Solving Historical Dictionary Codes with a Neural Language Model

Christopher Chu, Raphael Valenti, and Kevin Knight
DiDi Labs
4640 Admiralty Way
Marina del Rey, CA 90292
{chrischu, kevinknight}@didiglobal.com

Abstract

We solve difficult word-based substitution
codes by constructing a decoding lattice and
searching that lattice with a neural language
model. We apply our method to a set
of enciphered letters exchanged between US
Army General James Wilkinson and agents
of the Spanish Crown in the late 1700s and
early 1800s, obtained from the US Library of
Congress. We are able to decipher 75.1% of
the cipher-word tokens correctly.

1 Introduction

Cryptography has been used since antiquity to en-
code important secrets. There are many unsolved
ciphers of historical interest, residing in national
libraries, private archives, and recent corpora col-
lection projects (Megyesi et al., 2019; Pettersson
and Megyesi, 2019). Solving classical ciphers
with automatic methods is a needed step in ana-
lyzing these materials.

In this work, we are concerned with automatic
algorithms for solving a historically-common type
of book code, in which word tokens are systemat-
ically replaced with numerical codes. Encoding
and decoding are done with reference to a dic-
tionary possessed by both sender and recipient.
While this type of code is common, automatic de-
cipherment algorithms do not yet exist. The con-
tributions of our work are:

e We develop a algorithm for solving
dictionary-based substitution codes. The
algorithm uses a known-plaintext attack (ex-
ploiting small samples of decoded material),
a neural language model, and beam search.

e We apply our algorithm to decipher
previously-unread messages exchanged
between US Army General James Wilkinson
and agents of the Spanish Crown in the late
1700s and early 1800s, obtaining 72.1%
decipherment word accuracy.

Table-based key Book-based key
Cipher Caesar cipher Beale cipher
(character) | Simple substitution
Zodiac 408
Copiale cipher
Code Rossignols’ Mexico-Nauen code
(word) Grand Chiffre Scovell code
Wilkinson code
(this work)
Figure 1: Simplified typology of substitution-based

cryptosystems, with some examples. Ciphers involve
character-level substitutions (e.g, f — ¢), while codes
involve word-level substitutions (e.g., forest — 5731).

2 Related Work

Figure 1 gives a simplified typology of classical,
substitution-based cryptosystems. !

Table-based Ciphers involve character-based
substitutions. The substitution may take the form
of a simple offset, as in the Caesar substitution sys-
tem, e.g., (@ — d), (b — e), (c — f), etc. The Cae-
sar cipher can be easily solved by algorithm, since
there are only 26 offsets to check. The algorithm
need only be able to recognize which of the 26
candidate plaintexts form good English. Since 25
of the candidates will be gibberish, even the sim-
plest language model will suffice.

A simple substitution cipher uses a substitution
table built by randomly permuting the alphabet.
Since there are 26! ~ 4 - 10?6 possible tables,
algorithmic decipherment is more difficult. How-
ever, there are many successful algorithms, e.g.,
(Hart, 1994; Knight and Yamada, 1999; Hauer
et al., 2014; Olson, 2007; Ravi and Knight, 2008;
Corlett and Penn, 2010). Many of these systems

'Our typology is geared toward explaining our contribu-
tion in the context of related systems. For a fuller picture
of classical cryptology, the reader is directly to Kahn (1996)
and Singh (2000). For example, we do not discuss here sys-
tems in which a substitution key evolves during the encoding
process, such as the Vigenere cipher or the German Enigma
machine.

5845

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5845-5854,
November 16-20, 2020. (©)2020 Association for Computational Linguistics



search for substitution tables that result in candi-
date plaintexts that score well according to a char-
acter n-gram language model (Shannon, 1951),
and they use search techniques like hill-climbing,
expectation-maximization, beam search, and exact
search. The main practical challenge is to decipher
short messages. In a very long ciphertext, it is easy
to “spot the ¢” because it is always followed by the
same cipher character, which we can immediately
guess stands for plaintext u, and so forth.

