
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 3768–3779,
November 16–20, 2020. c©2020 Association for Computational Linguistics

3768

Point to the Expression: Solving Algebraic Word Problems using the
Expression-Pointer Transformer Model

Bugeun Kim Kyung Seo Ki Donggeon Lee Gahgene Gweon
Department of Transdisciplinary Studies,

Seoul National University,
Seoul, Republic of Korea

{cd4209,kskee88,lsw5835,ggweon}@snu.ac.kr

Abstract
Solving algebraic word problems has recently
emerged as an important natural language pro-
cessing task. To solve algebraic word prob-
lems, recent studies suggested neural mod-
els that generate solution equations by using
‘Op (operator/operand)’ tokens as a unit of
input/output. However, such a neural model
suffered two issues: expression fragmentation
and operand-context separation. To address
each of these two issues, we propose a pure
neural model, Expression-Pointer Transformer
(EPT), which uses (1) ‘Expression’ token and
(2) operand-context pointers when generat-
ing solution equations. The performance of
the EPT model is tested on three datasets:
ALG514, DRAW-1K, and MAWPS. Com-
pared to the state-of-the-art (SoTA) models,
the EPT model achieved a comparable perfor-
mance accuracy in each of the three datasets;
81.3% on ALG514, 59.5% on DRAW-1K,
and 84.5% on MAWPS. The contribution of
this paper is two-fold; (1) We propose a
pure neural model, EPT, which can address
the expression fragmentation and the operand-
context separation. (2) The fully automatic
EPT model, which does not use hand-crafted
features, yields comparable performance to
existing models using hand-crafted features,
and achieves better performance than existing
pure neural models by at most 40%.

1 Introduction

Solving algebraic word problems has recently
become an important research task in that auto-
matically generating solution equations requires
understanding natural language. Table 1 shows
a sample algebraic word problem, along with
corresponding solution equations that are used
to generate answers for the problem. To solve
such problems with deep learning technology,
researchers recently suggested neural models that
generate solution equations automatically (Huang

Problem One number is eight more than
twice another and their sum is 20.
What are their numbers?

Numbers 1(‘one’), 8(‘eight’), 2(‘twice’), 20.
Equations x0 − 2x1 = 8, x0 + x1 = 20

Answers (16, 4)

Table 1: A sample algebraic word problem

et al., 2018; Amini et al., 2019; Chiang and Chen,
2019; Wang et al., 2019). However, suggested
neural models showed a fairly large performance
gap compared to existing state-of-the-art models
based on hand-crafted features in popular algebraic
word problem datasets, such as ALG514 (44.5% for
pure neural model vs. 83.0% for using hand-crafted
features) (Huang et al., 2018; Upadhyay and Chang,
2016). To address the large performance gap in
this study, we propose a larger unit of input/output
(I/O) token called “Expressions” for a pure neural
model. Figure 1 illustrates conventionally used “Op
(operator/operands)” versus our newly proposed
“Expression” token.

To improve the performance of pure neural
models that can solve algebraic word problems, we
identified two issues that can be addressed using
Expression tokens, which are shown in Figure
1: (1) expression fragmentation and (2) operand-
context separation. First, the expression fragmen-
tation issue is a segmentation of an expression
tree, which represents a computational structure
of equations that are used to generate a solution.
This issue arises when Op, rather than the whole
expression tree, is used as an input/output unit
of a problem-solving model. For example, as
shown in Figure 1 (a), using Op tokens as an
input to a problem-solving model disassembles a
tree structure into operators (“×”) and operands
(“x1” and “2”). Meanwhile, we propose using the



3769

Figure 1: Illustration using the word problem in Table 1 for the (a) expression fragmentation issue, (b) operand-
context separation issue, and (c) our solution for these two issues.

“Expression” (×(x1, 2)) token, which can explicitly
capture a tree structure as a whole, as shown in
Figure 1 (c).

