Learning to Pronounce Chinese
Without a Pronunciation Dictionary

Christopher Chu, Scot Fang, and Kevin Knight
DiDi Labs
4640 Admiralty Way
Marina del Rey, CA 90292
{chrischu, scotfang, kevinknight}@didiglobal.com

Abstract

We demonstrate a program that learns to pro-
nounce Chinese text in Mandarin, without a
pronunciation dictionary. From non-parallel
streams of Chinese characters and Chinese
pinyin syllables, it establishes a many-to-many
mapping between characters and pronuncia-
tions. Using unsupervised methods, the pro-
gram effectively deciphers writing into speech.
Its token-level character-to-syllable accuracy
is 89%, which significantly exceeds the 22%
accuracy of prior work.

1 Unsupervised Text-to-Pronunciation

Many papers address the construction of auto-
matic grapheme-to-phoneme systems using rules
or supervised learning, e.g. (Berndt et al., 1987;
Zhang et al., 2002; Xu et al., 2004; Bisani and
Ney, 2008; Peters et al., 2017).

The task of wunsupervised grapheme-to-
phoneme conversion is introduced by Knight and
Yamada (1999). Given two non-parallel streams:

e A corpus of written language (characters).

e A corpus of spoken language (sounds).
the goal is to build:

e A mapping table between the character do-

main and the sound domain.

e A proposed pronunciation of the written char-

acter sequences.

Motivated by archaeological decipherment,
Knight and Yamada (1999) view character se-
quences as ‘“‘enciphered” phoneme sequences.
Their evaluation compares the proposed pro-
nunciations with actual pronunciations. With a
noisy-channel expectation-maximization method,
they obtain 96% phoneme accuracy on Spanish,
99% on Japanese kana, but only 22% syllable
accuracy on Mandarin Chinese.

In this paper, we re-visit the task of decipher-
ing Chinese text into standard Mandarin pronun-
ciations (Figure 1). We obtain an improved 89%

Chinese Mandarin
character syllable
stream stream

L (not parallel) L

Unsupervised analysis

v v

Pronunciation Character/
of character syllable
stream above map table

Figure 1: Learning to pronounce Chinese without a dic-
tionary.

syllable accuracy. We further explore exposing
the internals of characters and syllables to the an-
alyzer, as Chinese characters sharing written com-
ponents often sound similar.

We find it compelling that pronunciation dic-
tionaries are largely redundant with non-parallel
text and speech corpora, even for writing sys-
tems as complex as Chinese. We also expect re-
sults may be of use in dealing with novel ways to
write Chinese, such as Niishu script (Zhang et al.,
2016), with acoustic modeling of other Chinese
languages and dialects, and with novel ways to
phonetically encode and decode Chinese in online
censorship applications (Zhang et al., 2014).

2 Chinese Writing

The most-popular modern Chinese writing system
renders each spoken syllable token with a single
character token (hanzi). There are over 400 sylla-
ble types in Mandarin' and several thousand char-
acter types. The mapping is many-to-many:

o Almost every syllable type can be written

'In this paper, we use standard pinyin syllable representa-
tion, and we refer strictly to Mandarin pronunciation.

5687

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5687-5693,
November 16-20, 2020. (©)2020 Association for Computational Linguistics

with different characters (eg, zhong — {7,
H, fi, ...}). The choice depends on context.
For example, the word zhongguo (“China”)
is written ' [E], but zhongyao (“important”)
is written B %,

e Only a few character types are heteronyms,
whose pronunciation depends on context and
meaning (e.g., | — {le, liao}).

In addition, syllables have one of five tones, in-
cluding the neutral tone (e.g., dang, ddng, ddng,
dang, dang). Tones increase pronunciation ambi-
guity. Most characters have single, unambiguous
phonemic pronunciations (eg, ' — zhong), but a
portion can be pronounced with different tones de-
pending on context (eg, 24\ — dangrdn, but i&
Y — shidang).

While most Chinese words have two syllables,
individual characters carry rough semantic mean-
ings (eg, T = “middle”, E = “weighty”). So it is
no accident that the same character is used to write
semantically-similar words:

e H[F (“China = middle kingdom™), H 2%

(“middle school™), T H¥/L» (“city center”)

o« HE (“important”), HiA (“heavy”), =)
(“focus”)

e Similarly, the second syllable of “website” is
spelled “site”, not “sight”.