More sophisticated ciphers use homophonic
substitution, in which plaintext characters are re-
placed non-deterministically. By applying high
nondeterminism to frequent characters, the cryp-
tographer can flatten out ciphertext character fre-
quencies. Homophonic ciphers occur frequently
in historical collections. The Copiale cipher
(Knight et al., 2011) is a well-known example
from a German secret society in the 1700s. These
ciphers can also be attacked successfully by algo-
rithm. For example, the homophonic Zodiac 408
cipher can be solved with EM with restarts (Berg-
Kirkpatrick and Klein, 2013), Bayesian sampling
(Ravi and Knight, 2011), or beam search (Nuhn
et al., 2014) (all with n-gram character language
models). Kambhatla et al. (2018) employ a more
powerful character-based neural language model
to break short ciphers more accurately. In the
present work, we use a word-based neural lan-
guage model.

Book-based ciphers increase homophony, and
also avoid physical substitution tables that can be
stolen or prove incriminating. In a book-based ci-
pher, sender and recipient verbally agree up front
on an innocuous-looking shared document (the
“book™), such as the US Declaration of Indepen-
dence, or a specific edition of the novel Moby
Dick. When enciphering a plaintext letter token
like f, the sender selects a random letter f from the
shared document—if it is the 712th character in
the document, the plaintext f might be enciphered
as 712. The next plaintext f might be enciphered
differently.

Nuhn et al. (2014) solve one of the most well-
known book ciphers, part two of the Beale Cipher
(King, 1993). Surprisingly, they treat the cipher
as a regular homophonic cipher, using the same
beam-search algorithm as for the table-based Zo-
diac 408 cipher, together with an 8-gram charac-
ter language model. One might imagine exploit-
ing the fact that the book is itself written in En-

glish, so that if ciphertext unit 7/2 is known to be
f, then ciphertext unit 7/3 is probably not A, as
Jh is unlikely to appear in the book. Nuhn et al.
(2014)’s simple, effective algorithm ignores such
constraints. Other methods have been proposed
for attacking book ciphers, such as crib dragging
Churchhouse (2002).

Codes, in contrast to ciphers, make substitu-
tions at the whole-word level.> A large propor-
tion of the encrypted material in Megyesi et al.
(2019) consists of table-based codes. A famous
example is Antoine Rossignol’s Grand Chiffre,
used during the reign of Louis XIV. The sender
and receiver each own copies of huge specially-
prepared tables that map words onto numbers
(e.g., guerre — 825). If the enciphering tables are
kept secret, this type of code is very hard to break.
One might guess that the most frequent cipher to-
ken stands for the word the, but it quickly becomes
challenging to decide which number means prac-
tice and which means paragon. Even so, Dou
and Knight (2012) take on the task of automati-
cally deciphering newswire encrypted with an ar-
bitrary word-based substitution code, employing a
slice-sampling Bayesian technique. Given a huge
ciphertext of ~50,000 words, they can decipher
~50% of those tokens correctly. From one billion
ciphertext tokens, they recover over 90% of the
word tokens. However, this method is clearly in-
applicable in the world of short-cipher correspon-
dence.

In the present work, we consider book-based
codes. Instead of using specially-prepared tables,
the sender and receiver verbally agree to use an
already-existing book as a key. Because it may be
difficult to find a word like paragon in a novel like
Moby Dick, the sender and receiver often agree on
a shared pocket dictionary, which has nearly all the
words. If paragon were the 10,439th word in the
dictionary, the sender might encode it as 10439.

Such codes have been popular throughout his-
tory, employed for example by George Scovell
during the Napoleonic Wars (Urban, 2002), and by
John Jay during the US Revolutionary War (Black-
wood, 2009). They were used as late as World
War II, when German diplomats employed the
Langenscheidt’s Spanish-German Pocket Dictio-
nary as a key to communicate between the cities of
Chapultepec, Mexico and Nauen, Germany (NSA,

2C0mm0nly, a single historical system will mix letter sub-

stitutions and word substitutions. Such a system is called a
nomenclator.