The second issue of operand-context separation
is the disconnection between an operand and
a number that is associated with the operand.
This issue arises when a problem-solving model
substitutes a number stated in an algebraic word
problem into an abstract symbol for generalization.
As shown in Figure 1 (b), when using an Op token,
the number 8 is changed into an abstract symbol
‘N1’. Meanwhile, when using an Expression token,
the number 8 is not transformed into a symbol.
Rather a pointer is made to the location where the
number 8 occurred in an algebraic word problem.
Therefore, using such an “operand-context pointer”
enables a model to access contextual information
about the number directly, as shown in Figure 1 (c);
thus, the operand-context separation issue can be
addressed.

In this paper, we propose a pure neural model
called Expression-Pointer Transformer (EPT) to
address the two issues above. The contribution of
this paper is two-fold;

1. We propose a pure neural model, Expression-
Pointer Transformer (EPT), which can address
the expression fragmentation and operand-
context separation issues.

2. The EPT model is the first pure neural model
that showed comparable accuracy to the exist-
ing state-of-the-art models, which used hand-
crafted features. Compared to the state-of-
the-art pure neural models, the EPT achieves
better performance by about 40%.

In the rest of the paper, we introduce existing
approaches to solve algebraic word problems
in Section 2. Next, Section 3 introduces our
proposed model, EPT, and Section 4 reports the
experimental settings. Then in Section 5, results of

two studies are presented. Section 5.1 presents a
performance comparison between EPT and existing
SoTA models. Section 5.2 presents an ablation
study examining the effects of Expression tokens
and applying operand-context pointers. Finally, in
Section 6, a conclusion is presented with possible
future directions for our work.

2 Related work

Our goal is to design a pure neural model that
generates equations using ‘Expression’ tokens to
solve algebraic word problems. Early attempts
for solving algebraic word problems noted the
importance of Expressions in building models with
hand-crafted features (Kushman et al., 2014; Roy
et al., 2015; Roy and Roth, 2015; Zhou et al., 2015;
Upadhyay et al., 2016). However, recent neural
models have only utilized ‘Op (operator/operand)’
tokens (Wang et al., 2017; Amini et al., 2019;
Chiang and Chen, 2019; Huang et al., 2018; Wang
et al., 2019), resulting in two issues: (1) the
expression fragmentation issue and (2) the operand-
context separation issue. In the remaining section,
we present existing methods for tackling each of
these two issues.

To address the expression fragmentation issue,
researchers tried to reflect relational information
between operators and operands either by using a
two-step procedure or a single step with sequence-
to-sequence models. Earlier attempts predicted
operators and their operands by using a two-step
procedure. Such early models selected operators
first by classifying a predefined template (Kushman
et al., 2014; Zhou et al., 2015; Upadhyay et al.,
2016), then in the second step, operands were ap-
plied to the template selected in the first step. Other
models selected operands first before constructing
expression trees with operators in the second step
(Roy et al., 2015; Roy and Roth, 2015). However,
such two-step procedures in these early attempts



3770

Input Output Expression token Meaning
position index Operator (fi) Operand 0 (ai0) Operand 1 (ai1)

0 - BEGIN (Start an equation)
1 R0 VAR (Generate variable x0)
2 R1 VAR (Generate variable x1)
3 R2 × 2 R1 2x1
4 R3 − R0 R2 x0 − 2x1
5 R4 = R3 8 x0 − 2x1 = 8
6 R5 + R0 R1 x0 + x1
7 R6 = R5 20 x0 + x1 = 20
- R7 END (Gather all equations)

Table 2: The Expression token sequence for x0 − 2x1 = 8 and x0 + x1 = 20

can be performed via a single-step procedure with
neural models. Specifically, recent attempts have
utilized sequence-to-sequence (seq2seq) models as
a single-step procedure to learn the implicit rela-
tionship between operators and operands (Amini
et al., 2019; Chiang and Chen, 2019; Wang et al.,
2019). For example, to capture the operator-
operand relationship, Chiang and Chen (2019)
constructed a seq2seq model that used push/pop
actions on a stack for generating operator/operand
tokens. Similarly, Amini et al. (2019) built a
seq2seq model to generate an operator token right
after producing required operand tokens. However,
although these seq2seq approaches consider rela-
tional information of operands when generating
operators, the approach still does not address
the problem of lacking relation information of
operators when generating operands. On the other
hand, by using Expression token, our model can
consider relational information when generating
both operator and operands.

