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Abstract

We introduce Room-Across-Room (RxR), a
new Vision-and-Language Navigation (VLN)
dataset. RxR is multilingual (English, Hindi,
and Telugu) and larger (more paths and instruc-
tions) than other VLN datasets. It emphasizes
the role of language in VLN by addressing
known biases in paths and eliciting more ref-
erences to visible entities. Furthermore, each
word in an instruction is time-aligned to the
virtual poses of instruction creators and valida-
tors. We establish baseline scores for mono-
lingual and multilingual settings and multitask
learning when including Room-to-Room anno-
tations (Anderson et al., 2018b). We also pro-
vide results for a model that learns from syn-
chronized pose traces by focusing only on por-
tions of the panorama attended to in human
demonstrations. The size, scope and detail of
RxR dramatically expands the frontier for re-
search on embodied language agents in simu-
lated, photo-realistic environments.

1 Introduction

Vision-and-Language Navigation (VLN) tasks re-
quire computational agents to mediate the relation-
ship between language, visual scenes and move-
ment. Datasets have been collected for both indoor
(Anderson et al., 2018b; Thomason et al., 2019b; Qi
et al., 2020) and outdoor (Chen et al., 2019; Mehta
et al., 2020) environments; success in these is based
on clearly-defined, objective task completion rather
than language or vision specific annotations. These
VLN tasks fall in the Goldilocks zone: they can be
tackled — but not solved — with current methods,
and progress on them makes headway on real world
grounded language understanding.

We introduce Room-across-Room (RxR), a VLN
dataset that addresses gaps in existing ones by (1)

*First two authors contributed equally.

Our starting point is in a living room, we're facing towards a
1€ >( i

tables, turn around and exit through the doorway that's in front of
you, ass the bed that's on your right and then turn left, we're
now facing towards another living room, and on the left there's an
open door, walk towards that open door enter the bathroom that's in
front of you, turn towards the right into the shower area, and that's
your destination.

Figure 1: RxR’s instructions are densely grounded to
the visual scene by aligning the annotator’s virtual pose
to their spoken instructions for navigating a path.

including more paths that (2) counter known bi-
ases in existing datasets, and (3) collecting an or-
der of magnitude more instructions for (4) three
languages (English, Hindi and Telugu) while (5)
capturing annotators’ 3D pose sequences. As such,
RxR includes dense spatiotemporal grounding for
every instruction, as illustrated in Figure 1.

We provide monolingual and multilingual base-
line experiments using a variant of the Reinforced
Cross-Modal Matching agent (Wang et al., 2019).
Performance generally improves by using monolin-
gual learning, and by using RxR’s follower paths as
well as its guide paths. We also concatenate R2R
and RxR annotations as a simple multitask strat-
egy (Wang et al., 2020): the agent trained on both
datasets obtains across the board improvements.

RxR contains 126K instructions covering 16.5K
sampled guide paths and 126K human follower
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demonstration paths. The dataset is available.! We
plan to release a test evaluation server, our annota-
tion tool, and code for all experiments.

2 Motivation

A number of VLN datasets situated in photo-
realistic 3D reconstructions of real locations con-
tain human instructions or dialogue: R2R (An-
derson et al., 2018b), Touchdown (Chen et al.,
2019; Mehta et al., 2020), CVDN (Thomason
et al.,, 2019b) and REVERIE (Qi et al., 2020).
RxR addresses shortcomings of these datasets—
in particular, multilinguality, scale, fine-grained
word grounding, and human follower demonstra-
tions (Table 1). It also addresses path biases
in R2R. More broadly, our work is also related
to instruction-guided household task benchmarks
such as ALFRED (Shridhar et al., 2020) and CHAI
(Misra et al., 2018). These synthetic environ-
ments provide interactivity but are generally less
diverse, less visually realistic and less faithful to
real world structures than the 3D reconstructions
used in VLN.

Multilinguality. The dominance of high re-
source languages is a pervasive problem as it is
unclear that research findings generalize to other
languages (Bender, 2009). The issue is particu-
larly severe for VLN. Chen and Mooney (2011)
translated(~1K) English navigation instructions
into Chinese for a game-like simulated 3D envi-
ronment. Otherwise, all publicly available VLN
datasets we are aware of have English instructions.

To enable multilingual progress on VLN, RxR
includes instructions for three typologically diverse
languages: English (en), Hindi (hi), and Telugu
(te). The English portion includes instructions by
speakers in the USA (en-US) and India (en-IN).
Unlike Chen and Mooney (2011) and like the TyDi-
QA multilingual question answering dataset (Clark
et al., 2020), RxR’s instructions are not transla-
tions: all instructions are created from scratch by
native speakers. This especially matters for VLN,
as different languages encode spatial and temporal
information in idiosyncratic ways—e.g., how con-
tact/support relationships are expressed (Munnich
et al., 2001), frame of reference (Haun et al., 2011),
and how temporal accounts are expressed (Bender
and Beller, 2014).

Scale. Embodied language tasks suffer from a
relative paucity of training data; for VLN, this has

'https://github.com/google-research-datasets/RxR

Number of: Includes:

Lang Instruct Words Paths Text Ground Demos

CVDN 1 2K 167K 7K v

R2R 1 2K 625K 7K V

Touchdown 1 9K 1.0M 9K v /i
REVERIE 1 22K 388K 7K v V7

RxR 3 126K 98M 165K v Vv v

TThe number of dialogues. iGrounding limited to one object per instruction.

Table 1: VLN dataset comparison. RxR is larger, multi-
lingual, and includes dense spatiotemporal groundings
(Ground) and follower demonstrations (Demos).

led to a focus on data augmentation (Fried et al.,
2018; Tan et al., 2019), pre-training (Wang et al.,
2019; Huang et al., 2019; Li et al., 2019), multi-task
learning (Wang et al., 2020) and better generaliza-
tion through piece-wise curriculum design (Zhu
et al., 2020). To address this shortage, for each
language RxR contains 14K paths with 3 instruc-
tions per path, for a total of 126K instructions and
10M words (based on whitespace tokenization). As
illustrated in Table 1, this is an order of magnitude
larger than previous datasets.

Fine-Grained Grounding. Like R2R, RxR’s
instructions are collected by immersing Guide an-
notators in a simulated first-person environment
backed by the Matterport3D dataset (Chang et al.,
2017) and asking them to describe predefined paths.
RxR also enhances each instruction with dense
spatiotemporal groundings. Guides speak as they
move and later transcribe their audio; our annota-
tion tool records their 3D poses and time-aligns the
entire pose trace with words in the transcription.
Instructions and pose traces can thus be aligned
with any Matterport data including surface recon-
structions (Figure 1), RGB-D panoramas (Figure
4), and 2D and 3D semantic segmentations.

Follower Demonstrations. Annotators also act
as Followers who listen to a Guide’s instructions
and attempt to follow the path. In addition to veri-
fying instruction quality, this allows us to collect a
play-by-play account of how a human interpreted
the instructions, represented as a pose trace. Guide
and Follower pose traces provide dense spatiotem-
poral alignments between instructions, visual per-
cepts and actions — and both perspectives are useful
for agent training.

Path Desiderata. R2R paths span 4-6 edges
and are the shortest paths from start to goal. Thoma-
son et al. (2019a) showed that agents can exploit ef-
fective priors over R2R paths, and Jain et al. (2019)
showed that R2R paths encourage goal seeking
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(a) Panorama navigation graph (b) Shortest path from ps to pg
with room annotations. on the subgraph.

Figure 2: Given the panorama navigation graph P with
room graph R in Figure 2a, we sample a simple room
path (rg,72,73) inducing the subgraph in Figure 2b.
The generated panorama path is the shortest path in the
subgraph linking sampled panoramas rg and rg.

over path adherence. These matter both for gener-
alization to new environments and fidelity to the
descriptions given in the instruction—otherwise,
strong performance might be achieved by agents
that mostly ignore the language. RxR addresses
these biases by satisfying four path desiderata:
1. High variance in path length, such that agents
cannot simply exploit a strong length prior.
2. Paths may approach their goal indirectly, so
agents cannot simply go straight to the goal.
3. Naturalness: paths should not enter cycles or
make continual direction changes that would
be difficult for people to describe and follow.
4. Uniform coverage of environment viewpoints,
to maximize the diversity of references to vi-
sual landmarks and objects over all paths.
This increases RxR’s utility for testing agents’ abil-
ity to ground language. It also makes RxR a more
challenging VLN dataset—but one for which hu-
man followers still achieve a 93.9% success rate.