Finally, many characters have loosely informa-
tive internal structure. For example, 3 can be
analyzed into two character components: 7 and
& 2 Character components are sometimes a clue
to pronunciation and/or meaning. For example:

e The character 7 (“crow”, ya) is composed of

& (meaning “bird”) and I (sound yd).

e The # (zhong) component of fif (“swollen”)
is a clue to its pronunciation zhong, though
the H (“moon”) component is more loosely
suggestive of its meaning.

e For a character like 7% (“law”), the compo-
nents “water” and “go” do not provide much
of a phonetic or semantic clue. This is the
case with many characters.

The vast majority of characters have two top-
level components, arranged either side-by-side (as
in the examples above), top-bottom, or outside-
inside. It should be noted that a top-level character
component may often be recursively divided into
further sub-components.

Non-Chinese speakers may want to visually confirm that
7F and &, suitably thinned and placed side-by-side, do in-
deed form the composite character 75.

Generally speaking, it is impossible for a stu-
dent to correctly guess the pronunciation or mean-
ing of a new character, though their guess may be
better than chance.

3 Data Preparation

From a Chinese Wikipedia dump,’ we remove all
non-Chinese characters, then convert to simplified
characters. This forms our character corpus.

For our pronunciation corpus, we could record
and transcribe Mandarin speech into pinyin sylla-
bles. Instead, we simulate this. We take a large
subset of the Baidu Baike encyclopedia,* but then
immediately convert it to tone-marked pinyin syl-
lables, by using a comprehensive dictionary® of
116,524 words and phrases. 99.97% of Baike
character tokens are covered by this dictionary.

We substitute Baike character sequences with
pinyin sequences in left-to-right, longest-match
fashion. This strategy works well most of the time.
For example, it correctly pronounces %7, as shui
jiao, and 15 as jue de, despite the ambiguity of
i, . However, it incorrectly pronounces 5% 77 be-
cause a dictionary entry ZE[# matches the phrase
before i = shui jiao can be applied; it also has
trouble with single-character words like 1£.

Using character sequences from Chinese
Wikipedia and pinyin sequences from Baidu
Baike is important. If we alternatively divided
Chinese Wikipedia into two parts, unsupervised
analysis could easily exploit high-frequency
boilerplate expressions like # B &[] : X A& FH
W, FRMPXAKEER. ©5 HR =
BAE 24 H WA 4, BEB & B (“English
Redirection: This is a redirect from the English
name to the Chinese name. It guides the English
title to a proper name that follows the naming
convention and can assist the editor in writing.”)

We also pinyin-ize the first 100 lines (6059 char-
acters) of our character corpus, as a gold-standard
reference set, for later judging how well we pho-
netically decipher the character corpus. Unless
stated otherwise, all results are for token accuracy
on this reference set.

Table 1 gives statistics on our corpora. We
release our data at https://github.com/c2huc2hu/
unsupervised-chinese-pronunciation-data.

We also record internal structure of syllables

3linguatools.org/tools/curpora/wikipedia—monolingual—corpora
*baike.baidu.com
3 www.mdbg.net/chinese/dictionary?page=cc-cedict

5688

Tokens Types | Singletons
Characters 510m 17,442 3,444
(Wikipedia)
Syllables 264m | w/otones: 412 1
(Baike) w/ tones: 1506 5
Test set 6059 783 236
(characters)

Table 1: Token and type statistics for our non-parallel
character and syllable corpora. Singletons are one-
count types.

and characters. For syllables, we separate onset
and rime (eg, zhang — zh + ang).

For characters, we employ the thorough graph-
ical decompositions given in Wikimedia Com-
mons,® which divide each character into (at most)
two parts. This allows us to find, for example, 44
characters that include the second component J,
("3, ff3, J8, 4, etc). We only use top-level decom-
positions in this work, forgoing any further recur-
sive decompositions.

4 Supervised Comparison Points

Before turning to unsupervised methods, we
briefly present two supervised comparison points.