Secondly, there were efforts to address the
operand-context separation issue. To utilize contex-
tual information of an operand token, researchers
built hand-crafted features that capture the semantic
content of a word, such as the unit of a given num-
ber (Roy and Roth, 2015; Koncel-Kedziorski et al.,
2015; Zhou et al., 2015; Upadhyay et al., 2016;
Roy and Roth, 2017) or dependency relationship
between numbers (Kushman et al., 2014; Zhou
et al., 2015; Upadhyay et al., 2016). However,
devising hand-crafted input features was time-
consuming and required domain expertise. There-
fore, recent approaches have employed distributed
representations and neural models to learn numeric
context of operands automatically (Wang et al.,
2017; Huang et al., 2018; Chiang and Chen, 2019;

Amini et al., 2019). For example, Huang et al.
(2018) used a pointer-generator network that can
point to the context of a number in a given math
problem. Although Huang’s model can address the
operand-context separation issue using pointers,
their pure neural model did not yield a comparable
performance to the state-of-the-art model using
hand-crafted features (44.5% vs. 83.0%). In this
paper, we propose that by including additional
pointers that utilize the contextual information
of operands and neighboring Expression tokens,
performance of pure neural models can improve.

3 EPT: Expression-Pointer Transformer

Figure 2 shows the proposed Expression-Pointer
Transformer (EPT)1 model, which adopts the
encoder-decoder architecture of a Transformer
model (Vaswani et al., 2017). The EPT utilizes
the ALBERT model (Lan et al., 2019), a pretrained
language model, as the encoder. The encoder input
is tokenized words of the given word problem, and
encoder output is the encoder’s hidden-state vectors
that denote numeric contexts of the given problem.

After obtaining the encoder’s hidden-state vec-
tors from the ALBERT encoder, the transformer
decoder generates ‘Expression’ tokens. The two
decoder inputs are Expression tokens and the
ALBERT encoder’s hidden-state vectors, which
are used as memories. For the given example
problem, the input is a list of 8 Expression tokens
shown in Table 2. We included three special
commands in the list: VAR (generate a variable),
BEGIN (start an equation), and END (gather all
equations). Following the order specified in the list
of Table 2, the EPT receives one input Expression

1The code is available on https://github.com/
snucclab/ept.

https://github.com/snucclab/ept
https://github.com/snucclab/ept


3771

Figure 2: The architecture of Expression-Pointer Transformer (EPT) where two ideas applied: (1) Expression
token and (2) operand-context pointer.

at a time. For the ith Expression input, the model
computes an input vector vi. The EPT’s decoder
then transforms this input vector to a decoder’s
hidden-state vector di. Finally, the EPT predicts
the next Expression token by generating the next
operator and operands simultaneously.

To produce ‘Expression’ tokens, two compo-
nents are modified from the vanilla Transformer:
input vector and output layer. In the following
subsections, we explain the two components.

3.1 Input vector of EPT’s decoder

The input vector vi of ith Expression token is
obtained by combining operator embedding fi and
operand embedding aij as follows:

vi = FFin (Concat (fi,ai1,ai2, · · · ,aip)) , (1)

where FF∗ indicates a feed-forward linear layer,
and Concat(·) means concatenation of all vectors
inside the parentheses. All the vectors, including
vi, fi, and aij , have the same dimension D. For-
mulae for computing the two types of embedding
vectors, fi and aij are stated in the next paragraph.

For the operator token fi of ith Expression, the
EPT computes the operator embedding vector fi as
in Vaswani et al. (2017)’s setting:

fi = LNf (cfEf(fi) + PE(i)) , (2)

where E∗(·) indicates a look-up table for embed-
ding vectors, c∗ denotes a scalar parameter, and
LN∗(·) and PE(·) represent layer normalization
(Ba et al., 2016) and positional encoding (Vaswani
et al., 2017), respectively.