5846



Word tokens | Word types
Deciphered letters | approx. 800 326
Evaluation set 483 226
Test set 341 192

Table 1: Summary of transcribed data. Deciphered and
evaluation sets have gold-standard decipherments; the
evaluation set is held out. The test set has no gold-
standard decipherment.

2011). In that case, the US Coast Guard inter-
cepted messages and was able to make a bit of
headway in deciphering them, but the real break-
through came only when they obtained the appli-
cable dictionary (key).

Unfortunately, there appear to be no automatic
algorithms for solving book-based codes without
the key.? According to Dunin and Schmeh (2020):

“So far, there are no computer programs for solv-
ing codes and nomenclators available. This may
change, but in the time being, solving a code or
nomenclator message is mainly a matter of hu-
man intelligence, not computer intelligence.”

In this paper, we develop an algorithm for auto-
matically attacking book-based codes, and we ap-
ply it to a corpus of historically-important codes
from the late 1700s.

3 Wilkinson Letters

Our cipher corpus consists of letters to and from
US General James Wilkinson, who first served
as a young officer in the US Revolutionary War.
He subsequently served as Senior Officer of the
US Army (appointed by George Washington) and
first Governor of the Louisiana Territory (ap-
pointed by Thomas Jefferson). Wilkinson also
figured in the Aaron Burr conspiracy (Isenberg,
2008).

Long after his death, letters in a Cuban archive
revealed the famous Wilkinson to be an agent
of the Spanish Crown during virtually his entire
service, and his reputation collapsed (Linklater,
2009).

Table 1 summarizes our Wilkinson correspon-
dence data.* We transcribe scans of manuscripts
in the US Library of Congress. We have 73pp of

3Kahn (1996) suggests that national security services have
long ago digitized all published books and applied brute-
force to find the book that renders a given code into natural
plaintext.

*All data is included with our
(https://github.com/c2huc2hu/wilkinson/).

released code

undeciphered text (Figure 3a) and 28pp of deci-
phered text (Figure 3b), with some overlap in con-
tent. Deciphered correspondence, with plaintext
above ciphertext, likely resulted from manual en-
cryption/decryption carried out at the time.

4 Encryption Method

As is frequent in book codes, there are two types
of substitutions. Some plaintext words are enci-
phered using a large shared table that maps words
onto numbers (table-based code). Other words
are mapped with a shared dictionary (book-based
code). Despite serious efforts, we have not been
able to obtain the dictionary used in these ciphers.

In our transcription, we mark entries from the
table portion with a caret over a single number,
e.g., [123]". Before [160]", the table seems to
contain a list of people or place names; between
[160]" (*“a”) and [1218]" (“your”), a list of com-
mon words in alphabetic order; and finally more
common words. The last block was likely added
after the initial table was constructed, suggesting
that the table was used to avoid having to look up
common words in the dictionary.

The ciphertext for the dictionary code has two
numbers that mark a word’s dictionary page and
row number, respectively, plus one or two bars
over the second number indicating the page col-
umn. For example, 123.[4]= refers to the fourth
row of the second column of the 123rd page in
the dictionary. From the distribution of cipher to-
kens, the dictionary is about 780 pages long with
29 rows per column, totaling about 45,000 words.

The cipher usually does not contain regular
inflected forms of words, though inflections are
sometimes marked with a superscript (e.g., T79).
Numbers and some words are left in plaintext.
Long horizontal lines mark the ends of sentences,
but other punctuation is not marked.

5 Automatic Decryption Method

As the corpus includes a handful of deciphered
pages, we employ a known-plaintext attack (Kahn,
1996).

