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Abstract

Current state-of-the-art text generators build
on powerful language models such as GPT-
2, achieving impressive performance. How-
ever, to avoid degenerate text, they require
sampling from a modified softmax, via tem-
perature parameters or ad-hoc truncation tech-
niques, as in top-k or nucleus sampling. This
creates a mismatch between training and test-
ing conditions. In this paper, we use the
recently introduced entmax transformation to
train and sample from a natively sparse lan-
guage model, avoiding this mismatch. The
result is a text generator with favorable per-
formance in terms of fluency and consistency,
fewer repetitions, and n-gram diversity closer
to human text. In order to evaluate our model,
we propose three new metrics for comparing
sparse or truncated distributions: ε-perplexity,
sparsemax score, and Jensen-Shannon diver-
gence. Human-evaluated experiments in story
completion and dialogue generation show that
entmax sampling leads to more engaging and
coherent stories and conversations.

1 Introduction

The last few years have seen a tremendous progress
in neural language modeling, with a strong im-
pact on key NLP tasks such as machine trans-
lation (Sutskever et al., 2014; Bahdanau et al.,
2015; Vaswani et al., 2017), speech recognition
(Chorowski et al., 2015), summarization (Rush
et al., 2015), and open-ended text generation (Rad-
ford et al., 2019). Benefiting from large amounts
of data, models such as Transformer-XL (Dai
et al., 2019) and GPT-2 (Radford et al., 2019) have
achieved impressive perplexity scores on language
modeling. However, the generated text is still often
repetitive and incoherent (Table 1).

A downside of current approaches is the mis-
match between training and testing conditions:

Context:“Are they ready to go live?” Zuko asked. “Yup, in
just a minute” Tomi replied as he leaned back in
his reclining chair. This was a moment that the
entire galaxy would see. After 10 years...

Greedy: ... of study, the scientists had finally come to the
conclusion that the universe was not a place for
living. The scientists had been studying the uni-
verse for over a century. They had been studying
the universe for over a century.

Top-k: ... of studying this phenomenon, the team had
finally come up with a plan to study what the aliens
were doing. The team would be looking for a way
to create a space station. “And what would you call
it?” “What would you call the space station?”

Nucleus: ... of diligent testing, and some test run after that,
the results were well received. “they’re waiting for
you, because there’s no way they would.” Stowedly
at a local wedding place, the two archaeologists
spoke together.

Entmax: ... of hibernation, Tomi was back. These last days
had been a significant step forward in his mission.
This time, Tomi was not alone. All the empires had
aligned together and the world’s leadership began
to openly support his mission.

Table 1: Completion of a story from the Writing-
Prompts dataset, using the greedy decoding, top-k sam-
pling, nucleus sampling, and entmax sampling (our pro-
posal) methods. Repetitions and off-topic text are high-
lighted.

models are usually trained to maximize the likeli-
hood of observed text. However, when generating,
state-of-the-art models sample from a truncated
and renormalized softmax distribution (Fan et al.,
2018; Holtzman et al., 2020). They do so as a
compromise to avoid two extremes: a determin-
istic search for the most probable sentence (via
greedy decoding or beam search) usually results
in dull and repetitive “degenerate text” (Li et al.,
2016a, 2017; Holtzman et al., 2020); stochastically
sampling from the full softmax distribution, on
the other hand, often generates many implausible
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words from the tail of the distribution (Fan et al.,
2018). The recently proposed nucleus sampling ap-
proach (Holtzman et al., 2020) sets the truncation
point based on the cumulative distribution func-
tion, i.e., it considers the top words with a cumu-
lative probability P . In this approach the number
of words to sample from are selected according to
the context, in opposition to top-k sampling (Fan
et al., 2018), which samples from the k most prob-
able words. However, the “sparsity” introduced by
both methods is artificially imposed at run time,
not learned during training.

A second problem is that it is hard to compare
different truncation strategies—for example, we
cannot easily evaluate how the resulting truncated
distributions behave as language models, since the
most widely used metric for language modeling—
perplexity—cannot handle sparse distributions: if a
model assigns zero probability to a single reference
word, it gets infinite perplexity for the entire sam-
ple. For this reason, previous works generate from
a truncated softmax, but report the perplexity of
the full softmax distribution (Welleck et al., 2020;
Li et al., 2020). Others use the latter to compare
perplexity on the generated text with that on hu-
man text (Holtzman et al., 2020, §4.2), or resort to
distributional statistics (Zhu et al., 2018).

In this paper, we propose a new approach—
entmax sampling (§3)—that eliminates the mis-
match between training and test conditions. Key
to our approach is the recently proposed entmax
transformation (Peters et al., 2019). Entmax trans-
forms a vector of scores into a sparse probability
distribution, preventing implausible words from
receiving any probability mass. Moreover, it does
so natively: it comes with a well-defined loss func-
tion that allows it to learn its sparsity automatically
from the data, during training. This results in a
new stochastic text generator where the number of
possible word types varies with the context (like
nucleus sampling), but that generates by sampling
directly from its output distribution (like softmax),
and where the sparsity of this distribution is present
during training (unlike any existing method).

As a second contribution, we propose three new
metrics to support the evaluation of sparse lan-
guage models (§4): ε-perplexity, sparsemax score,
and Jensen-Shannon divergence. We show that
these metrics are well supported theoretically and
can be used to compare our method with various
truncation and temperature techniques.

Experiments in language modeling, story com-
pletion, and dialogue generation (§5) show that
entmax sampling generates more diverse text and
fewer repetitions than nucleus and top-k sampling.1

1.1 Related work
Decoding methods. While greedy decoding and
beam search are popular strategies for sequence-
to-sequence tasks, such as machine translation,
Knowles et al. (2016) and Stahlberg and Byrne
(2019) showed that searching for the most probable
sentence in a model trained with likelihood max-
imization has a bias for short sentences. In open-
ended generation, Fan et al. (2018) and Holtzman
et al. (2018, 2020) have shown that these meth-
ods lead to repetitions and dull text. To overcome
this, several authors proposed beam search variants
which promote word diversity (Li et al., 2016b;
Vijayakumar et al., 2018; Kulikov et al., 2018).
An alternative to deterministic text generation is
to sample directly from the softmax distribution.
However, since the probability mass tends to ac-
cumulate in a long tail, this procedure generates
unlikely words too often, leading to degenerate text
(Fan et al., 2018; Holtzman et al., 2020). This can
be mitigated by lowering the softmax temperature
(Ficler and Goldberg, 2017), by sampling from the
top-k most probable words only (Fan et al., 2018;
Radford et al., 2019), or through nucleus sampling
(Holtzman et al., 2020). We compare against these
methods in §5.

Diversity-promoting models. In addition to
new decoding methods, models that aim to in-
crease word diversity and diminish repetition have
also been introduced. Xu et al. (2018) proposed
a diversity-promoting generative adversarial net-
work, which rewards novel and fluent text. Holtz-
man et al. (2018) proposed augmenting the lan-
guage model with several discriminators. More
recently, Welleck et al. (2020) proposed augment-
ing the loss with an unlikelihood term that penal-
izes the generation of tokens that are present in the
context, a method against which we compare in §5.

Sparse transformations and losses. At the core
of our work are sparse alternatives to the softmax
transformation. Martins and Astudillo (2016) pro-
posed sparsemax and applied it to multi-label clas-
sification. This was generalized by Peters et al.