The embedding vector aij , which represents
the jth operand of ith Expression, is calculated
differently according to the operand aij’s source.
To reflect contextual information of operands, three
possible sources are utilized: problem-dependent
numbers, problem-independent constants, and the
result of prior Expression tokens. First, problem-
dependent numbers are numbers provided in an
algebraic problem (e.g., ‘20’ in Table 1). To
compute aij of a number, we reuse the encoder’s
hidden-state vectors corresponding to such number
tokens as follows:

aij = LNa

(
caunum + eaij

)
, (3)

where u∗ denotes a vector representing the source,
and eaij is the encoder’s hidden-state vector cor-
responding to the number aij .2 Second, problem-
independent constants are predefined numbers that
are not stated in the problem (e.g., 100 is often used
for percentiles). To compute aij of a constant, we
use a look-up table Ec as follows:

aij = LNa (cauconst + Ec(aij)) . (4)

Note that LNa, ca are shared across different
sources. Third, the result of the prior Expression
token is an Expression generated before the ith
Expression (e.g., R0). To compute aij of a result,
we utilize the positional encoding as follows3:

aij = LNa (cauexpr + PE(k)) , (5)
2When two or more tokens form a number in the problem,

we averaged all related hidden-state vectors.
3Since we want to sustain simultaneous decoding, which

is one of the strengths in the Transformer, we use PE(k) for
the kth prior Expression, although it is possible to use decoder
hidden state dk.



3772

where k is the index where the prior Expression aij
generated.

3.2 Output layer of EPT’s decoder
The output layer of the EPT’s decoder predicts
the next operator fi+1 and operands ai+1,j si-
multaneously when the ith Expression token is
provided. First, the next operator, fi+1, is predicted
as follows:

fi+1 = argmax
f

σ(f |FFout(di)), (6)

where σ(k|x) is the probability of selecting an
item k under a distribution following the output
of softmax function, σ(x).

Second, to utilize the context of operands when
predicting an operand, the output layer applies
‘operand-context pointers,’ inspired by the pointer
networks (Vinyals et al., 2015). In the pointer
networks, the output layer predicts the next token
using attention over candidate vectors. The EPT
collects candidate vectors for the next (i + 1)th
Expression in three different ways depending on
the source of operands:

ek for the kth number in the problem,
dk for the kth Expression output,
Ec(x) for a constant x

(7)
Then the EPT predicts the next jth operand ai+1,j ,
as follows. Let Aij be a matrix whose row vectors
are such candidates. Then, the EPT predicts ai+1,j

by computing attention of a query vector Qij on a
key matrix Kij , as follows.

Qij = FFquery,j(di), (8)

Kij = FFkey,j(Aij), (9)

ai+1,j = argmax
a

σ

(
a

∣∣∣∣∣QijK
>
ij√

D

)
. (10)

As the output layer is modified to predict an
operator and its operands simultaneously, we also
modified the loss function. We compute the loss
of an Expression by summing up the loss of an
operator and the loss of required arguments. All
loss functions are computed using cross-entropy
with the label smoothing approach (Szegedy et al.,
2016).

4 Experimental Setup

4.1 Metric and Datasets
The metric for measuring the EPT model’s perfor-
mance is answer accuracy, which is the proportion

ALG514 DRAW-1K MAWPS
Dataset size

Problems 514 1,000 2,373
Splits 5-fold Train 600 5-fold

Dev., Test 200
Complexity of generating equations (per problem)

Unknown 1.82 1.75 1.00
Op tokens 13.08 14.16 6.20

Complexity of selecting an operand (per problem)
Numbers 4.26 3.88 2.72
Expressions 7.45 7.95 3.60

Table 3: Characteristics of datasets used in the experi-
ment

of correctly answered problems over the entire set
of problems. We regard a problem is correctly
answered if a solution to the generated equations
matches the correct answer without considering the
order of answer-tuple, as in Kushman et al. (2014).
To obtain a solution to the generated equations, we
use SymPy (Meurer et al., 2017) at the end of the
training phase.

