Plug and Play Autoencoders for Conditional Text Generation

Florian Maif®
Noah A. Smith*¢

Nikolaos Pappas®

Ivan Montero®
James Henderson'

"Idiap Research Institute, Martigny, Switzerland
*EPFL, Lausanne, Switzerland
*University of Washington, Seattle, WA, USA
¢ Allen Institute for Artificial Intelligence, Seattle, WA, USA
{florian.mai, james.henderson@idiap.ch}
{npappas, ivamon, nasmith@cs.washington.edu}

Abstract

Text autoencoders are commonly used for con-
ditional generation tasks such as style transfer.
We propose methods which are plug and play,
where any pretrained autoencoder can be used,
and only require learning a mapping within
the autoencoder’s embedding space, training
embedding-to-embedding (Emb2Emb). This
reduces the need for labeled training data for
the task and makes the training procedure
more efficient. Crucial to the success of this
method is a loss term for keeping the mapped
embedding on the manifold of the autoen-
coder and a mapping which is trained to nav-
igate the manifold by learning offset vectors.
Evaluations on style transfer tasks both with
and without sequence-to-sequence supervision
show that our method performs better than or
comparable to strong baselines while being up
to four times faster.

1 Introduction

Conditional text generation' encompasses a large
number of natural language processing tasks such
as text simplification (Nisioi et al., 2017; Zhang and
Lapata, 2017), summarization (Rush et al., 2015;
Nallapati et al., 2016), machine translation (Bah-
danau et al., 2015; Kumar and Tsvetkov, 2019) and
style transfer (Shen et al., 2017; Fu et al., 2018).
When training data is available, the state of the
art includes encoder-decoder models with an atten-
tion mechanism (Bahdanau et al., 2015; Vaswani
et al., 2017) which are both extensions of the origi-
nal sequence-to-sequence framework with a fixed
bottleneck introduced by Sutskever et al. (2014).
Despite their success, these models are costly to
train and require a large amount of parallel data.
Yet parallel data is scarce for conditional text
generation problems, necessitating unsupervised

"'We use this term to refer to text generation conditioned
on fextual input.

Autoencoder
manifold

Figure 1: The manifold of a text autoencoder is the low-
dimensional region of the high-dimensional embedding
space where texts are actually embedded. The exam-
ple shows the mapping of a source sequence x with
embedding z,, to z,, which is the embedding of target
sequence y such that it reflects the target manifold.

solutions. Text autoencoders (Bowman et al., 2016)
have proven useful for a particular subclass of un-
supervised problems that can be broadly defined as
style transfer, i.e., changing the style of a text in
such a way that the content of the input is preserved.
Examples include sentiment transfer (Shen et al.,
2017), sentence compression (Fevry and Phang,
2018), and neural machine translation (Artetxe
et al., 2018). Most existing methods specialize
autoencoders to the task by conditioning the de-
coder on the style attribute of interest (Lample
et al., 2019; Logeswaran et al., 2018), assuming
the presence of labels during training of the au-
toencoder. The main drawback of this approach
is that it cannot leverage pretraining on unlabeled
data, which is probably the most important factor
for widespread progress in supervised NLP models
in recent years in text analysis (Peters et al., 2018;
Radford et al., 2019; Devlin et al., 2019) and gen-
eration tasks (Song et al., 2019; Vari§ and Bojar,
2019). There are no style transfer methods, to the
best of our knowledge, that were designed to lever-
age autoencoder pretraining, and only few can be
used in this way (Shen et al., 2020; Wang et al.,
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Figure 2: High-level view of the supervised variant of our framework Emb2Emb. Left: we pretrain an autoen-
coder on (unannotated) text, which transforms an input sentence @ into an embedding z,, and uses it to predict a
reconstruction & of the input sentence. Center: using the (frozen, hence depicted in gray) autoencoder, we learn a
mapping P (trained, hence depicted in green) from the autoencoder’s embedding of an input z,, to the embedding
z, of the output sentence y. The training objective consists of two losses: L4 enforces the predicted output
embedding to be close to the true output embedding, and L4, is an adversarial loss term that enforces the output
embedding to be on the manifold of the autoencoder. Right: at inference time, ® is composed between the autoen-
coder’s encoder and decoder to transform input sentence « to output sentence §. Not shown: the unsupervised
variant where only x (not y) sequences are available in task training (Section 9).

2019).

In this paper, we propose an autoencoder-based
framework that is plug and play,” meaning it can
be used with any pretrained autoencoder, and thus
can benefit from pretraining. Instead of learning
conditional text generation in the discrete, high-
dimensional space where texts are actually located,
our method, called Emb2Emb, does all learning in
the low-dimensional continuous embedding space,
on the manifold of a pretrained text autoencoder
(see Figure 1). The result of learning is simply a
mapping from input embedding to output embed-
ding. Two crucial model choices enable effective
learning of this mapping. First, an adversarial loss
term encourages the output of the mapping to re-
main on the manifold of the autoencoder, to ensure
effective generation with its decoder. Second, our
neural mapping architecture is designed to learn off-
set vectors that are added to the input embedding,
enabling the model to make small adjustments to
the input to solve the task. Lastly, we propose two
conditional generation models based on our frame-
work, one for supervised style transfer (Section
2.3) and the other for unsupervised style transfer
(Section 2.4) that implement the criteria of content
preservation and attribute transfer directly on the
autoencoder manifold.

We evaluate on two style transfer tasks for En-
glish. On text simplification (Section 3.1), where
supervision is available, we find that our approach
outperforms conventional end-to-end training of
models with a fixed-size “bottleneck” embedding
(like an autoencoder) while being about four times
faster. On unsupervised sentiment transfer (Sec-
tion 3.2), where no parallel sentence pairs are

2This term is borrowed from studies on unconditional text
generation with a specific attribute (Duan et al., 2020).

available to supervise learning, and where models
with a fixed-size bottleneck are a common choice,
Emb2Emb preserves the content of the input sen-
tence better than a state-of-the-art method while
achieving comparable transfer performance. Exper-
imentally, we find that our method, due to being
plug and play, achieves performances close to the
full model when only 10% of the labeled examples
are used, demonstrating the importance of pretrain-
ing for this task.