1The code used for the experiments and for the pro-
posed metrics is available at https://github.com/
deep-spin/sparse_text_generation.

https://github.com/deep-spin/sparse_text_generation
https://github.com/deep-spin/sparse_text_generation


4254

(2019) via their α-entmax transformation, which
was applied to sequence-to-sequence models for
morphological inflection and machine translation.
In contrast to our work, they performed determin-
istic decoding with beam search, and they did not
consider open-ended generation.

Evaluation metrics. The most common metrics
to evaluate text generation models are perplexity
(Jelinek et al., 1977) and BLEU (Papineni et al.,
2002). For open-ended generation, Zhu et al.
(2018) observed that “no single metric is compre-
hensive enough”. Other evaluations include corpus
n-gram overlap (Yu et al., 2017; Press et al., 2017),
and the Fréchet distance (Cı́fka et al., 2018). These
approaches are aimed at the (harder) problem of
evaluating the quality of generated text. By con-
trast, our paper proposes new metrics for evaluat-
ing language models in the task of predicting the
next word conditioned on ground truth context (like
perplexity does), but supporting sparse probability
distributions (which perplexity does not).

2 Language Modeling

Language models assign probability to word se-
quences x = 〈START, x1, . . . , xT , STOP〉, where
each xt is in a vocabulary V , and T ∈ N. This prob-
ability can be written as pθ(x) =

∏T+1
t=1 pθ(xt |

x<t). We would like the model θ to assign high
probability to real sentences, i.e., each distribution
pθ(· | x<t) should assign a large probability value
to the ground truth xt.

Given a set S of training sentences, the usual
strategy for learning the language model parame-
ters θ is to minimize the negative log-likelihood:

L(θ) = −
|S|∑
i=1

Ti∑
t=1

log pθ(x
i
t|xi<t). (1)

The standard choice to model pθ(·|x<t) in Eq. 1
is to compute a score vector zt by conditioning
on the context x<t, and then applying a softmax
transformation, pθ(·|x<t) = softmax(zt), where

[softmax(zt)]k =
exp(ztk)∑
j exp(ztj)

. (2)

At decoding time, the language model generates
sentences one word at a time, by sampling from the
learned probability distribution. However, softmax
yields a dense distribution, i.e., some probability
mass (even if small) is assigned to all the words
in the vocabulary. Holtzman et al. (2020, §3) have

shown that, if we sample from this distribution di-
rectly, the resulting text becomes degenerate, with
common incoherences arising due to the unreliabil-
ity of the tail of the distribution. This motivated a
line of work proposing “ad-hoc” modifications to
the softmax distribution, to reduce the effect of the
tail. Two of the most successful techniques, top-k
and nucleus sampling (Fan et al., 2018; Holtzman
et al., 2020), do so by truncating and renormalizing
the distribution pθ(·|x<t). Note that these tech-
niques are applied only at decoding time—during
training the original softmax distribution is left un-
touched, being used as part of the optimization of
the cross-entropy loss.

Our alternative to these ad-hoc modifications
builds on learnable sparse transformations, as we
shall see in §3. These transformations can produce
sparse, zero-tailed probability distributions, learn-
ing the amount of sparsity from data. Therefore,
sampling from these distributions directly is a natu-
ral way to prevent degenerate text.

3 Entmax Sampling

Key to our method is the recently proposed α-
entmax family of transformations2 (Peters et al.,
2019), parametrized by a scalar parameter α ≥ 1:

α-entmax(zt) := argmax
p∈4d

p>zt + Hα(p). (3)

Above, 4d :=
{
p ∈ Rd |

∑d
i=1 pi = 1,p ≥ 0

}
is the probability simplex, and Hα is the Tsallis
α-entropy (Tsallis, 1988):

Hα(p) :=

{
1

α(α−1)
∑

j(pj − pαj ), α 6= 1

−
∑

j pj log pj , α = 1.
(4)

With α = 1 and α = 2, we recover the Shan-
non and Gini entropies, respectively.3 When
α→∞, Hα(p)→ 0. Thus, 1-entmax, 2-entmax,
and ∞-entmax recover softmax, sparsemax, and
argmax, respectively. Blondel et al. (2019) have
shown that, for α > 1, entmax is able to out-
put sparse probability distributions, where some
words get exactly zero probability, whereas soft-
max (α = 1) does not have this capability.

How can we learn this output sparsity during
training? Following Peters et al. (2019), we re-
place the negative log-likelihood loss in Eq. 1 by

2https://github.com/deep-spin/entmax.
3The Gini entropy is H2(p) :=

1
2

∑
j pj(1− pj).

https://github.com/deep-spin/entmax
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L(θ) =
|S|∑
i=1

Ti∑
t=1

`α(zt(θ, x<t), xt), (5)

where `α(zt, x) is the α-entmax loss:

`α(zt, x) := (pθ − ex)
>zt + Hα(pθ), (6)

where pθ = α-entmax(zt), and ex is the one-hot
vector corresponding to the ground truth word x.
When α = 1, we still recover the negative log-
likelihood, `α(zt, x) = − log pθ(x), and, when
α = 2, this corresponds to the sparsemax loss
(Martins and Astudillo, 2016), to be revisited in §4.

Entmax losses belong to the wider class of
Fenchel-Young losses (Blondel et al., 2019) and,
consequently, are convex on z and differentiable
(with gradient ∇z`α(z, x) = −ex + pθ). For
α > 1, they have a separation margin: the loss is
zero iff ztx ≥ ztx′ +

1
α−1 for all x′ 6= x, in which

case pθ = ex, i.e., the model puts all its probability
mass in the correct word. This allows the model to
be adaptive to the degree of uncertainty present: in
some cases there are few plausible words, so most
words should have probability zero, while in other
cases a higher number of words are plausible and
should be given probability mass.

Entmax sampling. At test time, we simply sam-
ple from the categorical distribution obtained by
applying the entmax transformation to the scores
zt given by the model:

xt ∼ pθ(· | x<t) = α-entmax(zt(θ, x<t)). (7)

Note that, in contrast to previously proposed meth-
ods such as top-k sampling and nucleus sampling
(Holtzman et al., 2020), we sample directly from
the learned sparse probability distribution over the
words, without any calibration or ad-hoc modifi-
cation. As in nucleus sampling and in opposition
to top-k sampling, entmax sampling considers a
varying number of tokens depending on the con-
text. Moreover, as we show in Table 4, with entmax
sampling this variability is higher.

4 Evaluation Metrics

Language models are commonly evaluated by com-
puting their perplexity (ppl) on held-out data. Per-
plexity assesses the ability of a language model to
predict the next word given the context:

ppl = exp

(
− 1

T

T∑
t=1

log pθ(xt | x<t)

)
. (8)

However, its computation involves the logarithm
of a probability. This poses a problem when we are
using sparse or truncated probability distributions,
since limp→0 log p = −∞. Usually, authors report
the values for perplexity computed on the original
probability distribution, before truncation. How-
ever, this metric does not allow different sparse
decoding strategies to be compared.4 As an alter-
native, we propose three different metrics (to better
understand these metrics, comparative plots are
shown in Fig. 2, App. E).