We first extract a small wordbank of known
mappings, shown in Figure 3. Next, we apply
the wordbank to our held-out evaluation cipher-
text. We find that 40.8% of word tokens can be de-
ciphered, mainly common words. After this step,
we render a ciphertext as:

I ? he the man you ? and ? very ? that

5847



390.[10]= . [664]" [526]" [629]" [1078]" ([752]" [1216]" 192.[10]- [172]1" [177]" [782]"
629.[16]1- [1077]1" [313]" [1235]" +y 4.[6]- [570]" [1255]" [664]" [628]" [798]" [238]" +n 2.[18]=
[1106]" 566.[4]— [629]" [170]" [1078]1" [604]" [1077]" [664]" [1106]" 347.[11]- [664]"
585.[14]= 476.[2]— [1106]" [1078]" [858]" [804]" [1235]" +y 189.[14]= [1106]" 133.[8]-
[1088]" 540.[13]- [812]" [804]" 339.[21]= [545]" [172]" [664]" [1208]" [1106]" [1078]"

(a)

him the man you described and am very
sorry that by my absence from Natches
I have not been able to render him all
the service that I wished however
I gave orders to the ports of my dependence
to complete their provisions over
of his ? and I wrote to the

(b)

Figure 2: Sample encoded letters from US General James Wilkinson, with transcriptions: (a) portion of a ciphertext
letter, (b) a recovered intermediate version of this letter with both ciphertext and plaintext.

5848



Table wordbank Dictionary wordbank
Cipher Plain Cipher Plain | Index
[13]" | wilkinson 7.[24]- | acquisition 24
[33]" | Kentucky 15.21]- after | 485
[92]" | Philadelphia 29.129]- answer | 1305
[160]" a 44.[28]- attache | 2174
[172]" and 47.[21]- | attachment 2341
[229]" be 59.[19]- bearer 3035
[231]" bear 65.[17]= better | 3410
B3131 by 75.129]- bosom | 3973
103.[40]= chamber 5637
[1218]" your 113.[4]- cipher 6152
(12357 me 114.[20]- civil | 6226
[1249] policy

Figure 3: Table wordbank (left) and dictionary word-
bank (right) extracted from five deciphered letters. The
table contains proper nouns, an alphabetic word list (a—
your) and other common words. Dictionary codes are
of the form “page.[row].col”, where “-” indicates col-
umn 1 and “=" column 2. The Index guesses that “an-
swer” is the 1305" word in the dictionary.

by ? ?2 from ? I have not ? ? to ? he ?
the service that I [...]

This is not yet a useful result. However, the word-
bank also helps us to recover the rest of the plain-
text. Since both the table and dictionary are in al-
phabetical order, we use the wordbank to constrain
the decipherment of unknown words.

For example, given cipher word [163]", we
know from Figure 3 that its plaintext must lie
somewhere between the two anchor-words [160]"
(which stands for “a”) and [172]" (which stands
for “and”). Moreover, it is likely to be closer to
“a” than “and”. Repeating this for every cipher
word in an undeciphered document, we construct a
word lattice of all possible decipherments, shown
in Figure 4. Our goal is then to search for the most
fluent path through this lattice. Following are the
details of our method:

Anchors. To propose candidate words between
two anchors, we use a modern lemma-based dic-
tionary with 20,770 entries.’ In this dictionary, for
example, there are 1573 words between “attach-
ment” and “bearer”.

Probabilities. We assign a probability to each
candidate based on its distance from the ideal can-
didate. For example, in the table code, [163]" is
30% of the way from [160]" to [172]" (Figure 5),
so our ideal candidate decipherment of [172]" will
be 30% of the way between “a” and “and” in our
modern dictionary. To apply this method to the
dictionary code, we convert each cipher word’s

>www.manythings.org/vocabulary/lists/l (core ESL)

page/column/row to a single number n (the “In-
dex” in Figure 3), which estimates that the cipher
word corresponds to the nth word in the shared
dictionary.