3 Two-Level Path Sampling

We satisfy desiderata 1-3 using a two-level proce-
dure. At a high-level, each path visits a sequence
of rooms; these are simple paths with no repeated
(room) vertices. Such paths are not necessarily
shortest paths. The low-level sequence is then the
shortest panorama path, constrained by the room
sequence. Given the set of all such paths across all
houses, the fourth desiderata is satisfied by itera-
tively selecting the path that most improves cover-
age while maintaining a bias against shortest paths.

Preliminaries Movement in the simulator is
based on a navigation graph. Vertices correspond

to 360-degree panoramic images, captured at ap-
proximately 2.2m intervals throughout 90 indoor
environments. Edges are navigable links between
panoramas. Chang et al. (2017) also partition
panoramas via human-defined room annotations.

Let P be an undirected graph of interconnected
panoramas, with vertices p; € V(P) and edges
(pi, p;)EE(P). Let Ap be a set of disjoint room an-
notations; each room ;€ Ag is a non-overlapping
subset of panoramas r; C V(P), as shown in Fig-
ure 2a. We abbreviate (p1, -+ ,Pm) aS P1m.

We create 12, an undirected room graph with ver-
tices V(R) = {JC(P[ri]) | ri€AR}. P[r;] is the
subgraph of P induced by room annotation r; and
C returns a graph’s connected components. Simply
put, each vertex in R encompasses a subgraph of
P. Anedge (r;,7;) € £(R) exists if the subgraph
of P induced by V(7;) U V() is connected.

Path Generation We generate the set of all sim-
ple paths in R that traverse at most 5 rooms and
two building levels. Let rp, €V(R) be the room con-
taining panorama p;. As shown in Figure 2b, for
each room path 1., we construct a directed graph
P[ry.,] in which an edge (p;, p;) exists if rp, =),
(p; and pj; are in the same room) or (7, rpj) is an
edge in the room path. Given P[ry.,], we sample
the start p; and goal p,,, uniformly from r; and r,,,
respectively. The full panorama path pj.,, is then
the shortest path between p; and p,, in P[ry.y].

Room size varies greatly, so this approach pro-
duces high path length variance. It also satisfies
naturalness because people tend to ground instruc-
tions at the room level (e.g., Exit through the carved
wooden door on the other side of the room). We
find such paths easy to describe even with as many
as 20 edges. Finally, these paths can approach their
goal indirectly, as exemplified in Figure 2b.

Greedy Selection for Coverage The final path
dataset D is constructed by repeatedly selecting a
panorama path p1.,, from all sampled paths (with-
out replacement) until a desired size is reached. Af-
ter selecting & paths, let O(p;, Dy) be the number
of occurrences of panorama p; in the paths in Dy,.
At step k4 1, we select the path with the minimum
value for % + -3 eprn O(pi, Dy), where
L is path length in P and d(p1, py,) is the shortest
path distance between p; and p,, in P. The first
term prefers non-shortest paths while the second
encourages selection of paths that cover panoramas
with low coverage in Dj,. This selection step is also
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Figure 3: RxR’s paths are longer on average than
R2R’s, exhibiting far greater variation in length (mea-
sured in both meters and edges) while achieving more
uniform panorama coverage. Comparisons shown are
for train and val since the R2R test set is sequestered.

subject to a maximum path length of 40m, and a
maximum of 500 paths per building environment.

Path Statistics In total, we sample 16522 paths,
which are split: 11089 train, 1232 val-seen
(train environments), 1517 val-unseen (val environ-
ments), and 2684 test, following the same environ-
ment splits as Matterport3D and R2R. Compared to
R2R, RxR paths are longer, spanning 8 edges and
14.9m on average, vs. 5 edges and 9.4m in R2R.
More importantly, as shown in Figure 3, RxR paths
exhibit much greater variation in length while also
achieving more uniform coverage of the panoramas
(and edges). Furthermore unlike R2R, 44.5% of
RxR paths are not the shortest path from the start to
the goal location. RxR paths are on average 27.4%
longer than the shortest path.

4 Data Collection and Metrics

We immerse annotators in our own web-based
version of the Matterport3D simulator using the
panoramic images and the navigation graph. Com-
pared to Anderson et al. (2018b), our annota-
tion tool has additional capabilities including
speech collection, virtual pose tracking, and time-
alignment between transcript and pose. Figure 4
gives an example instruction with accompanying
Guide and Follower pose traces. Here, we describe
our collection process, analysis of the data, path
evaluation metrics and simple baselines.

Guide Task Like R2R, our simulator has camera
controls allowing continuous heading and eleva-
tion changes and movement between panoramas.
Guides look around and move to explore a provided
path and attempt to create an instruction others can
follow. R2R’s Guides create written instructions.

Guide Alignment

e

Now you are standing in-front of
a closed door, turn to your left,
you can see two wooden steps,
climb the steps and walk forward
by crossing a...

...crossing a wall painting which is
to your right side, you can see open
door enter...

&l

...enter into it. This is a gym room,
move forward, walk...

...walk till the end of the room, you
can see a grey...

...grey colored ball to the corner of
the room, stand there, that’s...

=

...that’s your end point.

Follower Alignment

&

Now you are standing in-front of a
closed door, turn to your left, you
can see two wooden steps, climb
the steps and walk forward by...

a

...by crossing a wall painting which
is to your right..

...right side, you can see open door
enter into it. This is a gym room,
move forward, walk...

—

...walk till the end of the room, you
can...

s

...can see a grey colored ball to the
corner...

L)

...corner of the room, stand there...

"y

...that’s your end point.

b

Figure 4: Example spatiotemporal alignment of textual
instructions, visual percepts and actions for an en-US
Guide and the corresponding Follower. The next se-
lected action is indicated in red and unseen pixels in
the equirectangular panoramic images are faded. The
Follower takes a slightly longer path but produces sim-
ilar visual-textual alignments. Best viewed enlarged.
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en-IN en-US| en hi te| Total
Counts
Instructions 28010 1399242002 42068 41999|126069
Paths 14005 13992|14005 14026 14003| 16522
Averages
‘Words 87 129] 101 76 56 78
WordPieces 104 159 123 143 184 150
Characters 457 659 524 355 395 425
Audio (s) 64 80 69 53 58 60
Guide (s) 431 509 457 451 465 458
Follower (s) 134 202 156 110 132 132

Table 2: RxR summary statistics. Times in seconds (s).

In contrast, RxR’s Guides speak and the tool logs
their entire virtual camera pose sequence. We use
a 640 x 480 pixel viewing canvas and a camera
vertical field of view of 75 degrees. This process is
inspired by Localized Narratives (Pont-Tuset et al.,
2020), an image captioning dataset for which anno-
tators move mouse pointers around images while
talking about them.

As with Localized Narratives, RxR Guides tran-
scribe their own recordings; this produces high
quality text versions of the instructions. To align
text and pose traces, we generate a time-stamped
transcription using automatic speech recognition.”
The transcription and ASR output are aligned using
dynamic time warping. The output of the Guide
task is an audio file, a tokenized, timestamped,
manually-transcribed instruction, and a pose trace
(a series of timestamped 6-DOF camera poses). On
average, Guide task annotations (including both
steps, performed back-to-back) take 458 seconds.

For each language (English, Hindi and Telugu)
we annotate 14K paths with three instructions each.
In the English dataset, each path gets one US En-
glish instruction and two Indian English instruc-
tions. Of the 14K paths per language, 12.8K paths
are common across all three languages, and 1.2K
paths in each language are unique (equaling 16.5K
paths in total). The fact that most paths are anno-
tated 9 times (3 per language) creates interesting
opportunities to study aligned instructions across
languages. Unique paths add variety and coverage.

Follower Task As Followers, annotators begin at
the start of an unknown path and try to follow the
Guide’s instruction. They observe the environment
and navigate in the simulator as the Guide’s audio
plays. They can pause, rewind and skip forward in
the instruction. If they believe they have reached
the the end of the path, or give up, they indicate they

>https://cloud.google.com/speech-to-text

are done and rate the instruction’s clarity and their
confidence in their own navigation. On average,
Follower tasks take 132 seconds.