ε-perplexity. To be able to compute the perplex-
ity for sparse distributions, the simplest approach
is to smooth it by adding a small value ε to all
terms followed by renormalization, as in additive
(Laplace) smoothing (Chen and Goodman, 1999):

ε-ppl = exp

(
− 1

T

T∑
t=1

log
pθ(xt | x<t) + ε

1 + ε|V|

)
.

(9)
Note that, like perplexity, ε-ppl only depends on
θ via the probabilities assigned to the reference
words. When used as a metric for a language
model, we may regard ε as a calibration param-
eter that the language model is allowed to tune to
better match the reference. We show in App. A
that the optimal value of ε (i.e., the one that leads
to the smallest ε-ppl) can be obtained from these
probabilities by solving a simple convex optimiza-
tion problem—this is convenient, since it avoids
the need for manual tuning. A disadvantage of
ε-ppl is that it still does not evaluate the original
sparse distribution, but rather a modified version of
it. However, when applied to variants of truncated
softmax, by collapsing all the truncated probabil-
ities to the same value ε, it is useful to measure
how much truncation deteriorates its ability to rank
words, compared to softmax.

Sparsemax score. We can derive a more interest-
ing metric that handles sparse distributions directly.
By setting α = 2 in Eq. 6, 5 we obtain the sparse-
max loss proposed by Martins and Astudillo (2016),
`2(z, x) = (pθ − ex)

>z + H2(pθ). We define the

4This is important not only when we have sparse or trun-
cated probability distributions, but also to compare language
models using different vocabularies: when using perplexity,
if the ground truth word is not contained in the vocabulary,
one usually considers the probability attributed to an UNK
token instead of a zero probability, which leads to an unfair
comparison between models with different vocabularies.

5If we set α = 1 instead, we revert to perplexity.
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sparsemax score (sp) as:

sp = 1−min{`2(z, x) | sparsemax(z) = pθ}
= 1− (pθ − ex)

>pθ − H2(pθ)

= pθ(x) + H2(pθ), (10)

where H2 is the Gini entropy (see footnote 3). Un-
like perplexity, this score is bounded. In fact,
it is always between 0 (when pθ = ex′ with
x′ 6= x) and 1 (when pθ = ex). We prove this
fact in App. B. Interestingly, when the model pθ
is deterministic (e.g., when it comes from greedy
search), we have H2(p) = 0, and the sparsemax
score simply becomes the word accuracy. In
the opposite case, when pθ is uniform, we obtain
sp = 1

|V| +
1
2

(
1− 1

|V|

)
→ 0.5 when |V| → ∞.

We show in App. C that this score is related to
the Patrick-Fischer distance (Patrick and Fischer,
1969; Deza and Deza, 2009, p. 262).

Jensen-Shannon Divergence. Given two dis-
crete probability distributions pθ and q, and denot-
ing their mixture (arithmetic mean) as m := pθ+q

2 ,
and the Kullback-Leibler divergence as KL, the
Jensen-Shannon divergence is defined as:

JS(pθ, q) =
1

2
KL(pθ||m) +

1

2
KL(q||m)

=
1

2

∑
x∈V

pθ(x) log

(
pθ(x)

m(x)

)
+

1

2

∑
x∈V

q(x) log

(
q(x)

m(x)

)
. (11)

The Jensen-Shannon divergence can be inter-
preted as a mutual information as follows (Grosse
et al., 2002; Banerjee et al., 2005): consider a
two-step process where we first toss a fair coin
B ∼ Bernoulli(12). If the outcome is heads, we
sample the next word X according to the model
pθ(·); if it is tails, we sample x ∼ q(·). A word
generated according to this process is governed by
the mixture m(·), x ∼ m(·). The Jensen-Shannon
divergence between pθ and q is the mutual informa-
tion between the random variablesB andX , which
equals H(B) − H(B | X), where H is the Shan-
non entropy and H(B | X) =

∑
x∈V m(x)H(B |

X = x) is the conditional entropy. Hence, the
Jensen-Shannon divergence can be seen as the re-
duction of uncertainty about the source B when we
observe a sample x from the mixture m(·). The
more similar the two distributions pθ and q are, the
smaller this reduction is.

In our experiments, we report the JS as an evalu-
ation metric for language models, setting q = ex
(i.e., a one-hot distribution placed on the ground
truth word x) and averaging the JS over the words.
Like the sparsemax score described above, the JS
is bounded: it is zero if pθ = ex, and maximal
(log(2)) when pθ is a one-hot distribution placed
on a different word. We show in App. D that, like
ε-ppl (but unlike sp), the JS only depends on θ via
the probabilities assigned to the reference words.

Comparing multiple models. The generalized
JS allows to compare two or more trained models:

JS(p1, . . . ,pK) =
1

K

K∑
k=1

KL(pk‖m) (12)

where p1, . . . ,pK are the probability distributions
of the different models and m = 1

K

∑K
k=1 p

k is
their mixture. This property can be useful for mea-
suring the diversity between multiple models (e.g.,
when used in an ensemble system). We use this
metric in App. I to rank the sentences in which the
different models we compare disagree the most.

5 Experiments

We compare the different methods in three NLP
tasks: language modeling (§5.1), story completion
(§5.2), and dialogue generation (§5.3). In language
modeling, we evaluate the model’s fluency, while
in story completion we also evaluate if the meth-
ods generate coherent and “interesting” text. In
dialogue generation, we evaluate the methods’ per-
formance in an interactive task.

5.1 Language Modeling
Datasets and metrics. We performed experi-
ments on three widely used language modeling
datasets: WikiText-2 and WikiText-103 (Merity
et al., 2016), and BookCorpus (Zhu et al., 2015).
WikiText-2 and WikiText-103 are composed of
Wikipedia articles, comprising around 2 and 100
million tokens for training, respectively. Their val-
idation and test sets have 217,000 and 245,000
tokens. BookCorpus is composed of 11,038 freely
available books. We used the standard split: 800
million tokens for training, 260,000 for validation,
and 280,000 for testing.

We report the sparsemax score, Jensen-Shannon,
and ε-perplexity (§4) to evaluate the methods’ flu-
ency, and the REP and WREP6 (Welleck et al., 2020)

6REP measures the number of times that a word from the
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WikiText-2 WikiText-103 BookCorpus

sp JS ε-ppl REP WREP sp JS ε-ppl REP WREP sp JS ε-ppl REP WREP

Softmax .682 .376 12.74 .407 .174 .683 .375 13.29 .349 .162 .680 .366 10.80 .376 .183
Softmax-τ .680 .369 12.97 .414 .176 .682 .368 13.65 .359 .168 .677 .363 10.96 .391 .191
Greedy .491 .358 459.13 .525 .232 .499 .355 512.50 .450 .210 .489 .354 506.86 .461 .211
Top-k .682 .363 20.93 .437 .196 .683 .364 21.90 .373 .181 .676 .360 22.25 .399 .203
Nucleus .684 .371 14.65 .412 .175 .686 .370 15.51 .357 .167 .678 .362 16.48 .392 .193
Unlikelihood .473 .365 599.65 .467 .210 .471 .366 610.06 .410 .200 .475 .364 587.04 .418 .203
Entmax .688 .369 13.91 .407 .171 .694 .373 13.23 .346 .160 .687 .362 10.70 .374 .179

Table 2: Language model evaluation on WikiText-2, WikiText-103, and BookCorpus test sets. For all metrics
except sp, lower is better. See App. F for the results on the validation set.

to evaluate the methods’ tendency to generate rep-
etitions. All metrics are computed at the BPE
level (Sennrich et al., 2016).