Our contributions can be summarized as follows:

e Our proposed framework Emb2Emb reduces
conditional text generation tasks to mapping
between continuous vectors in an autoen-
coder’s embedding space.

e We propose a neural architecture and an ad-
versarial loss term that facilitate learning this

mapping.

e We evaluate two new conditional generation
models for generation tasks with and without
parallel examples as supervision.

e We demonstrate that our model benefits sub-
stantially from pretraining on large amounts
of unlabeled data, reducing the need for large
labeled corpora.

2 Proposed Framework

The key idea of our framework is to reduce dis-
crete sequence-to-sequence tasks to a continuous
embedding-to-embedding regression problem. Our
Emb2Emb framework for conditional generation
based on pretrained autoencoders (Figure 2) encom-
passes learning sequence-to-sequence tasks both
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where parallel input/output sentence pairs are avail-
able (“supervised”) and where they are not (“un-
supervised”). Given a pretrained autoencoder (left
of Figure 2, Section 2.1) we use its encoder to en-
code both input and, during supervised training,
the output sequence (Section 2.3).3 We then learn
a continuous mapping ® from input sequence em-
beddings to output sequence embeddings (center of
Figure 2). In the unsupervised case (Section 2.4),
the task loss reflects the objectives of the task, in
our experiments consisting of two terms, one to
encourage content preservation and the other to
encourage style transfer. In both supervised and
unsupervised cases, the task-specific loss L4k 1S
combined with an adversarial term L4, that en-
courages the output vector to stay on the autoen-
coder’s manifold (see Figure 1; Section 2.5), so
that the complete loss function is:

L= Etask + )\adv»cad'u- (1)

At inference time (right of Figure 2; Section 2.4),
the decoder from the pretrained autoencoder’s de-
coding function is composed with & and the en-
coder to generate a discrete output sentence ¢ con-
ditioned on an input sentence x:

9 = (deco ® o enc)(x) (2)
2.1 Text Autoencoders

The starting point for our approach is an autoen-
coder A = dec o enc trained to map an input
sentence to itself, i.e., A(x) = x. Letting X
denote the (discrete) space of text sequences, the
encoder enc : X — R? produces an intermedi-
ate continuous vector representation (embedding),
which is turned back into a sequence by the de-
coder dec : RY — X. Note that an autoencoder
can, in principle, be pretrained on a very large
dataset, because it does not require any task-related
supervision.

While our framework is compatible with any
type of autoencoder, in practice, learning the map-
ping ® will be easier if the embedding space is
smooth. How to train smooth text autoencoders is
subject to ongoing research (Bowman et al., 2016;
Shen et al., 2020). In this work, we will focus on
denoising recurrent neural network autoencoders
(Vincent et al., 2010; Shen et al., 2020; see Ap-
pendix A). However, any advancement in this re-
search direction will directly benefit our frame-
work.

® Our code is available at: https://github.com/
florianmai/emb2emb
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Figure 3: Illustration of the three neural architectures
(1 layer) considered in this study. OffsetNet (b) differs
from ResNet (c) in that there is no non-linear activation
after the skip-connection (+), satisfying the notion of
computing an offset vector that is added to the input.

2.2 Mapping Function ¢

A common choice for the mapping P to learn a re-
gression task would be a k-layer MLP (Rumelhart
et al., 1986), which transforms the input z,, € R4
as:

y 0 =z, 3)
Vie{l,....k}, yW =g(WWUyl=by (4)
D(z5) = WHyH), (5)

where W) e R?*? are linear transformations
and o denotes a non-linear activation function. The
linear transformation at the output layer allows ®
to match the unbounded range of the regression
task. Note that we have suppressed the bias terms
of the transformations for clarity. In past work
(Shen et al., 2020), a mapping function was chosen
with a specific form,

¢(z) =2z —vi + Vo, (6)

where the “offset” vectors v and vy correspond to
encodings of the input style and the output style,
computed as the average of sentences with the re-
spective style. Because dimensions not relating to
style information cancel each other out, the output
remains close to the input. However, this model
lacks generality because the offset vectors are inde-
pendent of the input.

We propose a mapping which incorporates the
notion of an offset vector, but is conditioned on the
input. Each layer of the ® network moves through
the embedding space by an input-specific offset,
computed using a “skip” connection at each layer:

yW) =y 4 vOowllyG-1y — (7)
offset j
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V) WU ¢ R4 again denote linear transfor-
mations. Unlike the MLP, the skip connections bias
the output to be close to the input. We refer to this
architecture as OffsetNet.

Note that a residual network (He et al., 2016)
corresponds to Equation 7 but with an additional
non-linear transformation (typically of bounded
range) applied to the output of Equation 7, again
necessitating a linear transformation at the output
layer. However, transforming the output all to-
gether would defeat the purpose of navigating the
manifold with learned offsets. Figure 3 illustrates
the differences. Our experiments (Section 3.1.2)
validate the design choice for OffsetNet.

2.3 Supervised Task Loss L,

For supervised tasks, a collection of parallel sen-
tence pairs ((z;,y;))5, is available as supervi-
sion for the conditional generation task. After
pretraining the autoencoder, enc is available to
transform the training data into pairs of vectors
(zo,=enc(x;), z,, =enc(y;)), giving us:

N
1
Ligsk = N Zzl ‘Cemb(q)(zwi; 0)7 Zyi)' (8)

The multivariate regression in Equation 8 re-
quires that we specify a loss function, L,,;, which
should reflect semantic relatedness in the autoen-
coder’s embedding space. For sentence and word
embeddings, past work has concluded that cosine
distance is preferable to Euclidean distance (i.e.,
mean squared error) in such settings (Xing et al.,
2015; Bhat et al., 2019), which agreed with our
preliminary experiments; hence, we adopt cosine
distance for the task-specific loss Lq,np.

Kumar and Tsvetkov (2019) showed that another
alternative, the Von Mises-Fisher loss, was prefer-
able in learning to generate continuous word vector
outputs. Their loss is not applicable in our setting,
because the embedding space of an autoencoder
is not unit-normalized like word vectors typically
are. Therefore, we employ cosine loss and leave
the exploration of other regression losses to future
work.