First, if we had a large parallel stream of char-
acter tokens and their pinyin pronunciations, we
could train a simple pronouncer that memorizes
the most-frequent pinyin for each character type.
Using the Baike data as processed above as a pu-
tative parallel resource, we obtain 99.1% pronun-
ciation accuracy on the test set.” The only er-
rors involve ambiguous characters, showing that a
deterministic character-to-pinyin mapping table—
whether obtained by memorization or by unsuper-
vised methods—is sufficient to solve the bulk of
the problem.

Second, to investigate whether written charac-
ter components predict pronunciation, we use gold
pronunciations of the most common 2000 charac-
ters to predict pronunciations of the next 1000. If a
test character X has second (e.g., rightmost) writ-
ten component Y, then we use the pronunciation of
Y as a guess for the pronunciation of X. We find
this works 25% of the time if we do not consider
tones, and 17% of the time if we do. Table 2 con-
firms that character components are only a loose

guide to pronunciation, even with supervision.
8commons.wikimedia.org/wiki/Commons:
Chinese_characters_decomposition
"Experimental results from here on out refer to no-tone
pronunciation.

Next we turn to unsupervised pronunciation,
where we throw away pronunciation dictionaries
and parallel data, working only from uncorrelated
streams of characters and syllables.

5 Unsupervised Vector Method

Borrowing from unsupervised machine transla-
tion, which learns mappings between words in dif-
ferent languages (Lample et al., 2018a; Artetxe
et al., 2018), we attempt to learn a mapping be-
tween embeddings for characters and embeddings
for pinyin symbols. We train fastText (Bojanowski
et al., 2017) vectors of dimension 300 and default
settings on each of our corpora and use the MUSE
system® to learn the relationship between the two
vector spaces (Lample et al., 2018b).

There are two steps to this method: (1) map
character vectors into pinyin space, (2) for each
character type, find its nearest pinyin neighbor.
This gives us a table that maps character types onto
pinyin types. We apply this table to each charac-
ter token of our 6059-character test set, obtaining
token-level accuracy.

Unfortunately, this method does not work well.
Only 0.5% of type mappings are correct, and
token-level accuracy is similarly small. Revers-
ing the mapping direction (pinyin embeddings into
character embedding space) does not improve ac-
curacy. It appears that the asymmetry of the map-
ping is difficult for the algorithm to capture. Each
pinyin syllable should, in reality, be the nearest
neighbor of many different characters. Moreover,
the behavior of a pinyin syllable in running pinyin
data may not be a good match for the behavior of
any given character with that pronunciation.

Our next approach is to map words instead of
characters. We break our long character sequence
into a long word sequence, e.g., 7 1R %! by
applying the Jieba tokenizer” to Wikipedia. We
similarly break our long pinyin sequence into a
long pinyin-word sequence, e.g., wo xihuan chi
jiaozi, by applying the Stanford tokenizer! to pre-
pinyinized Baidu. We build embeddings for types
on both sides, and we again map them into a
shared space.

During the nearest-neighbor phase, we take
each written-word and look for the closest pinyin-
word, giving preference to pinyin words with the

8https://github.com/facebookresearch/ MUSE
?github.com/fxsjy/jieba
1%nlp.stanford.edu/software/segmenter.shtml

5689

Exact pinyin match, with tone | Exact pinyin without tone | Partial pinyin
Majority-class Baseline (yit) 0.01 0.02 0.19
Supervised Match 1 0.17 0.25 0.39
Supervised Match 2 0.19 0.28 0.48

Table 2: Even with a partial pronunciation dictionary, it is difficult to predict exact pronunciation of a new written
character from its components. This table records accuracy of pronunciation guesses for characters 2001-3000
(by frequency), given pronunciations of characters 1-2000; for these types, yu is most frequent. Match 1 uses
a character’s second component, e.g., guessing (incorrectly) that #& (hao) is pronounced the same as & (mao).
Match 2 uses either the first or second component, whichever is better. Partial match credits either onset or rime,

e.g., counting hao for mao as correct.

Source Target Tone? | Accuracy
Character Pinyin no 0.20%
Character Pinyin yes 0.05%
Pinyin Character no 0.15%
Pinyin Character yes 0.12%
Character word | Pinyin word | yes 81.41%

Table 3: Accuracy of vector-mapping approaches,
measuring % of character tokens we assign the correct
(no tone) pinyin pronunciation to. Testing is on the first
6059 characters of the character corpus.

same number of syllables as the written-word. If
we cannot find a near neighbor with the correct
number of syllables, we map to a sequence of de,
the most common Chinese pinyin token.