Fine-tuning GPT-2. We fine-tuned the GPT-2
medium model (Radford et al., 2019), which con-
sists of a 24 layer transformer with 345 million
parameters.7 We fine-tuned three models with
the following losses: negative log-likelihood (used
for softmax, greedy, top-k, and nucleus sampling),
unlikelihood training (Welleck et al., 2020), and
entmax loss. For the unlikelihood training objec-
tive we replicated the authors’ experiments. How-
ever, due to GPU memory constraints we had to
reduce the context size from 512 to 256. The hyper-
parameters were chosen based on a grid search
over α ∈ {1.1, 1.2, 1.3, 1.5} for entmax sam-
pling, k ∈ {5, 10, 20, 50, 100} for top-k sampling,
P ∈ {0.5, 0.8, 0.85, 0.9, 0.95, 0.97} for nucleus
sampling, and τ ∈ {0.7, 0.8, 0.9, 0.95, 0.97} for
softmax with decreased temperature. The selected
hyperparameters are reported in Table 3. We re-
port the results obtained on the validation sets of
WikiText-2, WikiText-103, and BookCorpus on Ta-
ble 10. Additional settings and the computational
infrastructure are described in App. F.

Results. Table 2 shows the results. We observe
that entmax sampling achieves consistently better
sparsemax scores and number of repetitions. It also
leads to better ε-perplexity scores than all other
methods except plain softmax, which attains simi-
lar scores (entmax is slightly better for 2 out of 3
datasets). The JS score appears to favor extremely

previous l words is repeated, when generating the following
word. WREP does the same, discarding words that are also
repeated in the ground truth. We report the average of REP
and WREP for l ∈ {16, 32, 128, 512}.

7We use the PyTorch re-implementation at https://
github.com/huggingface/transformers.

WikiText-2 WikiText-103 BookCorpus

α 1.2 1.2 1.3
k 50 50 20
P 0.95 0.95 0.90
τ 0.95 0.95 0.90

Table 3: Values of hyperparameters selected for Lan-
guage Modeling.

MEAN MEDIAN SD MIN MAX

Softmax 50,257 50,257 0 50,257 50,257
Softmax-τ 50,257 50,257 0 50,257 50,257
Greedy 1 1 0 1 1
Top-k 50 50 0 50 50
Nucleus 562 210 1,187 1 19,945
Entmax 2,532 1,210 2,643 1 28,364

Table 4: Mean, median, standard deviation, minimum,
and maximum number of tokens considered by each
decoding method on the Wikitext-103 test set.

sparse decoders, with greedy decoding achieving
the best scores (but at the expense of many repeti-
tions).8

To help understand why entmax leads to better
sparsemax scores and fewer repetitions, Table 4
shows the mean, median, standard deviation, min-
imum, and maximum number of tokens each de-
coding strategy considers when predicting each
word, on the Wikitext-103 test set. We see that
entmax sampling and nucleus sampling consider
a lot more tokens than greedy decoding and top-k
sampling, which may be the reason for the smaller
number of repetitions. A possible explanation for
entmax sampling outperforming nucleus sampling
is its higher standard deviation, suggesting that its

8Figure 4 of App. J shows results on automatic metrics
for top-k, nucleus, and entmax sampling on WikiText-103
validation set for various K, P , and α.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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sp JS ε-ppl REP WREP

Training with NLL

Top-k .683 .364 21.90 .373 .181
Nucleus .686 .370 15.51 .357 .167
Entmax .670 .378 20.69 .365 .183

Training with Entmax Loss

Top-k .677 .384 46.58 .364 .196
Nucleus .668 .373 43.19 .350 .172
Entmax .694 .373 13.23 .346 .160

Table 5: Language modeling ablation study on
WikiText-103 test set.

sparsity range is more adaptive to the context.

Ablation study. In order to understand whether
the improved performance is caused by the mitiga-
tion of the sparsity mismatch between training and
test times, we experimented (i) decoding with the
entmax sampling method from a language model
fine-tuned with negative log-likelihood, and (ii) de-
coding with top-k sampling and nucleus sampling
from a model fine-tuned with the entmax loss. We
conducted these experiments on the WikiText-103
dataset.

As shown in Table 5, our proposed approach,
which decodes with entmax sampling from a model
also fine-tuned with the entmax loss, is the one
which leads to the best scores, as we see a con-
siderable degradation when entmax is only used
at training or at decoding time. This corroborates
our hypothesis that the improved results come from
eliminating the mismatch between training and de-
coding.

5.2 Story completion

Next, we analyze the model’s ability to generate
long sequences of text using different sampling
methods.9 We performed completion of stories
from the WritingPrompts dataset (Fan et al., 2018),
using the models fine-tuned on BookCorpus. Writ-
ingPrompts is a collection of human-written sto-
ries paired with writing prompts. We randomly se-
lected 1,000 stories which were at least 200 words
long and used the first 50 words as context for the
models. Examples of stories generated with each
method (Table 1 and Table 13 of App. K) suggest
that entmax sampling leads to more engaging sto-
ries while preventing degenerate text. To measure

9Softmax sampling is not considered since it has been
shown to generate degenerate text (Holtzman et al., 2020).

1.0 1.5 2.0 2.5 3.0 3.5 4.0
n

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Di
st

in
ct

-n

human
entmax
nucleus
softmax-t
top-k
unlikelihood

Figure 1: Plot of the distinct-n metric for each sampling
method on story completion, with n = {1, 2, 3, 4}. The
distinct-n results for greedy decoding are not shown
since they are very small (0.25 for distinct-4).

the stories’ word diversity, we show in Figure 1
the distinct-n metric10 (Li et al., 2016a) for the
stories generated by each model. It can be seen
that entmax sampling leads to more diverse unique
n-grams for n ∈ {1, 2, 3, 4}, closer to human gener-
ated text. We also measured the number of unique
words in the stories generated: entmax sampling
generated 14,702 different words, while softmax
with decreased temperature, greedy decoding, top-
k, nucleus sampling, and unlikelihood generated
12,447, 1,750, 11,803, 12,008, and 5,509 words,
respectively. As expected, entmax leads to higher
word diversity on par with human stories, which
contain 15,377 different words.

Human evaluation. We performed human eval-
uation of greedy decoding, unlikelihood training,
top-k, nucleus, and entmax sampling on comple-
tion of stories from the WritingPrompts datasets.
We randomly selected 100 stories to perform the
human evaluation. For each story, 5 judges from
Amazon Mechanical Turk evaluated the story com-
pletions in 3 metrics: fluency (whether the text is
syntactically and semantically correct), coherence
(whether the story continuation is related to the pro-
vided context and is consistent), and engagement
(whether the annotator felt interested in the story).
Ratings were given on a 5-point Likert scale, and
the mean for each metric is reported in Table 6. Fur-
ther details, including a screenshot of the annotator
interface, are described in App. G. We observe that
entmax sampling outperforms all other methods on

10Distinct-n corresponds to the number of distinct n-grams
divided by the total number of generated words.
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FLUENCY COHERENCE ENGAGEMENT

Greedy 2.5 2.3 2.3
top-k 3.3 2.9 2.9
Nucleus 3.5 3.1 3.2
Unlikelihood 3.3 3.0 3.2
Entmax 3.5 3.2 3.6

Table 6: Human evaluation of story completion. All
scores marked in bold at each column outperform
the others with statistical significance, according to
the Wilcoxon’s test with p-value < 0.01. The inter-
annotator agreement (Fleiss Kappa) is 0.45 for fluency,
0.41 for coherence, and 0.63 for engagement.

coherence and engagement, having similar scores
as nucleus sampling on fluency.