2.4 Unsupervised Task Loss L;

In the unsupervised case, we do not have access to
parallel sentence pairs (x, y). Instead, we have a
collection of sentences labeled with their style at-
tribute (e.g., sentiment), here denoted ((x;, a;)) f\il.
The goal of the task is twofold (Logeswaran et al.,

2018): preserve the content of the input and match
the desired value for the style attribute. We view
this as a tradeoff, defining L;,; as an interpolation
between loss terms for each. With z, = (z,,;60),
for the unsupervised case we have:

£task :Astyﬁsty(imi) + (1 - )\sty>£cont (imm Zmi)-
)]

where Lot and L, are described in the follow-
ing. Lastly, we describe an inference-time method
that can improve the loss after applying the map-
ping even further.

Content preservation. We encourage the output
to stay close to the input, on the assumption that
embeddings are primarily about semantic content.
To this end, we choose L ont (P (24,;0), 24,) to be
cosine distance.

Style. Following previous approaches (Engel
et al., 2018; Liu et al., 2020; Wang et al., 2019),
our style objective requires that we pretrain a (prob-
abilistic) classifier that predicts the style attribute
value from the (fixed) autoencoder’s embedding.
The classifier is then frozen (like the autoencoder)
and our minimizing objective requires the output
of our method to be classified as the target style.
Formally, in a preliminary step, we train a style
classifier ¢ : R? — {0, 1} on the embeddings of
the autoencoder to predict one of the attributes (la-
beled as 0 and 1, respectively). We then freeze the
classifier’s parameters, and encourage ® to produce
outputs of the target attribute (y=1) via a negative
log-likelihood loss:

[fsty(q)(ziti; 0)7 Zwi) = - log(c(i)(zmi; 9)))

Inference Time. The mapping & is trained to try
to optimize the objective (1). In the unsupervised
case, we can actually verify at test time whether it
has succeeded, since nothing is known at training
time that is not also known at test time (i.e., no
labeled output). We propose a second stage of the
mapping for the unsupervised case which corrects
any suboptimality. We apply fast gradient iterative
modification (FGIM; Wang et al., 2019) to improve
the predicted embeddings further. Formally, we
modify the predicted embedding z,, =P (z,,; 0) as

Zy, = Zp, + WV, L(22;, 2Za;),

where w is the stepsize hyperparameter. This step
is repeated for a fixed number of steps or until
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c(zz,) > t, where, c is the style classifier from
above, and ¢ € [0, 1] denotes some threshold.

Wang et al. (2019) use this method to modify the
input embedding z., by only following the gradi-
ent of the classifier c, i.e., éml = Zg, + szmi —
log ¢(z4, ). In contrast, our variant takes the entire
loss term into account, including the adversarial
term that encourages embeddings that lie on the
manifold of the autoencoder, which we explain
next.

2.5 Adversarial Loss L4,

Recall that at test time the output of @ is the in-
put to the pretrained decoding function dec. Even
for supervised training, we do not expect to obtain
zero loss during training (or to generalize perfectly
out of sample), so there is a concern that the out-
put of ® will be quite different from the vectors
dec was trained on (during pretraining). In other
words, there is no guarantee that ¢ will map onto
the manifold of the autoencoder.

To address this issue, we propose an adversarial
objective that encourages the output of ® to remain
on the manifold. Our method is similar to the “re-
alism” constraint of Engel et al. (2018), who train
a discriminator to distinguish between latent codes
drawn from a prior distribution (e.g., a multivariate
Gaussian) and the latent codes actually produced
by the encoder. Instead of discriminating against
a prior (whose existence we do not assume), we
discriminate against the embeddings produced by
®. We build on the adversarial learning frame-
work of Goodfellow et al. (2014) to encourage the
transformation ® to generate output embeddings
indistinguishable from the embeddings produced
by the encoder enc.

Formally, let disc be a (probabilistic) binary clas-
sifier responsible for deciding whether a given em-
bedding was generated by enc or ®. The discrimi-
nator is trained to distinguish between embeddings
produced by enc and embeddings produced by ®:

N
max Z log(disc(zg,)) + log(disc(®(za,))
=1

disc 4

(10)

where disc(z) denotes the probability of vector z
being produced by enc and disc(z) = 1—disc(z).
The mapping P is trained to “fool” the discrimina-
tor:

Lain(P(zz,); 0) = —log(disc(P(zg,);0)) (11)

Training the discriminator requires encoding
negatively sampled sentences, zg, =enc(y;), where
we want these sentences to contrast with the output
of the mapping ®(z,,). For the supervised case,
we achieve this by taking the negative samples from
the target sentences of the training data, y;=y;. In
the unsupervised case, g; are sampled randomly
from the data.

The mapping @ is trained according to the objec-
tive in (1), in which £,4, depends on training the
discriminator disc according to (10). In practice,
we alternate between batch updates to ¢ and disc.
Our experiments in Section 3 will explore sensi-
tivity to A,4y, finding that it has a large effect. In
practical applications, it should therefore be treated
as a hyperparameter.

2.6 Summary

Our framework is plug and play, since it is us-
able with any pretrained autoencoder. Unlike previ-
ous methods by Shen et al. (2020) and Wang et al.
(2019), which are specific to style transfer and do
not learn a function (like ¢ in Emb2Emb), ours
can, in principle, be used to learn a mapping from
any sort of input data to text, as long as the desired
attributes of the generated text can be expressed
as a loss function that is tied to the autoencoder
manifold. In this study, we apply it to supervised
and unsupervised text style transfer. The key com-
ponent is the mapping function ®, which is trained
via a regression loss (plus auxiliary losses) to map
from the embedding of the input sequence to the
embedding of the output sequence. Learning the
function is facilitated through the proposed Off-
setNet and an adversarial loss term that forces the
outputs of the mapping to stay on the manifold of
the autoencoder.