We find that matched word pairs are much more
accurate than the individual character-pinyin map-
pings we previously obtained.!! To get token-level
pronunciation accuracy, we segment our 6059-
token character test set, apply our learned map-
ping table, and count how many characters are
pronounced correctly. Table 3 shows that the ac-
curacy of this method is 81.4%.

6 Unsupervised Noisy Channel EM
Method

We next turn to a noisy-channel approach, follow-
ing Knight and Yamada (1999). We consider our
character sequence C' = ¢ ...c, as derived from a
hidden (no tone) pinyin sequence P = pj...pn:

argmaxy Pr(C) =
argmaxg) p Pr(P) - Pr(C|P) =
argmaxg y_pPr(P) - [Pro(ci|pi)

Pr(P) is a fixed language model over pinyin se-
quences. Prg(c|p) values are modified to maxi-
mize the value of the whole expression. Examples
of Pry(c|p) parameters are Pr(' | zhong), which

1 Similar to Marchisio et al. (2020) and Kim et al. (2020),
we note that unsupervised translation techniques require cer-
tain types of data to work well.

we hope to be relatively high, and Pr(fR | zhong),
which we hope to be zero.

6.1 Previous Noisy-Channel

We first faithfully re-implement Knight and Ya-
mada (1999). They drive decipherment using a
bigram Pr(P), pruning pinyin pairs that occur few
than 5 times.

Unfortunately, they do not provide their training
data or code, giving only the number of character
types as 2113, and the number of observed pinyin
pair types as 1177 (after pruning pairs occurring
fewer than 5 times). Using our own data, we esti-
mate their character corpus at ~30,000 tokens.

We applied this re-implementation to our data.
Their pinyin-pair pruning has little effect, due to
the size of our pinyin corpus (155,219 unique
pairs). We ran their expectation-maximization
(EM) algorithm for 170 iterations on a character
corpus of 300,000 tokens, then applied their de-
coding algorithm to our 6059-token test, obtain-
ing a token pronunciation accuracy of 8.6%. Be-
cause this accuracy is lower than their reported
22%, we confirmed our results with two separate
implementations, and we took the best of 10 ran-
dom restarts. Increasing the character corpus size
to 10m yielded a worse 5.1% accuracy. We con-
jecture that Knight and Yamada (1999) used more
homogeneous data.

6.2 Our Noisy-Channel

In this work, we use a pinyin-trigram model (rather
than bigram), and we apply efficiency tricks that
allow us to scale to our large data.

First, we reduce our character data C to a list
of unique triples C,;, recording count(cycocs) for
each triple. A sample character triple is “HJ A 1~
(count = 43485).

Likewise, we reduce our pinyin training data to
triples, sorted by unsmoothed probability Pr(p) =

5690

Given:
Character triples ¢icocs € Cyrg, With counts
Pinyin triples p;p2p3, with probabilities

Produce:
Values for Pry(c|p)

Do:
initialize Pry(c|p) table (uniform, random)
for k = 1 to max_iterations
initialize Pry(Cy;) = 1.0
count(c, p) =0 (whole table)
for each of top N character triples cycacs
sum =0
for each of top M pinyin triples p1paps
score(p1p2ps) =
Pr(p1p2p3) Pro(c1|p1) Pro(ca|p2) Pro(cs|p3)
sum += score(pp2ps3)
Pry,(Ciri) = Pri(Clyi) - sumeOunterezes)
for each of top M pinyin triples ppaps
Pr(p1p2ps|cicacs) = score(p1paps) / sum
fori=1to3
count(c;, p;) +=
Pr(p1paps|cicacs) - count(cycacs)
normalize count(c, p) into Py(c|p)
return final Pry(c|p) table

Figure 2: EM algorithm for revising Pry(c|p) param-
eters (pinyin-to-character substitution probabilities) to
iteratively improve the probability of observed charac-
ter triples C'. EM guarantees Pr;(Ct,;) > Pr;_1(Ctps).

normalized count(p;p2p3). A sample pinyin triple
is “de ren kou” (probability = 8-1079).
Our training objective now becomes:
argmaxg Pr(Cir) =
argmaxp HC1C2cgecm Pr(cicacs) =
argmaxe 1., cpe5c0,,,
2 p1paps PX(P1P2P3) - Pr(cicacs|pipeps) =
argmaxo [, c,ciec,,,
> p1paps PT(P1P2P3) -
Pry(c1[p1)Pro(cz|p2)Pro(cs|ps)

Figure 2 gives an expectation-maximization
(EM) algorithm for choosing Pry(c|p) to find a lo-
cal maximum in Pr(C},;).