5.3 Dialogue Generation

To evaluate the sampling methods in an interactive
setting, we experiment with dialogue generation.
Its goal is to generate an utterance, given a context
consisting of the previous utterances in the dialogue
and, in some cases, initial context sentences with
related information that can be describing personas,
knowledge, or scenarios.

Datasets and metrics. We performed experi-
ments with the PersonaChat dataset (Zhang et al.,
2018). It is a crowd-sourced dialogue dataset in
which speakers were asked to condition their utter-
ances on predefined personas. It contains 164,356
utterances over 10,981 dialogues. As there is
no public test set, we report results on the val-
idation set. We evaluate the word F1-score, ε-
perplexity, sparsemax score, and Jensen-Shannon
divergence. As for the language modeling experi-
ments, ε-perplexity, sparsemax score, and Jensen-
Shannon are computed at the BPE level. We also
report distinct-n metric for n = {1, 2} and analyze
how the models behave in dialogue simulations
between two agents (Li et al., 2016c).

Fine-tuning GPT-2. In order to apply GPT-2
medium to the dialogue generation task, we fol-
low Wolf et al. (2019) and Budzianowski and
Vulić (2019): the input given to the language
model consists of the sentences describing the
persona the model should impersonate, and the
history utterances. In order for the model to
adapt to dialogue, the word and position em-
beddings are augmented with dialogue-state em-
beddings that indicate whether tokens are from
a persona sentence, speaker 1, or speaker 2.

sp JS ε-ppl F1 DIST-1 DIST-2

Softmax 0.636 0.412 17.21 14.21 0.4325 0.8422
Softmax-τ 0.621 0.393 17.18 16.31 0.4312 0.8289
Greedy 0.422 0.401 1031.79 21.79 0.4305 0.7958
Top-k 0.626 0.393 47.79 17.34 0.4378 0.8344
Nucleus 0.632 0.399 26.98 15.98 0.4334 0.8436
Entmax 0.642 0.393 17.10 15.02 0.4532 0.8494

Table 7: Automatic evaluation of dialogue generation
on the Persona-Chat validation set.

These embeddings are learned during fine-tuning.
The hyperparameters α, k, P , and τ were cho-
sen with a grid search over the sets of values
α ∈ {1.2, 1.3, 1.5, 2}, k ∈ {5, 10, 20, 50, 100},
P ∈ {0.5, 0.8, 0.85, 0.9, 0.95}, and τ ∈
{0.7, 0.8, 0.9, 0.95}, using the sparsemax score.
The values chosen are 1.5, 10, 0.9, and 0.8, re-
spectively. Additional settings are described in
App. H.

Automatic metrics results. We report the results
in Table 7. Entmax again outperforms all the other
methods in sparsemax score and ε-perplexity. It
also has the lowest JS (same as top-k and softmax-
τ ). Entmax also leads to fewer repetitions, having
higher distinct-1 and distinct-2 scores. However,
its F1 score is lower (similar findings have been
reported in Li et al. (2020)). This can be due to di-
alogue generation being an open-ended generation
task that can have multiple correct answers.

Additionally, we simulated a conversation be-
tween two agents of the same model (Li et al.,
2016c). We chose different personas randomly for
the two agents. Then a first utterance from the
PersonaChat dataset was given as context. Some
conversation examples are presented in Tables 14-
17 of App. L. We measured the average length
of conversations, considering that the conversa-
tion is finished when utterances overlap 80% or
more, when there is no response by an agent, or
when it reaches 20 utterances (similar procedure
as Li et al. (2016c)). We also measured the num-
ber of unique words, and the distinct-n metric for
n = {1, 2}. As shown in Table 8, entmax sampling
leads to longer conversations with higher word di-
versity and higher number of distinct 1-grams and
2-grams.

Human evaluation. Finally, we performed hu-
man evaluation following the ConvAI2 challenge:
12 volunteers had 30 conversations each with mod-
els using the different sampling methods. The vol-
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LENGTH UNIQUE WORDS DIST-1 DIST-2

Softmax 13.98 11,242 0.6084 0.8824
Softmax-τ 14.82 5,495 0.5384 0.6936
Greedy 7.83 4,229 0.4853 0.6732
Top-k 14.72 8,833 0.5623 0.8461
Nucleus 15.56 10,098 0.5836 0.8728
Entmax 15.83 13,020 0.6546 0.9211

Table 8: Evaluation of dialogue simulations between
two agents using the different sampling methods.

FLUENCY CONSISTENCY ENGAGEMENT

Greedy 4.1 3.0 2.5
Top-k 4.0 3.2 3.3
Nucleus 4.1 3.4 3.3
Entmax 4.1 3.6 3.9

Table 9: Human evaluation of dialogue generation. All
scores marked in bold at each column outperform the
non-bold ones with statistical significance, according
to the Wilcoxon’s test with p-value < 0.01.

unteers scored the conversations from 1 to 5 in
terms of fluency, consistency (whether the model’s
utterances are coherent with their persona and the
model does not contradict itself), and engagement.
The model’s personas were randomly selected from
the PersonaChat validation set. Results are reported
in Table 9. Entmax sampling outperforms the other
methods in consistency and engagement, having
similar scores in fluency. This means entmax sam-
pling does not only generate the most interesting
conversation utterances, but it also leads to an im-
provement of the conversation consistency.

6 Conclusions

We proposed entmax sampling as a new strategy for
generating text from a sparse probability distribu-
tion. It provides three main advantages: (i) it offers
a natural way of sampling directly from the output
probability distribution; (ii) the distribution spar-
sity is modeled during training, avoiding a sparsity
mismatch between training and run time; (iii) when
sampling with entmax, the number of words to be
considered varies with the context, as in nucleus
sampling and in contrast to top-k sampling. Addi-
tionally, we proposed new metrics for evaluating
language models that produce sparse and truncated
probability distributions: ε-perplexity, sparsemax
score, and Jensen-Shannon divergence.

Experiments show that entmax sampling leads to
higher n-gram diversity, fewer repetitions, and sim-

ilar or improved results in automatic metrics. Hu-
man evaluation confirms that entmax outperforms
greedy decoding, top-k, and nucleus sampling in
coherence/consistency and engagement, and is sim-
ilar or better in terms of fluency.
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Supplementary Material

A Selection of the optimal ε for the
ε-perplexity

We show here that the optimal ε for the computation
of the ε-perplexity for each decoding method can
be easily obtained by solving a convex optimization
problem.