The Follower tasks objectively validate the qual-
ity of Guide instructions based on whether the Fol-
lower can succeed (i.e., reaching within 3m of the
last panorama in the path). If the Follower doesn’t
succeed, the Guide instruction is paired with a sec-
ond Follower. If the second Follower succeeds, the
first Follower annotation is discarded and replaced.
If the second Follower also fails, then the path is re-
enqueued to generate another Guide and Follower
annotation. The most successful of the three result-
ing Guide-Follower pairs is selected for inclusion
in RxR and the others are discarded.

In addition to validating data quality, the Fol-
lower task also trains annotators to be better
Guides—following bad instructions often helps one
see how to produce better instructions. Most im-
portantly, we collect the pose trace of the Follower
as they execute the instruction. This provides an
alternative path with dense grounding that we can
compare to the Guide’s pose trace and use as an
additional training signal.

Dataset Analysis Table 2 provides summary
statistics for RxR. The average words per instruc-
tion (using whitespace tokenization) is 78 vs R2R’s
29. US English instructions are the longest on av-
erage. We attribute this to conventions developed
by each annotator pool rather than language spe-
cific properties. On average Guide tasks take much
longer than Follower tasks (458 vs. 132 seconds).
Most of the Guide’s time is spent transcribing audio
(Guide audio recordings average 60 seconds).
Following a similar analysis as Chen et al.
(2019), Table 3 gives examples and statistics for
linguistic phenomena, based on manual analysis of
instructions for 25 paths. All RxR subsets produce
a higher rate of entity references compared to R2R.
This is consistent with the extra challenge of RxR’s
paths and our annotation guidance that instructions
should help followers stay on the path as well as
reach the goal. Doing so requires more extensive
use of objects in the environment. RxR’s higher
rate of both coreference and sequencing indicates
that its instructions have greater discourse coher-
ence and connection than R2R’s. RxR also includes
a far higher proportion of allocentric relations and
state verification compared to R2R, and matches
Touchdown (navigation instructions). Hindi con-
tains less coreference, sequencing, and temporal
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R2R RxR
en hi te en-IN  en-US

Phenomenon P 4 p H P W D H D N RxR Example (en-US)
Reference 100 3.7 100 5.8 100 6.6 100 6.4 100 83  ..thereis a white chair and a table stand...
Coreference 32 05 40 04 76 29 76 64 64 53 . .hallway with black curtains, towards that...
Comparison 400 000 401 4 0.0 8 0.0 ..thelarge archway with the smaller archway in...
Sequencing 16 02 24 02 44 0.6 44 05 52 09  ..thenextroom... turn to see the next door...
Allocentric Relation 20 0.2 68 2.1 76 3.2 92 34 76 24  ..awindow with a black folding table under that...
Egocentric Relation 80 1.2 96 29 80 23 64 2.8 60 23 ...chairs on your right, closet doors on your left.
Imperative 100 4.0 100 5.6 100 6.5 100 84 100 6.3 Do not go down the stairs. Instead, look further...
Direction 100 2.8 96 58 96 49 100 7.0 96 6.3  ..veer to the left of the fireplace and you will...
Temporal Condition 28 0.4 32 04 36 0.7 44 1.0 52 0.8  Move around the island until you come to the...
State Verification 8 0.1 72 1.7 68 1.6 80 2.3 84 3.1 ...you are in the balcony area facing towards...

Table 3: Linguistic phenomena in a manually annotated random sample of 25 paths from RxR and R2R. p is the %
of sentences that contain the phenomena while p is the average number of times they occur within each sentence.

Follower

Guide

« Path progress

Instruction progress —+

Guide: Start

Instruction progress —+

Guide: Other Follower: Start  Follower: Other

Figure 5: Top: Instruction and path progress alignment
for Guides and Followers. Bottom: Equirectangular
heatmap of Guide and Follower camera poses, centered
on their initial perspective at each viewpoint.

conditions than the other languages. That said, it
is not clear how much the differences within RxR
exhibited in Table 3 can be attributed to language,
dialect, annotator pools, or other factors.

Figure 5 (top) illustrates the close alignment be-
tween instruction progress (measured in words) and
path progress (measured in steps). Figure 5 (bot-
tom) indicates that both Guide and Tourist annota-
tors orient themselves by looking around at the first
panoramic viewpoint, after which they maintain
a narrower focus. On average, Guides / Tourists
observe 43% / 44% of the available spherical vi-
sual signal at the first viewpoint, and 27% / 28%
at subsequent viewpoints. These findings stand in
contrast to standard VLN agents that routinely con-
sume the entire panoramic image and attend over
the entire instruction sequence at each step. Inputs
that the Guide / Tourist have not observed cannot
influence their utterances / actions, so pose traces
offer rich opportunities for agent supervision.

Evaluation We use the following standard eval-
uation metrics (with arrows indicating improve-

PL NE| SRt SPLT SDTW{ NDTW?t

1. Random walk

R2R 104 95 51 3.6 3.8 27.6
RxR 168 124 88 2.5 3.8 18.2
2. Random heading then go straight

R2R 97 99 82 7.2 6.6 283
RxR 151 135 8.0 3.4 39 16.3
3. Given correct first step then go straight

R2R 95 62 272 257 23.6 52.6
RxR 153 114 137 7.5 8.3 259

Table 4: Simple baselines on val-unseen paths. RxR
proves more difficult than R2R overall, and less
amenable to agents that tend to go straight (baselines 2
and 3). Note: Baseline 3 partly exploits the gold path.

ment): Path Length (PL), Navigation Error (NE |)
Success Rate (SR 1), Success weighted by inverse
Path Length (SPL 1), Normalized Dynamic Time
Warping (NDTW 7), and Success weighted by nor-
malized Dynamic Time Warping (SDTW 1). See
Anderson et al. (2018a) and Ilharco et al. (2019)
for discussion of VLN metrics. Since RxR was de-
signed to include paths that approach their goal in-
directly, we focus primarily on NDTW and SDTW
which explicitly capture path adherence. See Table
4 for a comparison of the performance of several
simple baselines on R2R and RxR. Each simple
baseline requires a stopping criteria; we choose to
stop after IV steps where [V is the average number
of steps in the train set paths (5 in R2R and 8 in
RxR). Consistent with our motivation to reduce
biases in paths, these simple baselines show that
going straight is far less effective in RxR than R2R.
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S Experiments

Agent We use a model architecture similar to that
of the Reinforced Cross-Modal Matching (RCM)
agent (Wang et al., 2019), consisting of an instruc-
tion encoder and a sequential LSTM (Hochreiter
and Schmidhuber, 1997) decoder that computes a
distribution over actions at each step. However,
since RxR instructions are much longer than R2R,
we replace the bidirectional LSTM instruction en-
coder with a more parallelizable CNN encoder. In
preliminary experiments on R2R we find that en-
coding word embeddings via successive 1D convo-
lutions with rectified linear (ReLLU) activations and
residual connections (He et al., 2016) is equally
effective and more time and space efficient. We
denote the output of the instruction encoder by
x € R where [ is the instruction length and d
is the feature dimension. In both monolingual and
multilingual experiments we use features extracted
from a pre-trained multilingual BERT model (De-
vlin et al., 2019) for the word embeddings.

At each time step ¢, the agent receives a panop-
tic encoding of its viewpoint v; € R¥*? (where
k = 36 is the number of 30° intervals that span the
panorama) along with a visual encoding of naviga-
ble directions a; € R™*?% (where n is the number
of navigable directions). Each feature of dimension
d is a pre-trained CNN feature concatenated with
an angle encoding (Fried et al., 2018). The LSTM
decoder computes an updated hidden state h; by
conditioning on the previous selected action in a;—1
and attending over the panoptic encoding v; and the
instruction z using dot-product attention (Luong
et al., 2014). The distribution over next actions is
computed via a similarity ranking h; - a;; between
hidden state h; and each direction encoding in a;.

For the image features we use an EfficientNet-
B4 CNN (Tan and Le, 2019). Following Parekh
et al. (2020), we pretrain the CNN in an image-text
dual encoder setting using the Conceptual Captions
dataset (Sharma et al., 2018). In preliminary ex-
periments, we found that pretraining the CNN in
this way gave noticeable improvements over the
same CNN pretrained for image classification on
ImageNet (Russakovsky et al., 2015).