For the datasets, we use three publicly avail-
able English algebraic word problem datasets4:
ALG514 (Kushman et al., 2014)5, DRAW-1K
(Upadhyay and Chang, 2016)6, and MAWPS
(Koncel-Kedziorski et al., 2016)7. The three
datasets differ in terms of size and complexity, as
shown in Table 3. The high-complexity datasets,
ALG514 and DRAW-1K, require more expressions
and unknowns when solving the algebraic problems
than the low-complexity dataset, MAWPS. For
DRAW-1K, we report the accuracy of a model on
the development and test set since training and
development sets are provided. For the other two
datasets — MAWPS and ALG514, — we report the
average accuracy and standard error using 5-fold
cross-validation.

4.2 Baseline and ablated models
We examine the performance of EPT against five
existing state-of-the-art (SoTA) models. The five
models are categorized into three types; model
using hand-crafted features, pure neural models,

4We provide a preprocessed version of these datasets
on https://github.com/snucclab/ept/tree/
master/dataset.

5http://groups.csail.mit.edu/rbg/code/
wordprobs/

6https://www.microsoft.com/en-us/
download/details.aspx?id=52628

7http://lang.ee.washington.edu/MAWPS

https://github.com/snucclab/ept/tree/master/dataset
https://github.com/snucclab/ept/tree/master/dataset
http://groups.csail.mit.edu/rbg/code/wordprobs/
http://groups.csail.mit.edu/rbg/code/wordprobs/
https://www.microsoft.com/en-us/download/details.aspx?id=52628
https://www.microsoft.com/en-us/download/details.aspx?id=52628
http://lang.ee.washington.edu/MAWPS


3773

and a hybrid of these two types.

• Models using hand-crafted features use expert-
defined input features without using a neural
model: MixedSP (Upadhyay et al., 2016).
Upadhyay et al. (2016) designed a model
using a set of hand-crafted features similar
to those used by Zhou et al. (2015). Using a
data augmentation technique, they achieved
the SoTA on ALG514 (83.0%) and DRAW-1K
(59.5%).

• Pure neural models take algebraic word prob-
lems as the raw input to a neural model
and do not require the use of a rule-based
model: CASS-RL (Huang et al., 2018) and
T-MTDNN (Lee and Gweon, 2020). The
CASS-RL, which applied pointer-generator
networks to generate Op tokens, achieved the
best-performing neural model on ALG514
(44.5%). The T-MTDNN is the SoTA model
on MAWPS (78.88%) dataset. T-MTDNN
utilized multi-task learning for training a
template classification model and a number
aligning model.

• Hybrid models are models that are neither
purely hand-crafted nor pure neural models:
CASS-hybrid (Huang et al., 2018) and DNS
(Wang et al., 2019). The CASS-hybrid is the
best-performing hybrid model of the CASS-
RL and Huang et al. (2017)’s model using
hand-crafted features. The DNS is a hybrid
model of a sequence-to-sequence model and a
model using hand-crafted features. We copied
the accuracy of DNS on DRAW-1K from
Zhang et al. (2019).

After examining the EPT model performance,
we conducted an ablation study to analyze the
effect of using two main components of EPT;
Expression tokens and operand-context pointers.
We compared three types of models to test each of
the components: (1) the vanilla Transformer model,
(2) the Transformer with Expression token model,
which investigates the effect of using Expression
tokens, and (3) the EPT, which investigates the
effect of using pointers in addition to Expression
tokens. Additional details on the input/output of
the vanilla Transformer and the Transformer with
Expression token models are provided in Appendix
A.

4.3 Implementation details

The implementation details of EPT and its ablated
models are as follows. To build encoder-decoder
models, we used PyTorch 1.5 (Paszke et al.,
2019). For the encoder, three different sizes of
ALBERT models in the transformers
library (Wolf et al., 2019) are used:
albert-base-v2, albert-large-v2,
and albert-xlarge-v2. We fixed the
encoder’s embedding matrix during the training
since such fixation preserves the world knowledge
embedded in the matrix and stabilizes the entire
learning process. For the decoder, we stacked
six decoder layers and shared the parameters
across different layers to reduce memory usage.
We set the dimension of input vector D as the
same dimension of encoder hidden-state vectors.
To train and evaluate the entire model, we used
teacher forcing in the training phase and beam
search with 3 beams in the evaluation phase.