For a given ε, which can be reparametrized as
λ = ε|V|

1+ε|V| = 1
1+(ε|V|)−1 ∈ [0, 1], the average

negative log-likelihood on a validation set is:

F (λ) = − 1

T

T∑
t=1

log

(
(1− λ)pθ(xt) +

λ

|V|

)

= − 1

T

T∑
t=1

log(atλ+ bt), (13)

where at = |V|−1 − pθ(xt) and bt = pθ(xt). The
function F is the composition of a convex function
with an affine function, hence it is convex. There-
fore it has a global minimum. Its derivative is:

F ′(λ) = − 1

T

T∑
t=1

at
atλ+ bt

. (14)

Since we constrain λ ∈ [0, 1], we can obtain the
optimal λ by initializing with λ = 0.5 and iterating
the following projected gradient rule:

λ← max{0,min{1, λ− ηF ′(λ)}}. (15)

where η is a stepsize. Since λ = 1
1+(ε|V|)−1 , we

can invert this equation to obtain the optimal ε as
ε = 1

|V|(λ−1−1) =
λ

|V|(1−λ) .

B Proof of boundedness of the
sparsemax score

We show here that the sparsemax score in Eq. 10 is
always bounded between 0 and 1.

The fact that sp ≤ 1 simply follows from
the fact (Blondel et al., 2019, Prop. 2) that any
Fenchel-Young loss (which includes `2(z, x)) is
non-negative. Since sp = 1 − min{`2(z, x) |
sparsemax(z) = pθ}, it follows that sp ≤ 1. Let
us see when the maximal value 1 is attained. We

have:

sp = pθ(x) + H2(pθ)

= pθ(x) +
1

2
(1− ‖pθ‖2)

= −1

2
pθ(x)

2 + pθ(x)−
1

2

∑
x′ 6=x

pθ(x
′)2 +

1

2

= −1

2
(pθ(x)− 1)2 − 1

2

∑
x′ 6=x

pθ(x
′)2 + 1.

(16)

Since the Gini entropy is maximized by the uniform
distribution, the maximum distribution in Eq. 16
is of the form pθ =

(
1− t, t

|V|−1 , . . . ,
t

|V|−1

)
for

t ∈ [0, 1]. Replacing in Eq. 16, we obtain

sp = −1

2
t2 − 1

2

t2

|V| − 1
+ 1

= 1− t2

2

(
1 +

1

|V| − 1

)
. (17)

This is maximized by t = 0, which corresponds to
pθ = ex.

To see that we always have sp ≥ 0, we use
the fact that the Gini entropy H2(pθ) is always
non-negative (zero if and only if pθ is a one-hot
distribution), which is clear from the definition in
footnote 3, and that p(x) ≥ 0; therefore, the sum
of these two terms is also non-negative, and zero if
and only if pθ = e′x with x′ 6= x.

C Relation between Patrick-Fischer
distance and sparsemax score

We show here that the sparsemax score is equiv-
alent to one minus the one half of the squared
Patrick-Fisher distance between the distribution
probability over the words pθ and the indicator
one-hot vector ex which corresponds to the ground
truth word x.

The Patrick-Fischer distance between two distri-
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butions is DPF(p, q) = ‖p− q‖2. We have:

1− 1
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D2
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= 1− 1
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2

∑
x′

pθ(x
′)2 + pθ(x)

= pθ(x) + H2(pθ), (18)

which equals the sparsemax score defined in Eq. 10.

D JS divergence as a language model
metric

The Jensen-Shannon divergence between the model
probability distribution over the words pθ and the
indicator one-hot vector ex which corresponds to
the ground truth word x can be defined as:

JS(pθ, ex)

=
1

2
KL
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pθ‖

pθ + ex
2

)
= H
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2
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2
Hb(pθ(x)), (19)

where Hb(p) = −p log p− (1− p) log(1− p) de-
notes the entropy of a Bernoulli variable. Thus the
JS divergence depends on the model distribution
only through the probability given by the model to
the groundthruth word, pθ(x).
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Figure 2: Comparative plots of ε-perplexity for ε =
0.01 and ε = 0 (top), and of sparsemax score and JS
divergence (bottom). In both cases, the x-axis is pθ(x).

E Comparative plots of evaluation
metrics

Figure 2 shows comparative plots of the ε-
perplexity, sparsemax score, and Jensen-Shannon
divergence, for a distribution of the form pθ =(
1− t, t

|V|−1 , . . . ,
t

|V|−1

)
, varying t, with a vocab-

ulary of 50000 words.

F Fine-tuning details for language
modeling

The models were fine-tuned for up to 5 epochs
for Wikitext-2 and up to 1 for Wikitext-103 and
BookCorpus using the Adam optimizer (Kingma
and Ba, 2015), with a learning rate of 6.25× 10−5,
which was linearly decayed to zero over the course
of training. We report results of the models that
have the highest sparsemax score on the validation
set. The models fine-tuned with cross entropy and
entmax losses were trained on a GPU Nvidia Titan
XP, which has ≈ 12 Gb of memory. The model
fine-tuned with the unlikelihood training term was
trained on a GPU Nvidia Titan RTX, which has
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≈ 24 Gb of memory.

G Stories’ human evaluation details

To perform the human evaluation of the stories
generated by the different models, we use Amazon
Mechanical Turk (a screenshot of the interface is
shown in Figure 3), and compensate Turkers at a
rate of $0.7 per HIT. Pay rate is calculated based
on an estimate of the completion time (5.5 minutes)
and an hourly wage of $7.5.

To remove poor quality annotations, we perform
several controls. We did not consider annotations
that were performed in less than 3.5 minutes. Ad-
ditionally, following (Li et al., 2019), to filter low
quality annotators we showed them annotated ex-
amples with contexts from famous novels, the real
continuation, story continuations that are not re-
lated to the context, and story continuations that
are not fluent. If the Turker’s annotations differed
significantly from the reference rank-wise, all an-
notations performed by the Turker were excluded.

H Fine-tuning details for dialogue
generation

We fine-tune the GPT-2 medium model (Radford
et al., 2019) for a maximum of 3 epochs with a
learning rate of 6.25 × 10−5 that linearly decays
to zero over the course of the training. The models
were fine-tuned on a GPU Nvidia Titan XP, which
has ≈ 12 Gb of memory.

I Comparison of models with the
Jensen-Shannon divergence

We compared the distributions given by the dif-
ferent decoding methods when generating the sen-
tences of the BookCorpus validation set with the
Jensen-Shannon divergence, as described in §4. In
Tables 11 and 12 we show some of the sentences
with higher Jensen-Shannon divergence, as well as
the probability given by each model to the ground
truth word.

J Results of automatic metrics for
various values of K,P , α.

In Figure 4 we report the results of ε-ppl, JS, sp,
rep, and wrep metrics on the validation set of
WikiText-103 for the models with top-k, nucleus,
and entmax sampling with various values of K,P ,
α.

K Story completion examples

Examples of story completion with context from
the WritingPrompts dataset using the different mod-
els fine-tuned on BookCorpus are presented in Ta-
ble 13.