We use a beta distribution for assigning prob-
abilities to candidate words, because the domain
is bounded. We parameterize the distribution
B'(z;m, ) with mode m and sharpness param-
eter $=5. This is related to the standard parame-
terization, B(z; a, 3), by:

B'(z;m, ) = B (z;a = ,ﬁ>

The sample space (0 to 1) is divided equally be-
tween the M words in the modern dictionary, so
the i*" word gets probability:

&
/ B'(z;m, B)dz
1;11

In our example, because [163]" is 30% of the
way from [160]" to [172]", we have m = 0.3.
There are M = 650 words in the modern dictio-
nary between these two anchors, so the i = 105"
word (“access”), gets probability 0.00231.

Inflections. We expand our lattice to include
inflected forms of words (e.g., “find” — “find”,
“found”, “finding”). We generate inflections with
the Pattern library (De Smedt and Daelemans,
2012). Some words are generated more than once,
e.g., “found” is both a base verb and the past tense
of “find”. Pattern inflects some uncommon words
incorrectly, but such inflections are heavily penal-
ized in the best-path step. Inflections divide the
probability of the original word equally.

Table edge cases. We replace unknown entries
before the first anchor in the table with an arbitrary
proper noun (“America”), and words outside the
alphabetic section of the table with equal probabil-
ity over a smaller vocabulary containing the 1000
most common words.®

Scoring lattice paths. After we have con-
structed the lattice, we automatically search for
the best path. The best path should be fluent En-
glish (i.e., assigned high probability by a language
model), and also be likely according to our word-
bank (i.e., contain high-probability lattice transi-
tions).

To score fluency, we use the neural GPT2 word-
based language model (Radford et al., 2019), pre-
trained on ~40GB of English text. We use the

6 simple.wiktionary.org/wiki/Wiktionary:BNC_spoken_freq_ OlHW

5849



few

{fance |

II|| flances '|IIII

{(fancee )|

i il

I /Fancee A

I /fiasco

Y me }_,\ < fiascos >

I.;\ fiat

(191 alts)

serters |

(134 alts)

Figure 4: Turning an encrypted letter into a lattice of possible decipherments. Segments with few alternatives come
from wordbank substitutions (and their automatically-produced morphological variants), while other segments
come from interpolation-based guesses. Each link has an associated probability (not shown here). On average, we
supply 692 alphabetically-close alternatives per segment, but supply fewer than ten for most.

Wilkinson table  Modern dictionary Probability

[160]" - a

a

abacus
abandon
access
accommodate
accommodation
accuse
ache

acorn
adapt
adjacent
admire
adult
aerodynamic
aftirm
aghast
ahead
aircraft
alas

am
[172]"-and —— and

[163]" - <unk>

Figure 5: Interpolating a ciphertext word not present in
the wordbank. When deciphering [163]", we list candi-
date decipherments using a modern dictionary. We as-
sign probabilities to candidates based on interpolation
between anchor words, in this case “a” and “and”.

HuggingFace implementation’ with 12 layers, 768
hidden units, 12 heads, and 117M parameters.

Neural language models have significantly
lower perplexity than letter- or word-based n-
gram language models. For example, Tang and
Lin (2018) benchmark WikiText-103 results for
a Kneser-Ney smoothed 5-gram word model (test
perplexity = 152.7) versus a quasi-recurrent neural
network model (test perplexity = 32.8). This gives
neural language models a much stronger ability to
distinguish good English from bad.

Beam search. We search for the best lattice
path using our own beam search implementation.
To score a lattice transition with GPT, we must
first tokenize its word into GPT’s subword vocabu-

"huggingface.co/transformers/pretrained_models.html

lary. Since alphabetically-similar words often start
with the same subword, we create a subword trie
at each lattice position; when a trie extension falls
off the beam, we can efficiently abandon many lat-
tice transitions at once.

6 Evaluation

To evaluate, we hold out one deciphered document
from wordbanking. Some plaintext in that docu-
ment is unreadable or damaged, so decryptions are
added when known from the wordbank or obvious
from context.