For the hyperparameters of the EPT, parameters
follow the ALBERT model’s parameters except
for training epoch, batch size, warm-up epoch,
and learning rate. First, for the training epoch
T , a model is trained in 500, 500, and 100
epochs on ALG514, DRAW-1K, and MAWPS,
respectively. For batch sizes, we used 2,048
(albert-base-v2 and albert-large-v2)
and 1,024 (albert-xlarge-v2) in terms of
Op or Expression tokens. To acquire a similar
effect of using 4,096 tokens as a batch, we also
employed gradient accumulation technique on two
types of consecutive mini-batches; two (base
and large) and four (xlarge). Then, for the
warm-up epoch and learning rate, we conduct the
grid-search algorithm for each pair of a dataset
and the size of the ALBERT model. For the grid
search, we set the sampling space as follows:
{0.00125, 0.00176, 0.0025} for the learning rates
and {0, 0.005T, 0.01T, 0.015T, 0.02T, 0.025T}
for the warm-up. The resulting parameters are
listed in Appendix B. During each grid search,
we only use the following training/validation
sets and keep other sets unseen: the fold-0
training/test split for ALG514 and MAWPS and
the training/development set for DRAW-1K. For
the unstated hyperparameters, the parameters
follow those of the ALBERT. These parameters
include the optimizer and warm-up scheduler; we
used LAMB (You et al., 2019) optimizer with
β1 = 0.9, β2 = 0.999, and ε = 10−12; and we



3774

Model ALG DRAW-1K MAWPS
514 (Dev.) (Test)

State of the art (SOTA)
Hand-crafted 83.0[M] 59.5[M] —
Pure neural 44.5[C] — 78.9[T]

Ensembles 82.5[H] 31.0[D] —
Expression-Pointer Transformer

EPT (B) 75.46 55.5 51.5 83.41
(Std. Err) (2.23) (0.32)

EPT (L) 81.31 63.5 59.0 84.51
(Std. Err) (1.88) (1.37)

EPT (XL) —* 60.5 59.5 —*

Note: [M]MixedSP, [C]CASS-RL, [T]T-MTDNN,
[H]CASS-hybrid, [D]DNS. *Overfitted on some folds.

Table 4: Accuracy(%) of the EPT and existing models.
(B), (L), and (XL) indicate albert-base-v2,
albert-large-v2, and albert-xlarge-v2.

employed linear decay with warm-up scheduling.
All the experiment, including hyperparameter
search, was conducted on a local computer with
64GB RAM and two GTX1080 Ti GPUs.

5 Result and Discussion

In section 5.1, we first present a comparison
study, which examines the EPT’s performance.
Next, in section 5.2, we present an ablation study,
which analyzes the two main components of EPT;
Expression tokens and operand-context pointers.

5.1 Comparison study

As shown in Table 4, the performance of EPT
is comparable or better in terms of performance
accuracy compared to existing state-of-the-art
(SoTA) models when tested on the three datasets
of ALG514, DRAW-1K, and MAWPS. The fully
automatic EPT model, which does not use hand-
crafted features, yields comparable performance
to existing models using hand-crafted features.
Specifically, on the ALG514 dataset, the EPT
outperforms the best-performing pure neural model
by about 40% and shows comparable performance
accuracy to the SoTA model that uses hand-crafted
features. On the DRAW-1K dataset, which is
harder than ALG514 dataset, a similar performance
trend to ALG514 is found. The EPT model outper-
forms the hybrid model by about 30% and achieved
comparable accuracy to the SoTA model that uses
hand-crafted features. On the MAWPS dataset,
which is only tested on pure neural models in

Model ALG DRAW-1K MAWPS
514 (Dev.) (Test)

Vanilla Transfo. 27.52 14.5 24.0 79.83
(Std. Err) (4.39) (1.03)

+ Expression 42.03 32.0 32.5 80.46
(Std. Err) (1.97) (1.09)

+ Pointer (EPT) 75.46 55.5 51.5 83.41
(Std. Err) (2.23) (0.32)