Grounding Supervision To incorporate spa-
tiotemporal groundings into agent training, for each
Guide path (G-path) and Follower path (F-path) we
convert the corresponding pose trace into: (1) a se-
quence of text masks b; € {0, 1} indicating which

words in instruction x the Guide spoke / Follower
heard at or prior to step t, and (2) a sequence of
visual masks M; € {0,1}"*% indicating which
pixels were observed in the panoramic image at ¢
(like Figure 5 bottom). We then project and max-
pool M; to a vector mask m; € {0,1}* aligning
to the agent’s visual input features v;. Zeros in b,
and my indicate irrelevant textual and visual inputs
that were not observed by the annotators, and are
therefore not related to their utterances and actions.
To help prevent the agent from overfitting to
superficial correlations in the training data, we
use by and m, to supervise the normalized textual
and visual attention weights in the model. Specif-
ically, during training whenever the agent is on
the gold path we apply a cross-entropy loss to
the visual attention weights given by L(z, m;) =
log 2% exp(z;) — log S2F_ | my i exp(z;), where
z is the vector of unnormalized logits determining
attention weights via a softmax. This loss forces
the attention weights on irrelevant input features
towards zero. The textual version is analogous.

Implementation Details Agents are imple-
mented in VALAN (Lansing et al., 2019), a dis-
tributed reinforcement learning framework de-
signed for VLN. We use a mix of supervised learn-
ing and policy gradients. Each minibatch is con-
structed from 50% behavioural cloning roll-outs
(following the gold paths while minimizing cross-
entropy loss), and 50% policy gradient rollouts
with reward (following paths sampled from the
agent’s policy). As in Ilharco et al. (2019), the re-
ward at each step is the incremental difference in
NDTW, plus a linear function of navigation error
after stopping. All agents are trained with Adam
(Kingma and Ba, 2014) to convergence (100K it-
erations with batch size of 32 and initial learning
rate of le-4).

Monolingual Results Table 5 provides results
on the val-unseen split for several training settings,
as well as human performance from Follower anno-
tations. We report en-US and en-IN results together
as en. Experiments 1-3 compare agents trained (1)
only on G-paths, (2) only on F-paths, and (3) on
both. In contrast to algorithmically generated G-
paths, each F-path reflects a grounded human inter-
pretation of an instruction, which may deviate from
the G-path because multiple correct interpretations
are possible (e.g., Figure 4). For training, we do
not differentiate F-paths from G-paths, and each
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Setting Training NE | SR 1 SDTW t NDTW 1
Exp. Method G F X  Pairs (K) en hi te en hi te en hi te en hi te
(1)  Mono v 42 10.1 9.7 94 256 248 28.0 203 19.7 227 413 38.8 437
(2) Mono v 42 103 9.2 95 239 280 270 185 227 220 37.0 459 439
(3) Mono v v 84 98 9.2 91 261 29.6 298 21.0 24.0 24.2 424 455 45.6
(4) Multi v v 252 11.0 109 11.0 222 23.0 231 17.8 183 184 38.6 39.2 38.8
(5) Multi v V7 504 115 114 114 20.0 187 203 159 149 16.1 363 36.0 36.7
(6) Multi* v v 252 11.0 10.7 10.7 219 226 232 175 18.1 184 38.6 39.9 39.7
(H) Human - 1.32 0.59 0.79 904 96.8 947 743 80.6 76.5 777 822 79.2

Settings — G: instruction paired with Guide paths, F: instructions paired with Follower paths, X: cross-translated instructions.

Table 5: RxR val-unseen: Monolingual vs. multilingual results. Training with both Guide and Follower paths
benefits all languages (exp. 3 vs. 1 and 2), monolingual outperforms multilingual (exp. 3 vs. 4), training with
cross-translations hurts performance (exp. 5 vs. 4), and training with visual attention supervision gives mixed

results (Multi* in exp. 6 vs 4).

Train Data SR 1 SPL © SDTW 1 NDTW 1t
Exp. R2R RxR R2R en hi te R2R en te R2R en hi te R2R en hi te
@) v 365 145 96 97 317 112 75 74 295 98 63 6.1 481 29.0 254 252
“4) v 19.2 222 23.0 23.1 17.7 19.8 20.7 20.7 160 17.8 183 184 432 38.6 39.2 38.8
®) v v 37.8 225 23.6 23.1 343 20.1 21.0 205 32.0 18.3 19.2 184 52.3 38.8 394 384

Table 6: Multitask and transfer learning results on RxR and R2R val-unseen. A multitask model (exp. 8) performs
best on both datasets, but domain differences thwart simple transfer learning (i.e., train on X, evaluate on Y).

instruction-path pair is treated as an independent
example. Experiment (3) shows that including both
G- and F-paths in training benefits every metric.
Given the overall positive impact of F-paths, we
use both path types in our further experiments.

Multilinguality For experiment (4) in Table 5,
we train a single multilingual agent on all three
languages simultaneously. While the multilingual
agent sees substantially more instructions than each
monolingual agent, performance is worse across
all metrics. This is consistent with results in multi-
lingual machine translation (MT) and automatic
speech recognition (ASR) where adding more
languages can also lead to degradation for high-
resource languages (Aharoni et al., 2019; Pratap
et al., 2020). Experiment (5) takes this one step
further by obtaining translations from every instruc-
tion into the two other languages (e.g., en — hi, te)
using a MT service.? Including these translations
hurts performance for all languages. The fact that
most G-paths are shared across languages may limit
the value of automatic cross-translations. Notwith-
standing the higher performance of the monolin-
gual approaches, in the remaining experiments we
focus on multilingual agents for greater scalability.

*https://cloud.google.com/translate
These translations are included in the RXR data release.

Spatiotemporal Grounding Supervision Table
5 experiment (6) incorporates a loss for spatiotem-
poral grounding over visual attention which gives
mixed results on val-unseen (better on NDTW, NE
and worse on success-based metrics) compared to
(4). Applying the same approach to textual atten-
tion did not improve performance. However, we
stress that this is only a preliminary investigation.
Using human demonstrations to supervise visual
groundings is an active area of research (Wu and
Mooney, 2019; Selvaraju et al., 2019). As one
of the first large-scale spatially-temporally aligned
language datasets, RxR offers new opportunities to
extend this work from images to environments.

Multitask and Transfer Learning Table 6 re-
ports the performance of the multilingual agent
under multitask and transfer learning settings. For
simplicity, the R2R model (exp. 7) is trained with-
out data augmentation from model-generated in-
structions (Fried et al., 2018; Tan et al., 2019) and
with hyperparameters tuned for RxR. Under these
settings, the multitask model (exp. 8) performs
best on both datasets. However, transfer learning
performance (RxR — R2R and vice-versa) is much
weaker than the in-domain results. Although RxR
and R2R share the same underlying environments,
we note that RxR — R2R cannot exploit R2R’s
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Input Modalities NE | SRt SDTW 1 NDTW 1
Exp. Method Vision Language en hi te en hi te en hi te en hi te
(4) Mult v v 11.0 109 11.0 222 23.0 231 178 183 184 38.6 39.2 38.8
(9)  Multi v 123 119 120 16.0 18.0 169 123 142 133 309 33.1 328
(10) Multi v 15.7 157 157 78 7.8 178 43 43 43 165 165 165

Table 7: Language-only and vision-only model ablations on RxR val-unseen. The language-only agent is much
better than random, but both modalities are required for best performance.

NE | SRt SDTW 1 NDTW 1
Split Method en hi te avg en hi te avg en hi te avg en hi te avg
Val-Seen ~ Mono 95 92 93 93 28.6 295 283 288 232 24.6 2377 238 454 479 47.1 46.8
Multi 11.0 104 10.6 10.7 239 26.7 25.1 252 19.6 21.9 205 20.7 412 434 420 422
Val-Unseen Mono 9.8 92 9.1 94 26.1 29.6 298 285 21.0 24.0 242 23.1 424 455 45.6 445
Multi 11.0 109 11.0 109 222 23.0 23.1 228 17.8 183 184 182 38.6 39.2 38.8 389
Test-Std Mono 11.0 10.5 10.5 10.6 253 26.1 262 259 205 21.0 21.5 21.0 403 419 424 415
Multi 120 11.8 11.8 11.9 20.8 214 21.6 213 168 173 173 17.1 36.7 37.6 374 372
Random 14.1 14.1 14.1 14.1 75 715 75 15 31 31 31 31 154 154 154 154
Human 14 06 0.7 09 902 96.7 949 939 73.6 80.5 76.6 769 772 82.0 79.2 79.5

Table 8: RxR test set results, based on the monolingual agents (3) and the multilingual agent (4).

path bias, and for R2R — RxR, the much longer
paths and richer language are out-of-domain.