Table 2 gives our results on per-word-token de-
cipherment accuracy. Our method is able to re-
cover 73.8% of the word tokens, substantially
more than using the wordbank alone (40.8%). We
also outperform a unigram baseline that selects lat-
tice paths consisting of the most popular words to
decipher non-wordbank cipher tokens (46.9%).

The maximum we could get from further im-
provements to path-extraction is 91.3%, as 8.7%
of correct answers are outside the lattice. This is
due to unreadable plaintext, limitation of our mod-
ern dictionary, use of proper names [1]" to [159]",
transcription errors, etc.

Table 3 details the effect of beam size on deci-
pherment accuracy, runtime, and path score (com-
bining GPT log probability with lattice scores).
Increasing beam size leads us to extract paths with
better scores, which correlate experimentally with
higher task accuracy.

Figure 6 shows a portion of our solution versus
the gold standard.

For tokens where our system output does not
match the original plaintext, we asked an outside
annotator to indicate whether our model captures

5850



Method Token accuracy
Apply wordbank 40.8
Unigram baseline 46.9
Our method, beam size = 1 68.3
Our method, beam size = 4 73.0
+ domain-tuning 73.2
+ self-learning 75.1
Our method, beam size = 16 73.8
+ domain-tuning + self-learning 75.1
Oracle 91.3

Table 2: Token decipherment accuracy. The Unigram
baseline selects the most frequent word at each point
in the lattice. Our method uses beam search to extract
the path with highest GPT and lattices scores. Ora-
cle selects the path through the lattice that most closely
matches the gold decipherment.

Beam size | Runtime | Internal Best Task
Path Score | Accuracy

1 1m 38s -3714.9 68.3

6m 19s -3569.6 73.0

16 | 25m 31s -3544.9 73.8

Table 3: Effect of beam size on decipherment. A larger
beam lets us extract paths with better internal scores,
which correlate with better task accuracy.

the same meaning. For example, when our sys-
tem outputs “I am much sorry” instead of “I am
very sorry,” the annotator marks all four words as
same-meaning. Under this looser criterion, accu-
racy rises from 73.0% to 80.1%.

We also decipher a Wilkinson ciphertext letter
for which we have no plaintext. Transcription is
less accurate, as we cannot confirm it using de-
cipherment. The letter also includes phrases in
plaintext French, which we translate to English
before adding them to the lattice. Despite these
challenges, the model still outputs relatively flu-
ent text, including, for example: “...as may tend
most powerfully and most directly to dissolve the
whole America of the first states from the east and
to cease the intercourse of the west.” This passage
is consistent with Wilkinson’s plan to seek inde-
pendence for parts of America.

7 Additional Methods

We experiment with three additional decipherment
methods.

Weighted scoring. When scoring paths, we
sum log probabilities from GPT and the lattice
transitions, with the two sources equally weighted.
This turns out to be optimal. Table 4 gives results
when we multiply the lattice-transition score by a.

a | Accuracy £ | Accuracy
0.2 70.5 1 67.8
0.5 71.6 3 71.6

1 73.0 5 73.0

2 72.2 10 70.7

Table 4: Effects on decipherment accuracy of a (weight
applied to lattice scores vs. GPT scores for each path)
and [ (sharpness parameter for candidate-word proba-
bilities).

Halving the weight of the lattice scores degrades
accuracy from 73.0 to 71.6 (-1.4 for beam=4),
while doubling it degrades from 73.0 to 72.2 (-0.8
for beam=4). Table 4 also shows the impact of the
sharpness parameter 3 on accuracy.