3 Experiments

We conduct controlled experiments to measure the
benefits of the various aspects of our approach.
First, we consider a supervised sentence simplifica-
tion task and compare our approach to others that
use a fixed-size representational bottleneck, con-
sidering also the model’s sensitivity to the strength
of the adversarial loss and the use of OffsetNet
(Section 3.1). We then turn to an unsupervised sen-
timent transfer task, first comparing our approach
to other methods that can be considered “plug and
play” and then investigating the effect of plug and
play when only a little labeled data is available
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(Section 3.2). We note that the current state of the
art is based on transformers (Vaswani et al., 2017);
since our aim is to develop a general-purpose frame-
work and our computational budget is limited, we
focus on controlled testing of components rather
than achieving state-of-the-art performance.

Autoencoder. In all our experiments, we use a
one-layer LSTM as encoder and decoder, respec-
tively. We pretrain it on the text data of the target
task as a denoising autoencoder (DAE; Vincent
et al., 2010) with the noise function from Shen
et al. (2020). Additional training and model details
can be found in Appendix A.

3.1 Sentence Simplification

Sentence simplification provides a useful testbed
for the supervised variant of our approach. The
training data contains pairs of input and output
sentences (x;, y;), where x; denotes the input sen-
tence in English and y; denotes the output sentence
in simple English. We evaluate on the English
WikiLarge corpus introduced by Zhang and Lapata
(2017), which consists of 296,402 training pairs,
and development and test datasets adopted from Xu
et al. (2016). Following convention, we report two
scores: BLEU (Papineni et al., 2002), which cor-
relates with grammaticality (Xu et al., 2016), and
SARI (Xu et al., 2016), found to correlate well with
human judgements of simplicity. We also compare
training runtimes.

3.1.1 Comparison to Sequence-to-Sequence

Our first comparisons focus on models that, like
ours, use a fixed-size encoding of the input. Keep-
ing the autoencoder architecture fixed (i.e., the
same as our model), we consider variants of the
sequence-to-sequence model of Sutskever et al.
(2014).* All of these models are trained “end-to-
end,” minimizing token-level cross-entropy loss.
The variants are:

e S2S-Scratch: trains the model from scratch.

e S2S-Pretrain: uses a pretrained DAE and
finetunes it.

*On this task, much stronger performance than any we
report has been achieved using models without this constraint
(Mathews et al., 2018; Zhang and Lapata, 2017). Our aim
is not to demonstrate superiority to those methods; the fixed-
size encoding constraint is of general interest because (i) it is
assumed in other tasks such as unsupervised style transfer and
(i1) it is computationally cheaper.

Model BLEU SARI Time
S2S-Scratch 3.6 15.6 3.7x
S2S-Pretrain 54 16.2 3.7x
S2S-MLP 10.5 17.7 3.7x
S2S-Freeze 23.3 22.4 2.2%
Emb2Emb 34.7 254 1.0x

Table 1: Text simplification performance of model vari-
ants of end2end training on the test set. “Time” is
wall time of one training epoch, relative to our model,
Emb2Emb.

o S2S-MLP: further adds the trainable mapping
® used in our approach.

o S2S-Freeze: freezes the pretrained autoen-
coder parameters, which we expect may help
with the vanishing gradient problem arising in
the rather deep S2S-MLP variant.

For all the models, we tuned the learning rate hy-
perparameter in a comparable way and trained with
the ADAM optimizer by Kingma and Ba (2015)
(more details in the Appendix A.4).

Results. Table 1 shows test-set performance and
the runtime of one training epoch relative to our
model (Emb2Emb). First, note that the end-to-end
models are considerably more time-consuming to
train. S2S-Freeze is not only more than two times
slower per epoch than Emb2Emb, but we find it to
also require 14 epochs to converge (in terms of val-
idation performance), compared to 9 for our model.
Turning to accuracy, as expected, adding pretrain-
ing and the MLP to S2S-Scratch does improve its
performance, but freezing the autoencoder (S2S-
Freeze) has an outsized benefit. This observation
may seem counter to the widely seen success of
finetuning across other NLP scenarios, in particular
with pretrained transformer models like BERT (De-
vlin et al., 2019). However, finetuning does not
always lead to better performance. For instance,
Peters et al. (2019) not only find the LSTM-based
ELMo (Peters et al., 2018) difficult to configure
for finetuning in the first place, but also observe
performances that are often far lower than when
just freezing the parameters. Hence, our results
are not entirely unexpected. To further eliminate
the possibility that the finetuned model underper-
formed merely because of improper training, we
verified that the training loss of S2S-Pretrain is
indeed lower than that of S2S-Freeze. Moreover,
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Figure 4: Performance on WikiLarge in terms of BLEU
score on the development set (higher is better) by
weight for the adversarial term \,g4,. Note that the x-
axis is on a log scale.

the poor performance is also unlikely to be a prob-
lem of overfitting, because we mitigate this via
early stopping. This suggests that the differences
are largely due to the generalization abilities com-
ing from the pretraining, which is partly forgotten
when finetuning the entire model on the target task.
Our results thus support the hypothesis of Mathews
et al. (2018) that fixed-size bottlenecks and deeper
networks make end-to-end learning harder. In con-
trast, training Emb2Emb even outperforms the best
end-to-end model, S2S-Freeze.

From these results, we conclude that, when pre-
training a fixed-size-representation autoencoder for
plug and play text generation, learning text trans-
formations entirely in continuous space may be
easier and more efficient than using conventional
sequence-to-sequence models.

3.1.2 Sensitivity Analysis

We next explore two of the novel aspects of our
model, the adversarial loss and the use of OffsetNet
in the mapping function ®. We vary the tradeoff pa-
rameter \,4, and consider variants of our approach
using an MLP, ResNet, and OffsetNet at each value.
All other hyperparameters are kept fixed to default
values reported in Appendix A.

Results. Figure 4 plots the BLEU scores, with
Aadv = 0 as horizontal dashed lines. Each model’s
BLEU score benefits, in some A,g, range, from the
use of the adversarial loss. Gains are also seen for
SARI (see Appendix A.4.3). OffsetNet is also con-
sistently better than ResNet and, when using the
adversarial loss, the MLP. From this we conclude
that OffsetNet’s approach of starting close to the
input’s embedding (and hence on/near the mani-

fold), facilitates (adversarial) training compared to
the MLP and ResNet, which, at the beginning of
training, map to an arbitrary point in the embedding
space due to the randomly initialized projection at
the last layer.