Unimodal Ablations Table 7 reports the perfor-
mance of the multilingual agent under settings in
which we ablate either the vision or the language
inputs during both training and evaluation, as ad-
vocated by Thomason et al. (2019a). The multi-
modal agent (4) outperforms both the language-
only agent (9) and the vision-only agent (10), in-
dicating that both modalities contribute to perfor-
mance. The language-only agent performs better
than the vision-only agent. This is likely because
even without vision, parts of the instructions such
as ‘turn left* and ‘go upstairs* still have meaning in
the context of the navigation graph. In contrast, the
vision-only model has no access to the instructions,
without which the paths are highly random.

Test Set RxR includes a heldout test set, which
we divide into two splits: test-standard and test-
challenge. These splits will remain sequestered to
support a public leaderboard and a challenge so the
community can track progress and evaluate agents
fairly. Table 8 provides test-standard performance
of the mono and multilingual agents using Guide
and Follower paths, along with random and human
Follower scores. While the learned agent is clearly
much better than a random agent, there is a great
deal of headroom to reach human performance.

6 Conclusion

RxR represents a significant evolution in the scale,
scope and possibilities for research on embodied
language agents in simulated, photo-realistic 3D
environments. RXxR’s paths better ensure that lan-
guage itself will play a fundamental role in better
agents. Evaluating on three typologically diverse
languages will help the community avoid overfit-
ting to a particular language and dataset.

We have only begun to explore the possibili-
ties opened up by pose traces. Whereas others
have retro-actively refined R2R’s annotations to get
alignments between sub-instructions and panorama
sequences (Hong et al., 2020), RxR provides word-
level alignments to specific pixels in panoramas.
This is obtained as a by-product of significant work
on the annotation tooling itself and designing the
process to be more natural for Guides. Finally,
every instruction is accompanied by a Follower
demonstration, including a perspective camera pose
trace that shows a play-by-play account of how a
human interpreted the instructions given their posi-
tion and progress through the path. We have shown
that these can help with agent training, but they also
open up new possibilities for studying grounded
language pragmatics in the VLN setting, and for
training VLN agents with perspective cameras — ei-
ther in the graph-based simulator or by lifting RxR
into a continuous simulator (Krantz et al., 2020).
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A Supplementary Material

Annotators In total, 247 annotators contributed
to RxR, with 97 based in the USA and the remain-
der based in India and contributing to the Indian
English, Hindi and Telugu annotations. The anno-
tators were paid hourly wages that are competitive
for their locale. They have standard rights as con-
tractors. They were fluent in the language they
were tasked with.

We ensure that a Guide does not annotate the
same path twice. As Followers, annotators do not
follow their own Guide instructions. Furthermore,
we have provided annotators multiple forms of
feedback as they complete tasks. After a round
of pilot instructions were collected, we provided
detailed analysis of common patterns that produced
poor instructions and clear guidelines for produc-
ing better instructions. Annotators provided Ul
suggestions and interesting corner cases to us that
allowed us to refine the simulator and annotation
process before kicking off the full annotation pro-
cess. Throughout the process, annotators have had
access to a dashboard that shows them their success
rate as both Guide and Follower. We indicated that
their success as Guide and a Follower should be
above 80%. Any annotator whose success is lower
is either given further training or is taken off the
task.

Unfortunately, we cannot release the audio in-
structions yet due to the impact of COVID-19: our
annotators had to complete the tasks from home,
so we need to review all recordings for safety and
privacy. We hope to include the audio in a future
release.
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Instructions Instructions
Afriend neads your help to follow an invisible path only you can see, in a house full of dangerous traps! To ensure that ou friend is safe, you must Oh no, you're in house full of dangerous traps! Fortunately, a friend has recorded spoken instructions to enable you to follow a safe path in the
record instructions for ther o follow. lease read o y house. o L and watch the training video.
to speak in a language other than Engiih.
Start: After you press the start button, your friend's spoken audio instructions will begin to play.
Path: The path is shown to you as a tral of marbles.
+ Listen to the instructions as y , while trying b X
+ The marbles transition in color from biue to red as you approach the end of the path. + To control the audio progress, click the audio waveform or press the ESC key to play/pause.
+ Our friend's starting orientation at the first marble s shown with a green arrow. The other arrows indicate the direction to the next marble. + Please follow the instructions as closely as you can. DO NOT explore the building unnecessarlly. DO NOT traverse the path multple times
+ Thelast marble in the path is outlined in green for extra visiilty. unless you are ost.
+ These marbles are invisible to your friend, and should not be mentioned in your instructions. + You should Please tell happens.
Recording: Please be aware that after you press the start button, your voice wil be recorded. Movement: You can look around the room by dragging the screen, and d by of
atouchpad
+ As you move through the buiding following the path, speak clearly and audibly to record your instructions for our friend 1o follow.
+ The recording must only include your voice. If other ing the recording, top the using the + The green square indicates where you will move to next f you double-click.
Restart button. + When you believe you've reached the end of the path, press the Done button.
+ Try to mention objects and landmarks, to make y ible. To ensure our friend s sate, + Both you and your friend will be evaluated by whether you were able to follow the path and reach the end correctly.
they must follow the exact same path.
 Good example: Now please watch the training vidso.
*Okay look around until you can see Youll see an oper  with a ity behind it and a bed ot
in front of you. Turn around so you can see the stairs. Go up the stairs. And stop on top of the carpet right next to a large plant o
that's resting against the wall."
© Bad example:
“Tum leh. Go straight. Tum slight left again. Go a litte bit forward. Exitthe door"
Movement: Look around the room by dragging the screen, and d by we a
touchpad.
+ Record your you move, objects you  IMPORTANT: DO NOT wiite down
your instructions and DO NOT speak al at once at the end. DO NOT traverse the path multiple times to check your work.
+ The green square indicates where you will move to next f you double-click
+ When you reach the end of the path, press the Done button. This willload a window that allows you to transcribe your voice recording.
« Your evaluated by can later p raps.
Now please watch the training video.
start
Voice Recording: Please speak in English Annotation (English audio)
Restart info Done nfo Done
Playback speed:  Norm
Play/Pause S _‘M
Transcribe in English text Submission
Type literally what you just said. In the audio, did you hear any voices other than the main annotator?
Playback speed: (Narmal ¢ Yes
No
. ' How confident are you that you stopped at the correct goal location?
Play/Pause -
Not confident Very confident
Include disfluencies and file words if you said then (e.g. " think’, "aright’, "tum lef... | mean right) but ot filer sounds (e.g. “u”, "uh’, "er"). Feel
ree to separate the text nto multiple sents d Press the submit you are done.
‘Audio key bindings: ESC wil play and pause the audio. ALT plus the et o right arrow key will skp the audio backwards or forwards. are you
Not confident Very confident
Submit
How confident are you that our friend can follow the path given your instructions?
Not confident Very confident
Submit

(e) Guide Transcription (358.3 seconds)

(f) Follower Survey (15.2 seconds)

Figure 6: Screenshots of the Guide (a, c, ) and Follower (b, d, f) views in our annotation tool, and the average
duration for each phase during collection of the first 33K instructions.
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Guide Alignment ordered left-to-right —

>

This will take you to a hallway with stairs going
up on the right hand side. Just go straight down

You're starting in a closet, facing an abstract paint-
ing on your right. Just slightly to your left will

be an open, wooden door next to an amp. Walk the hallway...

through that wooden door.

...about five steps... ...steps. You're going to pass the... ...the stairs.
ﬁ ' ‘! |

Go one... ...one step past the stairs. You’ll just pass the Al-  There will be a guitar on the floor. At this point,
bert Einstein painting on your right, and an open  turn around and go up the stairs.
doorway on your left.