Table 5: Accuracy(%) of the EPT and its ablated
models (albert-base-v2).

existing studies, the EPT achieves SoTA accuracy.
One possible explanation for EPT’s outstanding

performance over the existing pure neural model is
the use of operand’s contextual information. Exist-
ing neural models solve algebraic word problems
by using symbols to provide an abstraction of
problem-dependent numbers or unknowns. For
example, Figure 1 shows that existing methods
used Op tokens, such as x0 and N1. However,
treating operands as symbols only reflects 2 out
of 4 means in which symbols are used in hu-
mans’ mathematical problem-solving procedures
(Usiskin, 1999). The 4 means of symbol usage
are; (1) generalizing common patterns, (2) repre-
senting unknowns in an equation, (3) indicating an
argument of a function, and (4) replacing arbitrary
marks. By applying template classification or
machine learning techniques, (1) and (2) were
successfully utilized in existing neural models.
However, the existing neural models could not
consider (3) and (4). Therefore, in our suggested
EPT model, we dealt with (3) by using Expression
tokens and (4) by using operand-context pointers.
We suspect that the EPT’s performance, which is
comparable to existing models using hand-crafted
features, comes from dealing with (3) and (4)
explicitly when solving algebraic word problems.

5.2 Ablation study

From the ablation study, our data showed that
the two components of generating ‘Expression’
token and applying operand-context pointer, each
improved the accuracy of the EPT model in
different ways. Specifically, as seen in Table 5,
adding Expression token to the vanilla Transformer
improved the performance accuracy by about 15%
in ALG514 and DRAW-1K and about 1% in
MAWPS. In addition, applying operand-context
pointer to the Transformer with Expression token



3775

Case 1.
Effect of
using
Expression
tokens

Problem The sum of two numbers is 90. Three times the smaller is 10 more
than the larger. Find the larger number.

Expected 3x0 − x1= 10, x0 + x1= 90
Vanilla Transformer x0 + x1= 3, x0 − x1= 10 (Incorrect)

+ Expression 3x0 − x1= 10, x0 + x1= 90 (Correct)
+ Pointer (EPT) 3x0 − x1= 10, x0 + x1= 90 (Correct)

Case 2.
Effect of
using
pointers

Problem A minor league baseball team plays 130 games in a season. If the
team won 14 more than three times as many games as they lost,
how many wins and losses did the team have?

Expected x0 − 3x1= 14, x0 + x1=130
Vanilla Transformer 14x0 − 3x1= 0, x0 + x1=130 (Incorrect)

+ Expression x0 − 3x1= 14, 130x0 − x1= 0 (Incorrect)
+ Pointer (EPT) x0 − 3x1= 14, x0 + x1=130 (Correct)

Case 3.
Compara-
tive
error

Problem One number is 6 more than another. If the sum of the smaller
number and 3 times the larger number is 34, find the two numbers.

Expected x0 + 3x1= 34, x1 − x0= 6
Vanilla Transformer x0 + 3x1= 34, x1 − x0= 6 (Correct)

+ Expression 3x0 + 34x1= 2, x1 − x0= 6 (Incorrect)
+ Pointer (EPT) 3x0 + x1= 34, x1 − x0= 6 (Incorrect)

Case 4.
Temporal
order error

Problem The denominator of a fraction exceeds the numerator by 7. if the
numerator is increased by three and the denominator increased by
5, the resulting fraction is equal to half. Find the original fraction.

Expected x0 − 1
2x1=

1
2 · 5− 3, x0 − x1= 7

Vanilla Transformer 3x0 + 5x1=
1
2N4, (Incorrect)

+ Expression 3x0 − 5x1= 0, x0 + x1= 7 (Incorrect)
+ Pointer (EPT) 5x0 − 3x1=

1
2 , x1 − x0= 7 (Incorrect)

Table 6: Sample incorrect problems (albert-base-v2) from the DRAW-1K development dataset.

model enhanced the performance by about 30% in
ALG514 and DRAW-1K and about 3% in MAWPS.