3.2 Sentiment Transfer

We next evaluate our model on an unsupervised
style transfer task. For this task, the training data
is given pairs of input sentences and sentiment at-
tributes (x;, a;), where x; denotes the input sen-
tence in English and a; denotes its target sentiment,
a binary value. For training, we use the Yelp dataset
preprocessed following Shen et al. (2017). At infer-
ence time, we follow common evaluation practices
in this task (Hu et al., 2017; Shen et al., 2017;
Lample et al., 2019) and evaluate the model on
its ability to “flip” the sentiment (measured as the
accuracy of a DistilBERT classifier trained on the
Yelp training set, achieving 97.8% on held-out data;
Sanh et al., 2019),5 and “self-BLEU,” which com-
putes the BLEU score between input and output to
measure content preservation. There is typically
a tradeoff between these two goals, so it is use-
ful to visualize performance as a curve (accuracy
at different self-BLEU values). We conduct three
experiments. First, we compare to two other un-
supervised sentiment transfer models that can be
considered “plug and play” (Section 3.2.1). Second,
we conduct controlled experiments with variants
of our model to establish the effect of pretraining
(Section 3.2.2). Third, we confirm the effectiveness
of OffsetNet and the adversarial loss term for the
sentiment transfer (Appendix A.5.4).

3.2.1 Comparison to Plug and Play Methods

To the best of our knowledge, there are only two
other autoencoder-based methods that can be used
in a plug and play fashion, i.e., training the autoen-
coder and sentiment transfer tasks in succession.
These are the method of Shen et al. (2020), which is
based on addition and subtraction of mean vectors
of the respective attribute corpora (see Section 4),
and FGIM (see Section 2.4); both of them are
inference-time methods and do not learn a function
(like ® in Emb2Emb). Even though these meth-
ods are not specifically introduced with pretraining
plug and play in mind, we can consider them in this
way as alternatives to our model. Note that Wang

Due to budget constraints, we evaluate only on transform-
ing sentiment from negative to positive.
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Figure 5: Comparison of plug and play methods for un-
supervised style transfer on the Yelp sentiment transfer
task’s test set. Up and right is better

et al. (2019) achieve state-of-the-art on unsuper-
vised sentiment transfer using FGIM, but applied
to the latent space of a powerful transformer au-
toencoder. Since we want to conduct controlled
experiments to find the best plug and play method,
we integrated FGIM into our framework rather than
directly comparing to their results. We treat the
method by Shen et al. (2020) analogously.

For our learning-based model, we tune .4, on
the development set from Yelp. After finding the
best A4y, We inspect the behavior of the mod-
els at different levels of transfer by varying Ay,
({0.1,0.5,0.9,0.95,0.99}), giving a tradeoff curve
(more details in Appendix A.5.4). Analogously, we
vary the multiplier for Shen et al. (2020) and the
thresholds ¢ for Wang et al. (2019) to obtain dif-
ferent tradeoffs between accuracy and self-BLEU.
We also report the computational overhead each
method incurs in addition to encoding and decod-
ing.

Results. Figure 5 plots the tradeoff curves for
the existing models, and ours with and without
FGIM at inference time. We report accuracy and
computational overhead in Table 2, for the most
accurate points. Note that our model clearly out-
performs that of Shen et al. (2020), confirming
that learning the offset vectors in the autoencoder
manifold is indeed beneficial.® Our model’s perfor-
mance is close to that of Wang et al. (2019), even
without FGIM at inference time. Consequently,
our model has a much lower computational over-
head. With FGIM, our model shows an advantage
at the high-accuracy end of the curve (top), increas-
ing content preservation by 68% while reaching
98% of FGIM’s transfer accuracy, though this is

%In Appendix B, we analyze the differences between these
models’ outputs qualitatively.

Model | Acc.|s-BLEU| +Time
Shen et al. 96.8 6.5 0.5x
FGIM 94.9|  108| 70.0x
Emb2Emb + FGIM | 93.1]  18.1]2820.0x
Emb2Emb 87.1| 22| 1.0x

Table 2: Self-BLEU (“s-BLEU”) on the Yelp sentiment
transfer test set for the configurations in Figure 5 with
highest transfer accuracy (“Acc.”). “+Time” reports the
inference-time slowdown factor due to each model’s ad-
ditional computation (relative to our method).

computationally expensive. This confirms that our
training framework, while being very flexible (see
Section 2.6), is a strong alternative not only in the
supervised, but also in the unsupervised case.

3.2.2 Pretraining

We have argued for a plug and play use of autoen-
coders because it allows generation tasks to benefit
from independent research on autoencoders and
potentially large datasets for pretraining. Here we
measure the benefit of pretraining directly by sim-
ulating low-resource scenarios with limited style
supervision. We consider three pretraining scenar-
ios:

e Upper bound: We pretrain on all of the texts
and labels; this serves as an upper bound for
low-resource scenarios.

e Plug and play: A conventional plug and play
scenario, where all of texts are available for
pretraining, but only 10% of them are labeled
(chosen at random) for use in training .

o Non plug and play: A matched scenario with
no pretraining (“non plug and play”), with
only the reduced (10%) labeled data.

Results. Figure 6 shows the tradeoff curves in
the same style as the last experiment. The ben-
efit of pretraining in the low-resource setting is
very clear, with the gap compared to the plug and
play approach widening at lower transfer accuracy
levels. The plug and play model’s curve comes
close to the “upper bound” (which uses ten times
as much labeled data), highlighting the potential
for pretraining an autoencoder for plug and play
use in text generation tasks with relatively little
labeled data.

6083



=
o

J >
08 .
206 K e
o @
3
[v] + \
504 1 \.
—@- upper bound NN
0.2 plug and play
—+— non plug and play
00

00 01 02 03 04 05 06 07
self-BLEU

Figure 6: Sentiment transfer results for different model
scenarios. Up and right is better.