1

Once you get to the Jimi Hendrix painting, turn... ...turn to your right and walk between the stair rail-  ...toward the refrigerator. Take a step in front of
ing and the white kitchen cabinet toward... the refrigerator.

Take another step toward the windows overlook-  Then take a right at the end of the refrigerator.  ...toward the fireplace.

ing the trees. You’ll take three steps...

Once you get... ...get to the fireplace, it will be on your right hand

side. This is where you stop.

Figure 7: Spatiotemporal alignment of textual instructions, visual percepts and actions for a long (19-step) en-US
Guide path. The next action is indicated in red and unseen pixels in the panoramic images are faded.
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Follower Alignment ordered left-to-right —

You’re starting in a closet, facing an abstract paint- This will take you to a hallway with stairs going
ing on your right. Just slightly to your left will up on the right hand side. Just...

be an open, wooden door next to an amp. Walk

through that wooden door.

Just go straight down the hallway... ...about five steps. You’re going to pass the stairs.

...stairs. Go one step past the stairs. You’ll just pass the  ...doorway on your left. There will be a guitar on
Albert Einstein painting on your right, and an open  the floor. At this point, turn around and go up the
doorway... stairs.

Once you get to the... Jimi Hendrix painting, turn to your right and...

...and walk between the stair railing and the white ~ Take a step in front of the refrigerator. Take another step toward the windows...
kitchen cabinet toward the refrigerator.

=

...windows overlooking the trees. Then take a right at the end of the refrigerator.  ...fireplace. Once you get to the fireplace, it will

You’ll take three steps toward the fireplace. be on your right hand side.

...side. This is where you stop.

Figure 8: Spatiotemporal alignment of textual instructions, visual percepts and actions for a long en-US Follower
path. The next action is indicated in red and unseen pixels in the panoramic images are faded.
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You begin in a large wooden room with a dining table, an immense fireplace, and a lovely carpet. turn to your right, and move along
the edge of that carpet you're nearest to, towards the wooden doorway into another interior room. You should see a large circular
table with an urn in the center of it when you enter that room. Skirt the edge of that table to the left, moving towards the staircase.
Don't go to the staircase, but instead proceed to the left of it, down the large rectangular rug. Continue through the open glass
door, and the second glass door across the small hallway from it. Step inside this small... Dining area? If you are just inside the
room with the circular table in the middle of it, a couch on the left hand wall, two armchairs across from the entrance, and one
armchair, striped, just next to you, you're in the right place, and you are done.

Starting facing a large ornate vase with gold leaf on it as well as a curtained window, we are going to turn towards the dinning
room table we are face. We are going to hop around it and come to just beside the painting in the background. Once we're behind
the head of the table chair, we are going to face forward and notice that there is a marble staircase before us. Head towards that,
but don't head up the stairs and don't exit the room, instead we're going to turn to the left and you should see a kitchen before you.
Let's go ahead and enter the kitchen through the archway, and here walk to the right of the China cabinet, and towards the island
with the dark cabinets and the granite countertop. Once we've turned the corner, and we're beside the large gas range and the
stainless steel hood, we're going to walk between the stove and the kitchen island, towards the refrigerator, and you should see an
open doorway before you, to the right of the fridge. Go ahead and walk towards this open door and through it. Walk all the way
down and turn to the right, passed the closed door, until you're faced with another flight of stairs. Let's go ahead and move up
them. When you've ascended the stairs, turn and face your right, and walk towards the music room that we can see in the distance
with its grande piano. We are going to come to a stop right at the base of another small flight of stairs, and looking into the sitting
room with a grande piano and marble mantle over a fireplace.

You are beside the bed in your bed room, turn towards your left and keep moving forward. Go near the stair case support and turn
towards your right, keep moving forwards and you can find a long corridor on your left. Go through the corridor and the opposite
end you can find a gaming room. Go through that gaming room and opposite end of a room, towards your slight right, you can find
a air hockey table. Go and stand near that table and you reached your destination.

You are facing towards the white door. Turn left and walk towards the swimming pool. Turn left and walk towards the gym
equipment. Turn right. Walk a few steps ahead and stand beside the swimming pool. There is a window towards your left side. You
have reached your point.

now you are on a stair case facing the stairs, climb up the stair case, now you will enter a big hall, now walk to the other end of the
hall and now you will see two doors which are wide opened, exit through the doors and take a right turn and walk on the corridor, to
the send window from the right is your destination.

Right now you're facing towards a curtain. Now turn behind and move towards the wall which is in front of you. Now turn left and
exit the room, there are portraits to your left. Now turn right and move forward in the walkway. You can see an open door to your
left, move towards the door and turn left. Now enter in to the room, there are two washing machines to your right and you can see
shelves in front of you, move towards the shelves and stand in front of it and it is your end point.

You are in a living area, facing towards the corner of a door. Turn towards your slight right and keep moving forward. In front,
towards your slight right, you find an other section. Go near that section and turn towards your left. You find a brown door, go pass
through the door and move forward. You enter into your bedroom. In front, you find a bed, walk towards the bed and stand near it.
You reached your destination.

Right now you're facing towards a bed. Now slightly turn right, there is an open door in front of you, move towards the door and exit
the room. There is a walkway in front of you and some portraits on the wall to your right and a staircase to your left, move forward
in the walkway, continue moving forward in the walkway, until you reach an open door in front of you, there is an open door to your
right, move towards the door and turn right. Now enter in to the room, there is a portrait in between two windows in front of you.
Now slightly turn left, there is a sliding door in front of you, which guides to the balcony, move towards the door and enter in to the
balcony. Now turn left, you can see a sliding door in front of you, move towards the sliding door and enter in to the room and this is
your end point.

Figure 9: Randomly selected English navigation instructions from RxR train. The first two examples are US
English and the others are Indian English.
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FoTehT AT 10 73 3R AL 31797 93 FTHe) 19! AT 3R G T 31T @Y @11 gereht AT alfest of 3R 3R 3m@dy arel ot & NS aa s
TR gorehT TT aTT of 3R TN 3m3Y 93 EIaR o Y o T goTehT AT SIfgeT of TTHA TR ShTel IIT ST TIHT TR 31T TET 8191 TTET T
I ST 3R & ST

FT 3739 EET 6 T H 8,377 T T 37T TGoTT &, T1HA Haf & STof H T HST 8,3 AT AT H T FAT 6, [Seided ATeel T T H1
§¢ GaR 379 &I T1 U ST $eh 11Tl &

3 3780 BT & T @S g € 3T T geehT AT STU H3AT 311X AT 31T Sg1T &3 Sgat & aTe; SIer T 3ty & foaer forare Wl g5
&, 3 ST H G T Ue TUF ofcahl gaT 8,31 38 oird Ueh doah o §,35 da Sffet & a16 3179 &t I 73T &9 319 ot et &
TeHT % fe@ms ¢l 39 & J19] 7 U gaR & 3119 & 30 GaR deh STl &, [0 38 @R & aT9d 3779 3 g1fget T ae e ferehelel §,5761 0
TS A § 38 IR U I[IaET §,387 IR &l AT o7 &, 39 Y agh I 3T 7k $a STl &

3T 1T 37 & TGaR & 3R ASH @S §U & | T8T U Goohl | GTU N HSH Ueh G H 31 d¢ | AR T8 T 910 30T 73 3 A1t 39y 8% &7
T T GIATSAT Aol HTTIT| 3H H FHAL & FTEY ST G0 3N 33 AR e 3191 9¢ | TTHe 3T i T 86 AT Ao AT | 37T q8T
{ ETT 3T HSH 3 197 o Gol &IaTor 3 TR Teh HTHe 3T Teh HT Ao AT | 3T FT o ST Foh ST| 3T STT 3R 3 T T
T T Goll GIATSAT @19 | 3R 319 HTH TG 3T T TeieT g1

9 73 31X GaR & 376X T2 Y goal 1T 73 3 TR 37 39T §¢ 31796 Gt o 8% 37 T 3THARY § 3T 96 3R Foh AT § 3Toeh
T P AN 7 HS §.