Domain-tuned language model. We col-
lect letters written by Wilkinson® totalling 80,000
word tokens, and fine-tune the GPT language
model for one epoch on this data. The domain-
tuned GPT increases decipherment accuracy from
73.0 to 73.2 (+0.2 for beam=4). Fine tuning for
more than one epoch degrades decipherment ac-
curacy. We found experiments with COFEA’
(American English sources written between 1765
and 1799) to be fruitless. We fine-tune a language
model on a COFEA subset consisting of 3.8 mil-
lion word tokens for one epoch, but this degrades
accuracy from 73.0% to 65.6%.

Iterative self-learning. We apply iterative self-
learning to improve our decipherment. After ex-
tracting the best path using beam search, we take
the words with the smallest increases in perplex-
ity on the lattice and language models, and we add
them to the wordbank. The new wordbank pro-
vides tighter anchor points. We then construct a
new lattice (using the expanded wordbank), search
it, and repeat. This further improves decoding ac-
curacy to 75.1 (+1.9 for beam=4).

8 Synthetic Data Experiments

We next experiment with synthetic data to test the
data efficiency of our method. To create arbitrary
amounts of parallel plaintext-ciphertext data, we
encipher a book from Project Gutenberg,'” using a
different machine readable dictionary.'! We build
wordbanks from parallel documents and use them
to decipher a separately-enciphered book by the

8founders.archives.gov
*https://lcl.byu.edu/projects/cofea/

OWisdom of Father Brown, https://www.nltk.org/
"https://packages.ubuntu.com/xenial/wamerican

5851



Parallel | Wordbank | Coverage | Decipherment

plain-cipher size of test accuracy
tokens tokens

500 227 53.8 66.0

800 351 58.3 69.6

2000 691 68.7 73.5

20000 2904 76.6 79.6

Table 5: Experiments with synthetic data. By enci-
phering material from Project Gutenberg, we produce
arbitrary-sized wordbanks from arbitrary amounts of
parallel plaintext-ciphertext. We then test how well
those wordbanks support decipherment of new mate-
rial.

same author.!? The results are shown in Table 5.

9 Conclusion and Future Work

In this work, we show that it is possible to deci-
pher a book-based cipher, using a known-plaintext
attack and a neural English language model. We
apply our method to letters written to and from US
General James Wilkinson, and we recover 75.1%
of the word tokens correctly.

We believe word-based neural language models
are a powerful tool for decrypting classical codes
and ciphers. Because they have much lower per-
plexities than widely-used n-gram models, they
can distinguish between candidate plaintexts that
resemble English at a distance, versus candidate
plaintexts that are grammatical, sensible, and rele-
vant to the historical context.

Acknowledgments

We would like to thank Johnny Fountain and
Kevin Chatupornpitak of Karga7, and the staff
who transcribed data from the Library of
Congress, who provided scans of the original doc-
uments. We would also like to thank the anony-
mous reviewers for many helpful suggestions.

References

Taylor Berg-Kirkpatrick and Dan Klein. 2013. Deci-
pherment with a million random restarts. In Proc.
EMNLP.

Gary Blackwood. 2009. Mysterious Messages: A His-
tory of Codes and Ciphers: A History of Codes and
Ciphers. Penguin.

Robert Churchhouse. 2002. Codes and Ciphers. Cam-
bridge.

"2The Man Who Was Thursday, https://www.nltk.org/

Eric Corlett and Gerald Penn. 2010. An exact A*
method for deciphering letter-substitution ciphers.
In Proc. ACL.

Tom De Smedt and Walter Daeclemans. 2012. Pattern
for Python. J. Mach. Learn. Res., 13:2063-2067.

Qing Dou and Kevin Knight. 2012. Large-scale de-
cipherment for out-of-domain translation. In Proc.
EMNLP.

Elonka Dunin and Klaus Schmeh. 2020. Codebreaking
& Cryptograms: A Practical Guide. Taschen. (draft
of forthcoming).

George W. Hart. 1994. To decode short cryptograms.
Communications of the Association for Computing
Machinery, 37(9).

Bradley Hauer, Ryan Hayward, and Grzegorz Kondrak.
2014. Solving substitution ciphers with combined
language models. In Proc. COLING.