After we have obtained Prg(c|p) values, we
decode our 6059-character-token test sequence
(C = ¢j...cp) using the standard Viterbi algorithm
(Viterbi, 1967) Our decoding criterion is:

argmaxp Pr(P|C) =
argmaxp Pr(P) - Pr(C|P) =

Given:
Test character string ¢ ...c,
Substitution model Pry(c|p) from EM
Pinyin bigram model Pr(p2|p1)

Produce:
Phonetic decoding p;...p,

Do:
Standard Viterbi algorithm (Viterbi, 1967)

Figure 3: Pronouncing a character sequence c; ...c,, us-
ing a pinyin bigram model Pr(ps|p;) and EM-optimized
Pry(c|p) values.

N=M | EM iterations | Test accuracy
10k 20 29 - 44 %
10k 100 50 %
20k 20 37-46 %
20k 100 58-62 %

100k 100 71 %

Table 4: Accuracy of noisy-channel decoding after EM
training. N is the number of unique character triples
shown to EM, and M is the number of unique pinyin
triples available to “explain” each character triple. Ac-
curacy ranges denote multiple random restarts.

argmaxp Pr(P) - [, Pro(ci|pi) =~
argmaxp Pr(P) - [[; Pro(ci|pi)?

where Pr(P) is implemented with a smoothed bi-
gram pinyin model Pr(p2|p1). Figure 3 gives the
outline. While EM only considers the top M
pinyin triples, final decoding works on entire sen-
tences and is free to create previously-unseen
pinyin trigrams. Decoding is also free to pro-
nounce the same character in different ways, de-
pending on its context. We follow the prior work
in cubing channel model values.

Because different random restarts yield differ-
ent accuracy results, we report ranges. We are gen-
erally able to identify the best restart in an unsu-
pervised way, due to the high correlation between
EM’s objective Pr(C},;) and test-set accuracy.

Table 4 shows decoding accuracy results. We
achieve 71%, substantially beating the 22% accu-
racy reported by Knight and Yamada (1999), as
well as the 8.6% of a re-implementation applied to
our data.

7 Exploiting Character Components

We next investigate whether character compo-
nents can improve EM results. Instead of storing

5691

N=M EM | Test accuracy Test accuracy
iterations w/o hints w/ hints

20k 20 37-46 % | 72-T73 % (+27%)
20k 100 58-62 % 72 % (+10%)
100k 100 71 % 81 % (+10%)

Table 5: Improving EM results by assigning high initial
weights to the 261 agreed-on mappings (“hints”) from
EM and vector-based methods. Accuracy ranges are
due to multiple random restarts.

Pry(c|p) in a single lookup table, we compute it
from five lookup tables (Pr;..Pr5):

Pry(clp) =
A1 - Pri(clp) +
A2 - Pra(part1(c)|p) - Prs(c|partl(c))
A3 - Pra(part2(c)|p) - Prs(c|part2(c))

As EM establishes a tentative high value for
Pri(HE | pai), we hope to also create a high value
for Pry(3F | pai), which will encourage pai to map
to other characters with component 3F (such as fif)
in the following EM iterations.

Unfortunately, while we do see compelling Pry
entries, we do not see an overall improvement in
test-set accuracy from this method.

8 Combining EM and Vector Methods

The EM method gives 71% accuracy, while the
vector method gives 81% accuracy. We find that
the two methods agree 47% of time, and are 98.7%
accurate in agreement cases, so in an unsupervised
way, we distill out 261 high-confidence charac-
ter/pinyin mappings.

Improved EM results. We use the 261 high-
confidence (c, p) mappings as our initial start
point, by replacing each one’s random initial
Py(c|p) value with a 1.0 weight. These weights
bias the fractional counting in the first EM iter-
ation. Table 5 shows that high-confidence map-
pings increase overall EM accuracy from 71% to
81%.