4 Related Work

Text Style Transfer The most common ap-
proach to text style transfer is to learn a disen-
tangled shared latent space that is agnostic to the
style of the input. Style transfer is then achieved
by training the decoder conditioned on the desired
style attribute, (Hu et al., 2017; Shen et al., 2017;
Fu et al., 2018; Zhao et al., 2018; Lample et al.,
2019; Li et al., 2018; Logeswaran et al., 2018;
Yang et al., 2018; Li et al., 2019), which hinders
their employment in a plug and play fashion. Most
methods either rely on adversarial objectives (Shen
et al., 2017; Hu et al., 2017; Fu et al., 2018), re-
trieval (Li et al., 2018), or backtranslation (Lample
et al., 2019; Logeswaran et al., 2018) to make the
latent codes independent of the style attribute. No-
table exceptions are Transformer-based (Dai et al.,
2019; Sudhakar et al., 2019), use reinforcement
learning for backtranslating through the discrete
space (Liu and Liu, 2019), build pseudo-parallel
corpora (Kruengkrai, 2019; Jin et al., 2019), or
modify the latent-variable at inference time by fol-
lowing the gradient of a style classifier (Wang et al.,
2019; Liu et al., 2020). Similar to our motivation,
Li et al. (2019) aim at improving in-domain per-
formance by incorporating out-of-domain data into
training. However, because their model again con-
ditions on the target data, they have to train the
autoencoder jointly with the target corpus, defeat-
ing the purpose of large-scale pretraining.

In contrast to previous methods, Emb2Emb can
be combined with any pretrained autoencoder even
if it was not trained with target attributes in mind.
It is therefore very close in spirit to plug and play
language models by Dathathri et al. (2020) who
showed how to use pretrained language models
for controlled generation without any attribute con-
ditioning (hence, the name). It is also similar to
pretrain-and-plugin variational autoencoders (Duan

et al., 2020), who learn small adapters with few pa-
rameters for a pretrained VAE to generate latent
codes that decode into text with a specific attribute.
However, these models cannot be conditioned on
input text, and are thus not applicable to style trans-
fer.

Textual Autoencoders Autoencoders are a very
active field of research, leading to constant progress
through denoising (Vincent et al., 2010), varia-
tional (Kingma and Welling, 2014; Higgins et al.,
2017; Dai and Wipf, 2019), adversarial (Makhzani
et al., 2016; Zhao et al., 2018), and, more recently,
regularized (Ghosh et al., 2020) autoencoders, to
name a few. Ever since Bowman et al. (2016)
adopted variational autoencoders for sentences
by employing a recurrent sequence-to-sequence
model, improving both the architecture (Semeni-
uta et al., 2017; Prato et al., 2019; Liu and Liu,
2019; Gagnon-Marchand et al., 2019) and the train-
ing objective (Zhao et al., 2018; Shen et al., 2020)
have received considerable attention. The goal is
typically to improve both the reconstruction and
generation performance (Cifka et al., 2018).

Our framework is completely agnostic to the
type of autoencoder that is used, as long as it is
trained to reconstruct the input. Hence, our frame-
work directly benefits from any kind of modelling
advancement in autoencoder research.

5 Conclusion

In this paper, we present Emb2Emb, a framework
that reduces conditional text generation tasks to
learning in the embedding space of a pretrained
autoencoder. We propose an adversarial method
and a neural architecture that are crucial for our
method’s success by making learning stay on the
manifold of the autoencoder. Since our framework
can be used with any pretrained autoencoder, it
will benefit from large-scale pretraining in future
research.
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A Experimental Details

We first describe the experimental details that
are common to the experiments on both datasets.
Dataset-specific choices are listed in their respec-
tive subsections.

A.1 Preprocessing and Tokenization

We do not apply any further preprocessing to the
datasets that we obtain. We use BPE for tokeniza-
tion, and restrict the vocabulary to 30,000. We
truncate all inputs to 100 tokens at maximum.

A.2 Experimental Setup

Computing Infrastructure. For all of our exper-
iments, we relied on a computation cluster with a
variety of different GPUs with at minimum 12GB
GPU memory and 50GB RAM. For the text sim-
plification experiments where we measure training
speed, we ran all experiments on the same machine
(with a GeForce GTX 1080 Ti) in succession to
ensure a fair comparison.

Implementation. We used Python 3.7 with Py-
Torch 1.4 for all our experiments. Our open-source

implementation is available at https://github.

com/florianmai/emb2emb.

Adversarial Training. We employ a 2-layer
MLP with 300 hidden units and ReLU activation
as discriminator, and train it using Adam with a
learning rate of 0.00001 (the remaining parameters
are left at their PyTorch defaults). We train it in
alternating fashion with the generator ®, in batches
of size 64.

A.3 Neural Architectures

Encoder For encoding, we employ a one-layer
bidirectional LSTM as implemented in PyTorch.
To obtain the fixed-size bottleneck, we average the
last hidden state of both directions. The input size
(and token embedding size) is 300.

Decoder For decoding, we initialize the hidden
state of a one-layer LSTM decoder as implemented
in PyTorch with the fixed size embedding. During
training, we apply teacher forcing with a probabil-
ity of 0.5. The input size is 300. We use greedy
decoding at inference time.

Transformation . We train all neural network
architectures with one layer. The hidden size is set
to the same as the input size, which in turn is de-
termined by the size of the autoencoder bottleneck.

Hence, the MLP and OffsetNet have the same num-
ber of parameters. Due to its extra weight matrix
at the output-layer, the ResNet has 50% more pa-
rameters than the other models. All networks use
the SELU activation function. All training runs
with our model were performed with the Adam
optimizer.

A4 Text Simplification
A.4.1 Dataset Details

We evaluate on the WikiLarge dataset by Zhang
and Lapata (2017), which consists of sentence pairs
extracted from Wikipedia, where the input is in En-
glish and the output is in simple English. It contains
of 296,402 training pairs, 2,000 development pairs,
and 359 pairs for testing. The 2,359 development
and test pairs each come with 8 human-written ref-
erence sentences to compute the BLEU and SARI
overlap with. The dataset can be downloaded from
https://github.com/XingxingZhang/dress.

