. In Sentihood-inc, extrac-
tion F1 of CNE-SEP-sent.-att. is 0.863 in source
categories after fine-tuning, while it is 0.877 in
mix-training.

5.5 Discussion

We have confirmed the effectiveness of CNE-nets
for (T)ACSA tasks and (T)ACSA incremental
learning tasks. However, there remains a ques-
tion, why our model suffers less from catastrophic
forgetting in incremental learning?

To answer this question, we compare the incre-
mental learning performance of our CNE-net-SEP-
sent.-att. with a similar model but the decoders in
each category are unshared with W1 6= W2 6= ... 6=
Wncat and ~b1 6= ~b2 6= ... 6= ~bncat (CNE-net-SEP-
sent.-att.-unshared) in equation (1) and the results
are shown in Table 7. There is no significant dif-
ference in target category between the model with
shared decoders and the model with unshared de-
coders, indicating both shared and unshared model
is able to get enough feature for category extraction
and sentiment analysis in target category. However,
it is more important that, in CNE-net-SEP-sent.-
att.-unshared, the extraction F1 suffers from a sud-
den decrease. In SemEval14-Task4-inc, extraction
F1 decreases from 0.913 with shared decoder to
0.842 with unshared decoder, while in Sentihood-
inc, extraction F1 decreases from 0.863 with shared
decoder to 0.796 with unshared decoder.

We believe the decreased extraction F1 in source
categories is due to the unshared decoders for each
task, which results in only shared encoder and
target-category decoders are fine-tuned during the
fine-tuning process. In contrast, the decoder of
source categories remains unchanged. The fine-

tuned encoder and original source-category de-
coder is the reason for the catastrophic forgetting
problem in the category extraction evaluation. In
our shared decoder approach, both encoders and
decoders are shared and fine-tuned to weaken the
catastrophic forgetting problem.

6 Conclusion

In this paper, in order to make multi-task learn-
ing feasible for incremental learning, we proposed
CNE-net with different attention mechanisms. The
category name features and the multi-task learning
structure help the model achieve state-of-the-art on
ACSA and TACSA tasks. Furthermore, the shared
encoder and decoder layers weaken catastrophic
forgetting in the incremental learning task. We pro-
posed a task for (T)ACSA incremental learning and
achieved the best performance with CNE-net com-
pared with other strong baselines. Further research
may be concerned with zero-shot learning on new
categories.
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