Improved vector-based results. We run the
same initial procedure from Section 5, giving us a
vector space inhabited by both written words and
pinyin words. However, we modify the nearest-
neighbor search that produces word/pronunciation
mappings. Our modified nearest-neighbor search
takes a written word’s vector and returns the near-
est pronunciation vector that is consistent with the
261 high-confidence (¢, p) mappings. For ex-
ample, given the word B %, we prefer neigh-
bors dang yao and zhong yao over dang pin, be-

cause (%2, yao) is one of the high-confidence map-
pings originally proposed by both EM and vector-
based approaches. We also use high-confidence
mappings to improve de sequences (Section 5).
This combination technique is also highly effec-
tive, raising accuracy from 81% to 89%.

9 Conclusion

We implement and evaluate techniques to pro-
nounce Chinese text in Mandarin, without the
use of a pronunciation dictionary or parallel re-
source. The EM method achieves a test-set ac-
curacy of 71%, while the vector-based method
achieves 81%. By combining the two methods, we
obtain 89% accuracy, which significantly exceeds
that of prior work.

We also demonstrate that current methods for
unsupervised matching of vector spaces are sen-
sitive to the structure of the spaces. In the pres-
ence of one-to-many mappings between pinyin
and characters, the mapping accuracy is severely
downgraded, leaving open an opportunity to de-
sign more robust unsupervised vector mapping
systems.

References

M. Artetxe, G. Labaka, and E. Agirre. 2018. Unsu-
pervised statistical machine translation. In Proc.
EMNLP.

R. S. Berndt, J. A. Reggia, and C. C. Mitchum. 1987.
Empirically derived probabilities for grapheme-to-
phoneme correspondences in English. Behavior Re-
search Methods, Instruments, Computers, 19.

M. Bisani and H. Ney. 2008. Joint-sequence models for
grapheme-to-phoneme conversion. Speech Commu-
nication, 50.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov.
2017. Enriching word vectors with subword infor-
mation. Transactions of the Association for Compu-
tational Linguistics, 5.

Y. Kim, M. Graga, and H. Ney. 2020. When and why
is unsupervised neural machine translation useless?
In Proc. EACL.

K. Knight and K. Yamada. 1999. A computational ap-
proach to deciphering unknown scripts. In Proc.
ACL Workshop on Unsupervised Learning in Nat-
ural Language Processing.

G. Lample, A. Conneau, L. Denoyer, and M. Ran-
zato. 2018a. Unsupervised machine translation us-
ing monolingual corpora only. In Proc. ICLR.

5692

https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051

G. Lample, A. Conneau, M. Ranzato, L. Denoyer, and
H. Jégou. 2018b. Word translation without parallel
data. In Proc. ICLR.

K. Marchisio, K. Duh, and P. Koehn. 2020. When does
unsupervised machine translation work? CoRR,
arXiv:2004.05516.

B. Peters, J. Dehdari, and J. van Genabith. 2017. Mas-
sively multilingual neural grapheme-to-phoneme
conversion. In Proc. of the First Workshop on Build-
ing Linguistically Generalizable NLP Systems.

A. Viterbi. 1967. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Transactions on Information Theory, 13(2).

J. Xu, G. Fu, and H. Li. 2004. Grapheme-to-phoneme
conversion for Chinese text-to-speech. In Proc. In-
terspeech.

B. Zhang, H. Huang, X. Pan, H. Ji, K. Knight, Z. Wen,
Y. Sun, J. Han, and B. Yener. 2014. Be appropriate
and funny: Automatic entity morph encoding. In
Proc. ACL.

T. Zhang, A. Chowdhury, N. Dhulekar, J. Xia,
K. Knight, H. Ji, B. Yener, and L. Zhao. 2016. From
image to translation: Processing the endangered
Nyushu script. ACM Trans. Asian Low-Resource
Lang. Inf. Process., 15.

Z. Zhang, M. Chu, and E. Chang. 2002. An efficient
way to learn rules for grapheme-to-phoneme conver-
sion in Chinese. In Proc. ISCSLP.

5693

https://openreview.net/forum?id=H196sainb
https://openreview.net/forum?id=H196sainb