L Dialogue simulation examples

In order to evaluate the different decoding methods
in dialogue generation, we simulated a conversa-
tion between two agents using the same decod-
ing method. For that, we assigned each agent a
randomly selected persona from the PersonaChat
dataset and gave a first utterance of the dataset as
context. Examples of dialogue simulations are pre-
sented in Tables 14-15 and Tables 16-17.
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WikiText-2 WikiText-103 BookCorpus

sp JS ε-ppl REP WREP sp JS ε-ppl REP WREP sp JS ε-ppl REP WREP

Softmax .682 .381 13.56 .389 .173 .682 .376 13.26 .342 .162 .691 .360 9.56 .377 .174
Softmax-τ .681 .374 13.62 .403 .178 .681 .358 13.35 .353 .168 .689 .348 9.75 .391 .248
Greedy .484 .358 533.03 .512 .232 .486 .357 523.68 .445 .211 .508 .341 946.03 .456 .198
Top-k .680 .368 22.23 .426 .198 .679 .360 22.28 .368 .182 .688 .347 19.55 .398 .193
Nucleus .681 .375 15.38 .400 .176 .681 .363 15.65 .352 .167 .690 .348 14.58 .392 .183
Unlikelihood .468 .369 635.02 .441 .205 .471 .367 613.61 .411 .196 .492 .352 486.65 .446 .196
Entmax .684 .376 14.69 .397 .173 .686 .362 13.25 .341 .160 .699 .351 9.57 .375 .170

Table 10: Language model evaluation on WikiText-2, WikiText-103, and BookCorpus validation sets. For all
metrics except sp, lower is better.

“ besides , i enjoyed having her with me

Softmax 0.011 0.0002 0.808 0.1479 0.0002 0.0141 0.0228 0.0179 0.9114
Softmax-t 0.0131 0.0001 0.8855 0.1864 0.0001 0.0137 0.0211 0.0179 0.9467
Greedy 0 0 1 1 0 0 0 0 1
top-k 0.0439 0 0.8814 0.2543 0 0 0.0311 0 0.9267
Nucleus 0.037 0 1 0.3042 0 0 0 0 1
Entmax 0.0159 0 0.9943 0.3311 0 0.044 0.0073 0.0185 1

Table 11: Probabilities given by each model to “besides, i enjoyed having her with me”

i miss my parents and my friends

Softmax 0.0299 0.0006 0.0294 0.0104 0.1031 0.0611 0.0225
Softmax-t 0.0399 0.0005 0.0279 0.0121 0.1067 0.0763 0.0240
Greedy 0 0 0 0 0 1 0
top-k 0.1193 0 0.0391 0 0.01303 0.1410 0
Nucleus 0.1005 0 0 0.0289 0.1035 0.1012 0
Entmax 0.1047 0 0.0320 0.0127 0.1453 0.1509 0.0469

Table 12: Probabilities given by each model to “i miss my parents and my friends”.
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Figure 3: Screenshot of human evaluation interface on Amazon Mechanical Turk
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Figure 4: Results of automatic metrics on the validation set of WikiText-103 for various values of K for top-k
sampling, P for nucleus sampling, and α for entmax. For all metrics except sp, lower is better.
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Context: “Where am I?” I asked. I stared at the screens, brushing past my field of vision. They went too fast to
watch, but it was clear. I stood on a floating white platform, below me there were flames ...

Greedy: ... . i could see the flames, but i couldn’t see the man. i couldn’t see the man who had been my father.
i couldn’t see the man who had been my father. i couldn’t see the man who had been my father. i
couldn’t see the man who had been my father. i couldn’t see the man who had been my father. i
couldn’t see the man who had been my father. i couldn’t see the man who had been my father.

Top-k: ... and a large red door. they went faster and farther off, so close now you almost saw nothing through
them as everything around you was just flames; you could taste a burnt smell and you were flying above
yourself at speed you never seemed close compared when one thing was the sky or nature or a building
full of air around it the sky being what the nature had to look like it had an energy about to burn.

Nucleus: ... and a third being. the creature had clawed its way through the sky, like a giant serpent, its head lifts
and back-end leans, it had wings in front and they were on fire, blotched blue and green, emulating the
lights in the air around it, like a creature through a screen. i recalled every detail of that moment of
events, that once of its kind it had tried to eat me. now i could see the terror in that moment.

Unlikelihood ... and a black smoke. the smoke was rising from my hand, and i could see it was coming from my
mouth, and it was the same thing that had killed the woman in the park. “i don’t know how long i can
live without you” i said, and we both knew that the next time we saw each other again, i was going to
be a very different person. is the beginning of a new life a man who is the beginning the world

Entmax: ... and a demon. the room grew dimming with tiny figures visible as small shadows. we waited. i
listened to the tingling below me. a faint noise. the darkness seemed to get thinner. i looked up at her.
nothing met my eyes. the girl was familiar, but i couldn’t get it. she shuddered. “no!” i yelled. her eyes
snapped up to me. she screamed, “no, you are not ready!” she sprinted towards the door.

Context: The universe was collapsing in on itself , swallowing all that man had once nurtured and loved and
explored . As the walls came crashing down and the void beyond it all came flooding in , a man at the
center of it all sat serenely before a rift in ...

Greedy: ... the universe, a man who had been a man for so long that he had forgotten what it was like to be a
man. he was a man who had been a man for so long that he had forgotten what it was like to be a man.
he was a man who had been a man for so long that he had forgotten what it was like to be a man. he
was a man who had been a man for so long that he had forgotten what it was like to be a man.

Top-k: ... a river where time could be no closer, an age ago there stood the very center for an entire generation
: that great hour upon timoria before its collapse. it may well also have been that at some early meeting
among them the young men at least could give any possible threat a warning, for, one can not blame
those boys on this side. they know too well where a great danger rests, or is waiting, somewhere

Nucleus: ... the fabric of light that was the void itself. consuming him whole it will fall. it will swallow us whole.
kill us. die. and when it does then it will start over. the vast blackness continued to swallow sebastian,
forcing him forward. he twisted, protesting the pain that gathered in his throat as his back was crushed
against the solid blackness. he had been doing that all the way down.

Unlikelihood ... the fabric of time. it was the first time he had seen a real time machine, a machine with a purpose.”
“what was it?” the man who was the future is the beginning of a part whatever the end whatever all
yours and whatever in the beginning the deadly end a deadly ( and deadly deadly ) all yours and the
first time he had seen the future

Entmax: ... the fabric of space and time and whatever truth he had contained since childhood was now ripening
to be broken further. the crushing sadness that seized him made him feel like he had just found a
complete lack of reality. it was all like a nightmare. it was all a goddamned nightmare. he shook
himself and felt his emotions grow equally furious with himself and the destruction.

Table 13: Examples of story completion using the different methods.
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Context: hello how are you today?

Softmax: - i’m great i love to dance to oldies music was is fun
- very fluent in all the vernacular spoken in pa
- that’s awesome i teach elementary school
- i love teaching, tap dancing to bob segar, all illustration type stuff
- that sounds like a lot of fun
- it is, but this harry potter series just made me feel tingly
- that’s really hurtful to do
- it can be, but i am working on other things
- that you are fine i like james patterson
- very nice of you to comment
- yes my dog is my son that he chews candy to be funny for my dogs birthday
- i have no kids i moved to virginia
- that is crazy did you like the hurricane ?
- yeah it was so devastating
- i see
- its so sad i’m sorry you are stuck in pennywise
- wow that’s very sad
- it is he?
- seriously
- it will be my big dream to leave and go to florida

Softmax-τ : - i am doing good, how about yourself?
- i am good, just getting in from work
- oh, what do you do?
- i sell cars, what do you do?
- i work in a hospital as a nurse.
- oh that is very nice of you
- what do you sell cars ?
- i sell cars as a hobby
- oh, i see. do you have any hobbies?
- i like to paint and hang out in my living room.
- oh, i enjoy listening to music. i love rolling stones !
- i like rolling stones too do you?
- yeah, i really like the rolling stones, they’re my favorite!
- cool, meat is amazing. i also like to like painting
- i think it is for the best. i like to know that i love my job.
- yes beater and i love meat. i also love to eat meat.
- i’m sure you are a vegetarian! what do you do for a living?
- i sell cars, i’m an electrician
- oh i see. are you a car salesman?
- i just started selling cars

Greedy: - i’m good, how are you?
- i’m good thanks for asking
- what do you do for a living?
- i’m studying to be a dentist
- oh, i’m a teacher.
- what city are you from?
- i live in the city.
- what do you do for a living?
- i teach math and english.
- what city are you from?
- i live in the city.
- what city are you from?