A.4.2 Experimental Details

Training our model. We use a fixed learning
rate of 0.0001 to train our model for 10 epochs. We
evaluate the validation set performance in terms of
BLEU after every epoch and save the iteration with
the best validation loss performance.

Training S2S models. For all S2S mod-
els we compare against in Section 3.1.1,
we select the best performing run on the
validation set among the Ilearning rates
{0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005},
and also assess the validation set performance after
each of the 20 epochs. Training is performed with

the Adam optimizer.

Encoder hyperparameters We use a 1-layer
bidirectional LSTM with a memory size of 1024
and an input size of 300.

Number of Parameters All models share the
same encoder and decoder architecture, consist-
ing of 34,281,600 parameters in total. The map-
pings MLP, OffsetNet, and ResNet have 2,097,132,
2,097,132, and 3,145,708 parameters, respectively.
We report total numbers for the models used in the
experimental details below.

Evaluation metrics.
we use the Python

For computing BLEU,
NLTK 3.5 library.’
"nttps://www.nltk.org/api/nltk.

translate.html#module-nltk.translate.
bleu_score
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we use the
(Xu et al.,
https://github.com/cocoxu/

For computing SARI score,
implementation provided by

2016) at
simplification/blob/master/SARI.py.

A.4.3 SARI Score by )\,

Experimental details. We measure the perfor-
mance of our model on the development set of
WikiLarge in terms of SARI score. These results
are for the same training run for which we reported
the BLEU score, hence, the stopping criterion for
early stopping was BLEU, and we report the results
for all 10 exponentially increasing values of A, g,.
The best value when using BLEU score as stopping
criterion is A4, = 0.032.

Results. The results in Figure 7 show the same
pattern as for the BLEU score, although with a
smaller relative gain of 23% when using the adver-
sarial term.
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Figure 7: Performance on WikiLarge in terms of SARI
score (higher is better) by weight for the adversarial
term Agqy -

A.4.4 Development Set Results for
Comparison to S2S Models

In Table 3, we report the development set perfor-
mances corresponding to the experiments reported
in Section 3.1.1. For each model, we also specify
the best learning rate, if applicable, and the number
of parameters in the model

A.5 Sentiment Transfer
A.5.1 Dataset Details

We evaluate on the Yelp dataset as prepro-
cessed by (Shen et al., 2017), which consists of
sentences with positive or negative sentiment

Model |BLEU |SARI| LR| [©]
S2S-Scratch 32| 14.3] 0.0001 | 34.3m
S2S-Pretrain 59| 15.1| 0.0005|34.3m
S2S-MLP 8.6| 16.0| 0.0001|36.4m
S2S-Freeze 17.4 |1 20.11{0.00005 | 36.4m
Ours 26.7 | 23.5 - 136.4m

Table 3: Text simplification performance of model vari-
ants of seq2seq training on the development set. |O]
denotes the number of parameters for each model.

extracted from restaurant reviews. The training
set consists of 176,787 negative and 267,314
positive examples. The development set has
25,278 negative and 38,205 positive examples,
and the test set has 50,278 negative and 76,392
positive examples. The dataset can be downloaded
from https://github.com/shentianxiao/
language-style-transfer/tree/master/

data/yelp.

Training our models. We use a fixed learning
rate of 0.00005 to train our model for 10 epochs
(for the ablations) or 20 epochs (for the final model).
We evaluate the validation set performance in terms
of self-BLEU plus transfer accuracy after every
epoch and save the iteration with the best validation
loss performance.

For all models involving training the map-
ping ® (including the ablation below), we
perform a search of M\, among the val-
ues {0.008,0.016,0.032,0.0640.128}. We se-

lect them based on the following metric:
5

l;(BLEU()\advy)\éty) + accuracy(Nadv, Nty
where )\ity corresponds to the i-th value of
Asty that we have used to obtain the BLEU-
accuracy tradeoff curve. By BLEU (Aagu, Aly,)
and accuracy(Aadv, Nsyy)» respectively, we mean
the score resulting from training with the given

parameters.

Encoder hyperparameters We use a 1-layer
bidirectional LSTM with a memory size of 512.

Number of Parameters All models again share
the same encoder and decoder architecture, consist-
ing of 22,995,072 parameters in total. The map-
pings MLP, OffsetNet, and ResNet have 524,288,
524,288, and 786,432 parameters, respectively.
Hence, the total number of parameters for our mod-
els is 23.5m, whereas the variants we report as Shen
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et al. and FGIM have 23m parameters.

Sentiment classifier on autoencoder manifold.
For binary classification, we train a 1-layer MLP
with a hidden size of 512 with Adam using a learn-
ing rate of 0.0001. For regularization, we use
dropout with p = 0.5 at the hidden and input layer,
and also add isotropic Gaussian noise with a stan-
dard deviation of 0.5 to the input features.

BERT classifier. The DistilBERT classifier is
trained using the HuggingFace transformers li-
brary.® We train it for 30 epochs with a batch size
of 64 and a learning rate of 0.00002 for Adam, with
a linear warm-up period over the first 3000 update
steps. We evaluate the validation set performance
every 5000 steps and save the best model.

A.5.2 Implementation of Wang et al. Baseline

We reimplemented the Fast Gradient Iterative Mod-
ification method by (Wang et al., 2019) to either i)
follow the gradient of the sentiment classifier from
the input, or ii) from the output of @, follow the
gradient of the complete loss function of training
.

Following the implementation by (Wang et al.,
2019), in all runs, we repeat the computation for
weights w € {1,10, 100, 1000} and stop at the first
weight that leads to the classification probability
exceeding a threshold ¢. For each weight, we make
30 gradient steps at maximum.

The Wang et al. (2019) baseline is generated
from choosing ¢ = {0.5,0.9,0.99,0.999, 0.9999},
i.e., we choose lower thresholds to stop the gradient
descent from changing the input too much towards
the target attribute, leading to lower transfer accu-
racy performances.