Nancy Isenberg. 2008. Fallen Founder: The Life of
Aaron Burr. Penguin.

David Kahn. 1996. The Codebreakers: The Compre-
hensive History of Secret Communication from An-
cient Times to the Internet. Scribner.

Nishant Kambhatla, Anahita Mansouri Bigvand, and
Anoop Sarkar. 2018. Decipherment of substitu-
tion ciphers with neural language models. In Proc.
EMNLP.

John C. King. 1993. A reconstruction of the key to
Beale cipher number two. Cryptologia, 17(3).

Kevin Knight, Bedta Megyesi, and Christiane Schaefer.
2011. The Copiale cipher. In ACL workshop on
Building and Using Comparable Corpora (BUCC).

Kevin Knight and Kenji Yamada. 1999. A computa-
tional approach to deciphering unknown scripts. In
Proc. ACL Workshop on Unsupervised Learning in
Natural Language Processing.

Andro Linklater. 2009. An Artist in Treason: The Ex-
traordinary Double Life of General James Wilkin-
son. Walker.

Bedata Megyesi, Nils Blomqvist, and Eva Pettersson.
2019. The DECODE database: Collection of ci-
phers and keys. In Proc. 2nd International Confer-
ence on Historical Cryptology (HistoCryptl9).

NSA. 2011. Cryptologic Aspects of German Intelli-
gence Activities in South America during World War
II. Center for Cryptologic History National Security
Agency.

Malte Nuhn, Julian Schamper, and Hermann Ney.
2014. Improved decipherment of homophonic ci-
phers. In Proc. EMNLP.

Edwin Olson. 2007. Robust dictionary attack of short
simple substitution ciphers. Cryptologia, 31(4).

5852


http://dl.acm.org/citation.cfm?id=2188385.2343710
http://dl.acm.org/citation.cfm?id=2188385.2343710

Ciphertext Gold Wordbank only | Unigram Baseline | Our method
[229]" +ing being be be being
[186]" at at at at
[1049]" such such such such
[160]" a a a a
212.[20]= distance distant distance
[5701" from from from from
[901” North Carolina | America America America
1721 and and and and
286.[14]= for for for for
[509]" fear father fear
[804]" of of of of
446.[1]- +ing | missing mistress missing
[1218]" your your your your
294.[20]= garrison from friend
[1084]" there therefore therefore
286.[14]= for for for for
[1078]" the the the the
153.[5]- conveyance could convenience
[804]" of of of of
678.[6]= this this this this
[664]" I I I
[177]" am any am
467.[24]- +a | obliged of obliged
[1106]" to to to to
[1206]" write write written write
[1106] to to to to
[1216]" you you you you
[807]" in on in in
[160]" a a a a
349.[1]= hurry 1 hurry
572.[5]- +ing | resuming said requiring
251.[6]= every every every every
[852]" point people precaution

5853

Figure 6: Decipherment of a portion of our evaluation set, compared to the gold standard.




Eva Pettersson and Bedta Megyesi. 2019. Matching
keys and encrypted manuscripts. In Proc. 22nd
Nordic Conference on Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Sujith Ravi and Kevin Knight. 2008. Attacking de-
cipherment problems optimally with low-order n-
gram models. In Proc. EMNLP.

Sujith Ravi and Kevin Knight. 2011. Bayesian infer-
ence for Zodiac and other homophonic ciphers. In
Proc. ACL.

Claude E. Shannon. 1951. Prediction and entropy
of printed english. Bell System Technical Journal,
30(1).

Simon Singh. 2000. The Code Book: The Science of
Secrecy from Ancient Egypt to Quantum Cryptogra-
phy. Anchor.

Raphael Tang and Jimmy Lin. 2018.  Progress
and tradeoffs in neural language models. CoRR,
abs/1811.00942.

Mark Urban. 2002. The Man Who Broke Napoleon’s
Codes: The Story of George Scovell. Gardners.

5854