Table 14: Example of dialogue simulation between two agents using the different decoding methods.
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Context: hello how are you today?

Top-k: - hello! i am well ,yourself ?
- i am great. i just got off of work
- i just got a job at a grocery store.
- oh i am sorry to hear that
- i’m okay. do you like reading ?
- yes i love reading and i also love to swim
- oh that’s awesome! i really like reading cupcakes.
- that sounds delicious. i’m in the south so i like to eat cupcakes
- i love to make my own cupcakes. i love it!
- do you have any hobbies?
- i love reading, but my favorite hobby is painting.
- that is cool. i’ve been to canada twice , but i’ve never been there
- i love to paint too! what color eyes do you have?
- mine are blue i’m not sure
- i have brown hair.
- i like to make my own cupcakes
- cool. do you work? i work at walmart and i work at the grocery market.
- i am actually a reporter for the local news
- cool! do you like to read?
- i’ve a newspaper reporter in the news

Nucleus: i’m great, just got home from a long walk with my two dogs.
- do you play any instruments?
- not really. what kind of music do you like?
- i play piano sometimes and listen to metal music
- oh cool. i’m just trying to write an ebook about animals.
- i like cats and dogs. do you play any instruments?
- i do not, i prefer listening to music i like.
- what kind of music do you like?
- classical music and video game soundtrack.
- do you go to concerts?
- i go with my husband and listen to a lot of different music genres.
- do you have any kids?
- nope, how about you?
- i’ve a boyfriend. are you married?
- yes, recently divorced. we are planing on getting a corvette.
- how exciting! are you close to your husband?
- i am. i am looking to buy one when i retire.
- that is awesome! are you married?
- nope. we were looking to move to ireland when i got my divorce.
- that’s so sad. you should i ask if he’s ok?

Entmax: - good, how are you doing?
- great just watching a movie
- oh really what movie?
- it’s a story about robots getting into human stuff.
- wow! well that strikes me as not science fiction at all
- why do you say that then?
- because humans are fragile and vulnerable lol
- yeah they would be
- very true. what kind of movies u like?
- i love sci fi and ghost in the shell
- i actually have never watched that. maybe ghost in the shell
- it is such a beautiful movie
- yeah i love stories about lost ones
- that ’s cool
- my favourite movie though is gamera how about you
- i love it too, did you see it?
- yes that was one of my favorite films
- that’s cool. do you work?
- i am too lazy to try difficult things now

Table 15: Example of dialogue simulation between two agents using the different decoding methods.
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Context: greetings from the big apple, kim here, how are you?

Softmax: - hi! great thanks, how are you ? do you have any hobbies?
- i ride my black mbu on my nightly walks, and listen to rock music.
- whats your favorite kind of music?
- guns and roses is my bedrock, my favorite artist.
- that’s great, my favorite genre is joleg tonne or tontera band.

Softmax-τ : - i’m doing great, how are you?
- i’m good, just playing with my son today.
- sounds fun, what are you playing with?
- I’m playing soccer right now, he’s 4.
- do you have any pets?
- no, just the baby. are you married?
- no, no i don’t have any kids
- i’m single, but i have been in this profession for a while.
- interesting, tell me more about yourself.
- i’m a professional soccer player. what about you ?
- that’s cool, i’m just a training dummy
- i also play soccer professionally, i love it.
- i like to play sports too. definitely a great sport
- i have been to stanford for training, trying to perfect my skills.
- i bet that’s great training
- its a lot of work!
- yeah but i like it
- yeah. i’m actually a soccer mom, we try to keep on top of our kids.
- do you have kids?
- i do.

Greedy: - i’m doing well. how are you?
- i’m good, just finished cooking dinner.
- what do you like to cook?
- i love pasta, and i love to cook.
- i like to make pasta too. i’m a huge fan of pasta.
- i love to cook, i’m a student, so i’m always busy.
- what are you studying?
- i’m studying to be a chef.
- what city are you from?
- i’m from cali, what about you?
- i’m from cali. i’m from the midwest.
- i’m from the midwest too , but i’m from the midwest.

Table 16: Example of dialogue simulation between two agents using the different decoding methods.
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Context: greetings from the big apple, kim here, how are you?

Top-k: - i’m very good, thank you, i hope you have a great day
- thanks. have a good day too.
- same to you, have a good day too!
- you do the same. have a great day too.
- the same to you and have a great day also!
- i do have a very nice day, i love running.
- that’s nice to enjoy, it s a great day here today
- i am a political junkie.
- you must be very busy!
- what do you do for a living?
- i’m actually a business major.
- that must be hard to do, do you like politics?
- not a big fan of politics, i like to go skiing and listen to rock
- do you play sports or something?
- i am in school for business
- oh that is awesome. i used to play football in college, but i hated it!
- oh that’s why i play football!!
- wow. what is your name?
- my name is jed. i am from russia. how about you?
- i played in ny and played at boston.

Nucleus: - hi, i’m fantastic, how are you?
- great. making some barbies for our barbie girls.
- awesome, do you have any hobbies?
- i really enjoy barbies. i live a long time away.
- i am looking forward to going to school in the fall.
- school is cool. do you sing? i love barbie songs.
- i’ve a pet pean i sing while eating tacos.
- barbie! that’s cute.
- oh yea, i have a small heart lol
- are you looking forward to winter? i would like to live in the big apple.
- definitely
- winter is fun! no thanks, me neither.
- you must really like summer, too lol
- thanks. it is too cold to sing in the winter. its just not for me.
- do you like tacos?
- oh my gosh. they’re good. my favorite is barbie. lol
- i know, but spaghetti is my fave lol
- haha. lol
- oh , i do enjoy spaghetti , for my college graduation i was in last year of high school
- how are you ?

Entmax: - good. i just rang someone on the other side.
- good, what did you get excited about today?
- i love paris. how was your day?
- its been crazy, i’m always feeling excited! lol
- what is your favorite thing to do?
- oh i love going hiking in the mountains, myself.
- that sound amazing. i like travelling.
- love trips, but i cannot stand staying in one place all day. lol
- do you have any hobbies ? i always want to find cool new things.
- i really like going out and nature itself, i prefer hiking
- yes, exploring parks and all that jazz when i can.
- that is awesome fun, whats your fav color?
- i love grey. roses and the mountains signify my youth.
- mine is blue, it makes me think of blueberries though
- grey denotes youth well or openness and transparency. love the kale chips.
- mmm i love chocolate . lol
- oh i am sold on chocolate. eating it off the cob
- haha
- i miss the crazy curly hair fries and crackers . haha

Table 17: Example of dialogue simulation between two agents using the different decoding methods.