31T T @S Y| NS A ol exaTel A 3eT S| 3] AT & TR STT o 33X 3T T Gell eXaTolT & | TR 3 exarel & 37ed STt
1 37Ex ST € 3Tk TTH TR 3 91] #Y ToT 3 A ¥ Er9eh § | 3Tt 39 19k o I ST § | T8 ST &7 3T9eh ST ok 3 9T AT
oIl AT & | 3TIhY 3 EIAToT A 37E AT & | T ST &1 3T STy HT & | STy FSeT & 3T TN ATraRT & | 3raeht iferan &
e Tete & | W7 Teldl § 31T 3 3 3 17 T Gl STl TG@TT SaTT | 1T 3 EXaTer H 3G STl & | & ST &7 3179 91T oo
FEN§ | 3T TET & TIH ST § | TG ST &1 Tl ETTeet T3 & | STfeey FSeT &7 AT HIHT el T & Hof & |1 & TG L1 & AIb ¢ 1
HTIeRT ST ATer |t o AT STl & | T8 STl &1 AT Glfgel HSHT HIG BT o Kelale & I SATH I el ¢ |

T WA aTel BIC 3 1T & ITANT & 3R 5 T §U B | IgT § 10 3T 73 3R AT 3mT ¢ | 3T9eh Tt The; 3T &7 T gram | 3
T ST J8T § 91T 3R 3 3R A1 aTel fGaR ForaoR ves 9 8,39 d ST | 38T § 910 3R 73 31X A1 aTel Go TG 19T & &Xare
AT X e ecT HHT ATT 3R aTel ol Ahe, LT 3 a3dret H T e Thid 91U AR A3 3R FHAIS & TH T ST | AT ATeeT
AT BT

S 73, WA & T 3a, 7 ST, ET0 S AT F GTT A ST, g1 8§ HHe T 3 ST, G0 A 3T ST, F1H T HT ST, F10 o

3R 31T AT, 3T9eRT AGT OR AT & I ST olell &, T $H ol Teh 3T 137 hT FT & AT TS §, 3170 Ures FohdTel §, 3T9eht J8T o) let

38 Y W7 1 T & AT forereh IS fordTel § TET T STIeTT 8, 3179 48 Hebe! § TR GIT o 3T Teh HaT e W61 § AT Tg1 aX a1
TG G o THe ool B

3TIF HTHA TATT 8T § | IS HSH The, Yol alalel I FEe T ATT| JrHAa A9 Hfem Ao 3mief| difedt & e 3R & 3mr a3

WA 37T et Wfedm o 3daf| o S| i & drer 31mY 931 STU A & al FHel 7 & AT Y IR Fd §U I 931 §olh
U HZH ST T & Hihe ol SIaTel 1 TG I ST 31T TG FaX H YA Y| STT A & Tolel Y IR I §U Hid Y [@sh &
HIHA ST Teh ST ST AL TR Teh 3ol AT oI T | FHH I HA0Teh § | &TT o Y o1 1 AT 8 | fore o & aferdr 81

319 T e, el Aot & IT8 @3 | &0 A3 | AIoe areire o 3 o e | oY geer aTe 433 3R amere fo 18 dr & 3 st forer
3R I T A8 |

3Tk 31T9T e g1efY a8 & STC H3 | 3170k 33T AT G191 | ATST HT 37T3Y TA2r ¥ | 3T 37TY GIGRTT I B19TT| I o 1T 33 37T Faier |
3Tk ST 3 e g1ef 13T 38 MfETT T U FR 3T TS gl | 3T9eh 37T == giam |

N TeTe T 3 T3 & SXaTot U FTEY folehel AT STU HS Teh sheH T ST fhT &TT 743 81 197 o el & 37eT SITU 3R &k o1re |

Figure 10: Randomly selected Hindi navigation instructions from RxR train.
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o> &) B &oc Foo AEHP BOA, DA TG0 e20508)8 DRy, VoD JEDPEY BOA DL HEIRT DYy, DotrD ALY BBH
BT 352006508 D estfoct. D I EoBo GrEesS” Burd &) TG0 &ota0d.

’EJQ)‘)C&) 00 &{6& CSQG 00& §otdo 0ot 25’?'00(33, Eﬂébci Q)d‘&)ébé.) B0 Eotio S0 DF 2.8 (5O 06 LICDBS DA, QDSZ’C‘»
Qcﬁm‘&)ébg) D0A §ocdo 0L b%{)o&, og) ¢ 008 Qos° ocdo 0oL D%{)o&, @8 ¢ 008 Q0s° ocdo 0oL D‘i{)o&, og) ¢ o0&
05° §'otdo V0RO b%’oo&, o8 ¢ 008 RoS® Eotio S0 DY 208 (16 A0k LICDRS DA, o8 ¢ H00& LHAEIEL 6N Socdo
A000CE DY 208 S0P DY o)éboé., 08 ¢ Hod soa.,asbso AOH 2,8 DEO oY osboé., og) ¢ 006 2,8 Bothd e Qéb s;dmsbss DOA 28
TP e stod, o8 ¢ 008 Q08’8 Tochd e ‘Déz, Eocdo 0oL D%{)o&, @8 aamasbsa OA Socio V0O I‘.)';’ood, o8¢
Sodo 5.)&&)565.)1’1“ 280 oo 00K b%’ood, R05° Eotio V0L DY 28 (O B0k estfocs.

LA AOH, AL &) AT DO DEOTL0IT DETP 0G0 D%od. QY Q0BT &) TP B (ot DO B0
DFYOC. AETT &) TS TPEA (Do AL DFyoct. R E JEWTT 208 €T) AN, T D) B S DFoc. AT &)
TP (ot (6 S°H0 ;5@0&3 Do, AEBORZDL AOA, DA SW0OL Z‘)vfood BT &) SS"ZJE)J LT 00 AR Ao,
&0 S0 D%, EVars1)) &) zS"s"bw LY T® H00csd e3ti0.

QDY GO BB0S IR &RP) 6. S8 LHEDIDS 20, B0 DY Tr(Bo Mol SHDS D¥yod. S°R S0 DY Haod e3g AL Do
e20DED T B0 6eS” estiod.

Moo ,‘l)w‘)(él S0 008 DHAEDZD ABA, Hdocso BSOS DY, LA 36D &) oo B e300,

D> ey TPYBODEY GRR) 0. DS BB, BB &) TG0 0D WAHBSE D¥yod. M W DGO E0t0d. LAV &) TBoS oD
2ADAS Dy, O™ €Y BTOPS DTG, TR AEDORRIMT €:0) DY PG D06, T°Q DEDLDS BN, AL DFot. AEDRRD
&) TG0 0D S0 DY, o B0 H0B0 oL, S LHADIDS BBA, Boto B DYy erfod. o DELOVEY Bootso, LEDLD
€50€3°00.

Moo &) B 00& ddorr &) 565 b@o, ATA & :"?O' BT BOD &) TG0 B0 e300,

D BPEEBD DD BP0 B T 6. ) ¢ H0E LHADIDL HBA BT TG0 K00d LADHS D¥yod. KDY L JEIPLDD DFH0
DADIDD 28), TG0 E0t008. &8 T G0 S HBSE DOy estioct. B o (g0

&) S 200D LADHEL AN, B0V IELODED BOH 2oty B0 VL Do BTPE, DL A DL EIDRIT®) TOMOT® D¥yol . BRI
> et DY) 8 BED 06000, &8 BEW GBS DY LDHEDDL AB(Iot. DA LRI BEHC. A DY IV &) TG0 509 8
DY 260 DO IEB0G. BDYED L B EAVHI0B. €5 B BO8 DY L8y DIE esfods. X Ao 410y F*do

D08 APV 28 39 &od. Sotso HADDL Y, Fotso BN DELD , VL)L BV & LBy LBAKDL BG D 20 LOOKW 8 Y
SIDCOB0B. V) ¢ 000 Sotio 0L HED , 00 ELOPDEDD 28 e3e) €58 LB SHDCDBV0R . T° DXVE PR ot Soto Lo HED
DEODRD mw‘)é). %) ¢ SODLD Botdd G50 L3 SIDETOW . Eotio D0EIL HED , LD 0, ) ¢ DD 536va A w8 Y
SRDEBO0B. €5 39 DD DAY 08 A0 HED , YOS F'otso HNOEILD DAL ) ¢ DL LEDDR w8 By LBy Ldakw 8 Y
SRDEB006 . HEDZD B0 ST €:0£3°000. DB & LGS esriod .