When we apply FGIM to the output of ® in
our model (with the more sophisticated loss func-
tion, where we set Ay, = 0.5), we apply the same
thresholds.

A.5.3 Development Set Result for
Comparison of Plug and Play

In Figure 8, we report the development set result
corresponding to the test set results of the exper-
iments presented in Section 3.2.1. These results
are shown for A\,4, = 0.008, which performed

8Specifically, we use the run_glue.py script in
from https://github.com/huggingface/
transformers and only replace the SST-2
dataset with the Yelp dataset. We used the commit
“11c3257a18c4bSela3c1746eefd96f180358397b” for training
our model.

the best in terms of the development score metric
introduced in the training details.

10 —9
v
0.8 v
o9 9
306 1 =
3
g4 - [ ] +
%047 @ Shenetal (2019)  d
OffsetNet .
024 4 wang et al. (2019) ®
¥ OffsetNet + FGIM
0.0 T T T T

00 01 02 03 04 05 06 07
Self-BLEU

Figure 8: Comparison of plug and play methods for un-
supervised style transfer on the Yelp sentiment transfer
task’s development set. Up and right is better

A.5.4 Model Analysis

Experimental Setup We investigate the effect of
OffsetNet and the adversarial training term on our
unsupervised style transfer model by measuring
the self-BLEU score with the input sentence and
the accuracy of a separately trained BERT classi-
fier (achieving 97.8% classification accuracy) on
the Yelp development set. We again report the
best performance among 6 exponentially increas-
ing A4, values for each model. To inspect the
behavior of the models at varying levels of trans-
fer, we trained and plotted one model each for
Asty € {0.1,0.5,0.9,0.95,0.99}.

Results. The results in Figure 9 show that Offset-
Net reaches better transfer accuracy than the MLP
at comparable self-BLEU scores. The performance
drops significantly if the adversarial term is not
used. This confirms the importance of our design
decisions.

10
0.8 1 +
= "
3%¢7 +
0
504 7 ® OffsetNet (no £ag) ‘.~._|_
02 - MLP ® 3%
+ OffsetNet
00

00 01 032 05 06 07

03 04
Se?f—BLEU
Figure 9: Ablation of our model components on the
Yelp sentiment transfer tasks. Up and right is better.
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B Qualitative Analysis

We provide several example outputs of our method
in comparison to the outputs of the baseline by
Shen et al. (2020) in Tables 4, 5, 6, and 7. More-
over, we show how the output evolves as the multi-
plier and Ay, (i.e., the level of transfer accuracy)
increases.

In our qualitative analysis we generally observe
that both models generate similar outputs when
the inputs are short and can be transferred by only
changing or deleting single words (e.g., Table 4).
We observe that grammaticality degrades in both
methods for higher transfer levels. However, our
method is more often able to preserve the content
of the input as the transfer accuracy increases: At a
multiplier of 3.0, the method by Shen et al. (2020)
outputs rather general positive statements that are
mostly disconnected from the input, whereas our
method is able to stay on the topic of the input
statement. This observation matches the quantita-
tive results from Section 3.2.1, where our method
attains substantially higher self-BLEU scores at
comparable levels of transfer accuracy.

However, it is clear that both models mostly rely
on exchanging single words in order to change
the sentiment classification. In the example from
Table 5, our model changes the input “the cash reg-
ister area was empty and no one was watching the
store front .” to the rather unnatural sentence “the
cash area was great and was wonderful with watch-
ing the front desk .” instead of the more natural,
but lexically distant reference sentence ‘“‘the store
front was well attended ”. We think that this is
best explained by the fact that we use a denoising
autoencoder with a simple noise function (deleting
random words) for these experiments, which en-
courages sentences within a small edit-distance to
be close to each other in the embedding space (Shen
et al., 2020). Denoising autoencoders with a more
sophisticated noise functions focused on semantics
could possibly mitigate this, but is out of scope for
this study.
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multiplier / Ag;, | Shen et al. (2019) Ours
1.5/0.5 i will be back . 1 will be back .
2.0/0.9 i will be back back i will definitely be back .
2.5/0.95 i will definitely be back . | i will definitely be back
3.0/0.99 i love this place ! i will be back !

Table 4: Input: i will never be back .

multi- Shen et al. (2019) Ours
plier /
)\sty
1.5/0.5 | the cash area was great and the the best staff | the cash area was great and was wonderful
one watching the front desk .
2.0/0.9 | the cash register area was empty and no one | the cash area was great and was wonderful
was watching the store front . with watching the front desk .
2.5/0.95 | the cash bar area was great and no one was | the cash area was great and was wonderful
the friendly staff . with watching the front desk .
3.0/0.99 | the great noda area and great and wonderful | the cash area was great and her and the

staff .

staff is awesome !

Table 5: Input: the cash register area was empty and no one was watching the store front . Reference: the store
front was well attended

multiplier | Shen et al. (2019) Ours
/)\sty
1.5/0.5 | we sit down and we got some really slow | we sit down and we got some really slow
and lazy service . and lazy service .
2.0/0.9 | we sitdown and we got really awesome | we sit down and we got some really slow
and speedy service . and lazy service .
2.5/0.95 | we sit down and we we grab the casual we sit down and we got some really great
and and service . and and awesome service .
3.0/0.99 | we sit great and and some really great and | we sit down and we got some really
awesome atmosphere . comfortable and and service .

Table 6: Input:

was quick and responsive

the cash register area was empty and no one was watching the store front . Reference: the service

multiplier | Shen et al. (2019) Ours
/ )\sty
1.5/0.5 | definitely disappointed that i *'m not my definitely disappointed that i could not
birthday ! use my birthday gift !
2.0/0.9 | definitely disappointed that i have a great ! | definitely not disappointed that i could
use my birthday gift !
2.5/0.95 | definitely super disappointed and i "I definitely disappointed that i could use
definitely have a great gift ! my birthday gift !
3.0/0.99 | definitely delicious and i love the ! definitely disappointed that i could use
my birthday gift !

Table 7: Input: definitely disappointed that i could not use my birthday gift ! Reference: definitely not disap-
pointed that i could use my birthday gift !
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