QDY o &) BAG B0d QT L& DS HOA DECT BOD &) TFe TPBA 08 BAS T°Td. R ) &) BAG H0d Wy
D DA PR 2Py BOD &) T2 Tr(BAN EDDRVOS BB > (5350

S Ao &) w’scSoeSG 000 JST DY. %) ¢l DIH DO, LAEDIDT DO DY. essbc?. 00D SET DY, DEE0DIDT S0H S DF.
oo w8 wso"bi BT, essbd 200D JOTr DY, o) ¢ .333’0 eS"égeSs e350s.

ey e 808 PP GO, LADLD BOD &) TG0 BIOS D, LHAPLD BON, MEADRY &) Ve DY L DY, IR &y 208
T B0 (08 DY, DEOWMT BIFPR €:0) TPer TG0 oS esrfodt.

Figure 11: Randomly selected Telugu navigation instructions from RxR train.
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B DATASHEET:
ROOM-ACROSS-ROOM (RxR)

This document is based on Datasheets for
Datasets (Gebru et al., 2020). Please see the
most updated version here.

MOTIVATION

For what purpose was the dataset created?
RxR was created to advance progress on vision-
and-language navigation (VLN) in multiple
languages (English, Hindi, Telugu). It addresses
gaps in existing datasets by including more
paths that counter known biases and an order
of magnitude more navigation instructions for
three languages plus annotators’ 3D virtual pose
sequences.

Who created this dataset (e.g., which team,

research group) and on behalf of which entity
(e.g., company, institution, organization)?
This dataset was created by Alexander Ku, Peter
Anderson, Roma Patel, Eugene le, Jason Baldridge
and the Google Data Compute team on behalf of
Google Research.

What support was needed to make this
dataset?
Funding was provided by Google Research.

COMPOSITION

What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)?

The instances in RxR are natural language
navigation instructions paired with trajectories
in reconstructed 3D buildings. Each navigation
instruction has been recorded as speech and
transcribed by the speaker. The dataset includes
the text transcriptions, but not the audio files,
although they may be released in future. The
trajectories are provided as paths, consisting of
sequences of viewpoint ids corresponding to
navigation graphs from Anderson et al. (2018b),
and pose traces, consisting of sequences of virtual
camera poses situated in the underlying building
reconstructions which are from the Matterport3D
dataset (Chang et al., 2017). Pose traces and
text transcriptions are timestamped and aligned.
Pose traces are provided for both the instruction

annotator (the Guide), and a second annotator
charged with following the Guide’s instructions
(the Follower).

How many instances are there in total (of
each type, if appropriate)?
RxR contains 126K Guide instructions covering
16.5K sampled paths and 126K human Follower
demonstration paths. Annotations are split equally
across the three languages in the dataset. Refer
to Table 1 for a comparison of the number of
instances to previous datasets and Table 2 for
summary statistics.

Does the dataset contain all possible in-
stances or is it a sample (not necessarily
random) of instances from a larger set?

Refer to Section 3 for a detailed description of the
sampling procedure used to select the paths for
annotation.

What data does each instance consist of?
Each instance consists of a trajectory through a
building from the Matterport3D dataset (Chang
et al., 2017) paired with a natural language navi-
gation instruction. A trajectory can be visualized
as a sequence of 360-degree panoramic images,
or as path traversing a 3D reconstruction of the
building represented as a textured mesh. Refer to
Table 3 for an analysis of linguistic phenomena
in the instructions and Figures 9, 10 and 11 for
instruction examples in English, Hindi and Telugu
respectively.

Is there a label or target associated with
each instance?
When training wayfinding agents to navigate from
natural language instructions, the trajectory is the
target. Instructions and paths are annotated with
unique identifiers.

Is any information missing from individual
instances?
We do not provide the Guide audio recordings, for
reasons outlined in Appendix A.

Are relationships between individual in-
stances made explicit (e.g., users’ movie ratings,
social network links)?

Trajectories may belong to the same building or
different buildings; each instance is annotated with

4410


http://arxiv.org/abs/1803.09010

a scan (building) identifier.

Are there recommended data splits (e.g.,
training, development/validation, testing)?
Yes. We follow the same building splits as
Matterport3D and R2R. Refer to Section 3 for
details regarding the RxR train/validation/test
instance splits.

Are there any errors, sources of noise, or
redundancies in the dataset?
The process we followed to validate instruction
quality using Follower annotations is described in
Section 4.

Is the dataset self-contained, or does it link
to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?
This dataset is based on building reconstructions
from the Matterport3D dataset (Chang et al., 2017)
and viewpoint navigation graphs from the R2R
dataset (Anderson et al., 2018b). Apart from these
dependencies, RxR is self-contained, i.e., it does
not rely on web resources.

Does the dataset contain data that might be
considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient
confidentiality, data that includes the content
of individuals’ non-public communications)?
No.

Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety?

No.

Does the dataset identify any subpopula-
tions (e.g., by age, gender)?
No.

Is it possible to identify individuals (i.e., one
or more natural persons), either directly or
indirectly (i.e., in combination with other data)
from the dataset?

No.

Does the dataset contain data that might
be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual
orientations, religious beliefs, political opinions

or union memberships, or locations; financial
or health data; biometric or genetic data;
forms of government identification, such as
social security numbers; criminal history)?
Each natural language instruction in the sample is
either in English, Hindi or Telugu, thus potentially
revealing linguistic origin. However, no other
annotator data is included in the dataset.

COLLECTION

How was the data associated with each
instance acquired?
Refer to Section 4 for details of the annotation
procedure, as well as measures undertaken to
validate the data.

Over what timeframe was the data col-
lected?
The dataset was collected between March 2020
and September 2020.

What mechanisms or procedures were used
to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software
program, software API)?

We developed a web-based annotation tool to
collect the data. It is described further in Section 4
and screenshots are included in Figure 6.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., deter-
ministic, probabilistic with specific sampling
probabilities)?

Please see Section 3 and Figure 2 for details of the
strategy for selecting paths for annotation.

Who was involved in the data collection pro-
cess (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how
much were crowdworkers paid)?

Refer to Appendix A.

Does the dataset relate to people?
Yes.

Did you collect the data from the individuals
in question directly, or obtain it via third
parties or other sources (e.g., websites)?
Directly from the individuals.
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Were the individuals in question notified
about the data collection?
Yes.

Did the individuals in question consent to
the collection and use of their data?
Yes.

language tasks, multilingual learning and so on.

Is there anything about the composition
of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might
impact future uses?

No.

PREPROCESSING / CLEANING /
LABELING

Was any preprocessing/cleaning/labeling of
the data done(e.g.,discretization or bucketing,
tokenization, part-of-speech tagging, SIFT
feature extraction, removal of instances, pro-
cessing of missing values)?

Please see Section 4 describing the process
used to remove and re-annotate instances in
which the Follower was not able to correctly
follow the path described in the Guide’s instruction.

Was the “raw” data saved in addition to
the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?

Yes.

used to
instances

Is the software
cess/clean/label  the

prepro-
available?

We plan to publicly release our web-based
annotation tool.

USES

Has the dataset been used for any tasks
already?
We have used RxR to train vision-and-language
navigation (VLN) agents as described in the paper.

Is there a repository that links to any or all
papers or systems that use the dataset?
No, although we plan to release a test server and
leaderboard to support the research community
using the dataset.

What (other) tasks could the dataset be used
for?
Training models to generate natural language
navigation instructions, visual referring expression
grounding and comprehension, grounded dialog
tasks, pre-training for various other vision-and-

DISTRIBUTION

Will the dataset be distributed to third
parties outside of the entity (e.g., company,
institution, organization) on behalf of which
the dataset was created?

Yes, this dataset is open to use by the research
community.

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub)?
Via GitHub and Google Cloud Storage.

When will the dataset be distributed?
This dataset has been distributed on publication.

Will the dataset be distributed under a
copyright or other intellectual property (IP)
license, and/or under applicable terms of use
(ToU)?

RxR is released under a CC-BY license.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances?

Yes, the Matterport3D dataset is governed by the
Matterport3D Terms of Use.

MAINTENANCE

How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?
Email contact: rxrvlin@google.com.

Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete
instances)?

No.
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