Table 6 shows the result of an error analysis.
The cases 1 and 2 show how the EPT model’s
two components contributed to performance im-
provement. In case 1, the vanilla Transformer
yields an incorrect solution equation by incorrectly
associating x0 + x1 and 3. However, using an
Expression token, the explicit relationship between
operator and operands is maintained, enabling the
distinction between x0+x1 and 3x0−x1. The case
2 example shows how adding an operand-context
pointer can help distinguish between different
expressions, in our example, x0, 130x0, and 14x0.
As the operand-context pointer directly points to
the contextual information of an operand, the EPT
could utilize the relationship between unknown
(x0) and its multiples (130x0 or 14x0) without
confusion.

We observed that the existing pure neural
model’s performance on low-complexity dataset of
MAWPS was relatively high at 78.9%, compared

to that of high-complexity dataset of ALG514
(44.5%). Therefore, using Expression tokens and
operand-context pointers contributed to higher
performance when applied to high-complexity
datasets of ALG514 and DRAW-1K, as shown in
Table 5. We suspect two possible explanations for
such a performance enhancement.

First, using Expression tokens in high-
complexity datasets address the expression
fragmentation issue when generating solution
equations, which is more complex in ALG514 and
DRAW-1K than MAWPS. Specifically, Table 3
shows that on average the number of unknowns
in ALG514 and DRAW-1K is almost twice
(1.82 and 1.75, respectively) than MAWPS (1.0).
Similarly, the number of Op tokens is also twice
in ALG514 and DRAW-1K (13.08 and 14.16,
respectively) than that of MAWPS (6.20). As
the expression fragmentation issue can arise for
each token, probability of fragmentation issues’
occurrence increases exponentially as the number
of unknowns/Op tokens in a problem increases.



3776

Therefore, the vanilla Transformer model, which
could not handle the fragmentation issue, yields
low accuracy on high-complexity datasets.

Second, using operand-context pointers in high-
complexity datasets addresses the operand-context
separation issue when selecting an operand, which
is more complex in ALG514 and DRAW-1K than
MAWPS. Specifically, Table 3 shows that on
average the amount of Expression tokens is also
twice in ALG514 and DRAW-1K (7.45 and 7.95,
respectively) than that of MAWPS (3.60). As
numbers and Expression tokens are candidates
for selecting an operand, probability of separation
issues’ occurrence increases linearly as the amount
of numbers/Expressions in an equation increases.
Since a Transformer with Expression token could
not handle the separation issue, the model showed
lower accuracy on high-complexity datasets.

In addition to the correctly solved problem
examples, Table 6 also shows cases 3 and 4, which
were incorrectly answered by the EPT model. The
erroneous examples can be categorized into two
groups; ‘Comparative’ error and ‘Temporal order’
error. ‘Comparative’ occurs when an algebraic
problem contains comparative phrases, such as ‘6
more than,’ as in case 3. 49.3% of incorrectly
solved problems contained comparatives. When
generating solution equations for the comparative
phrases, the order of arguments is a matter for an
equation that contains non-commutative operators,
such as subtractions or divisions. Therefore,
errors occurred when the order of arguments
for comparative phrases with non-commutative
operators was mixed up. Another group of error is
‘Temporal order’ error that occurs when a problem
contains phrases with temporal orders, such as
‘the numerator is increased by three,’ as in case
4. 44.5% of incorrectly solved problems contained
temporal orders. We suspect that these problems
occur when co-referencing is not handled correctly.
In a word problem with temporal ordering, a same
entity may have two or more numeric values that
change over time. For example, in case 4, the
denominator has two different values of x1 and
x1 + 7. The EPT model failed to assign a same
variable for the denominators. The model assigned
x0 in the former expression and x1 in the latter.

6 Conclusion

In this study, we proposed a neural algebraic word
problem solver, Expression-Pointer Transformer

(EPT), and examined its characteristics. We
designed EPT to address two issues: expression
fragmentation and operand-context separation. The
EPT resolves the expression fragmentation issue by
generating ‘Expression’ tokens, which simultane-
ously generate an operator and required operands.
In addition, the EPT resolves the operand-context
separation issue by applying operand-context point-
ers. Our work is meaningful in that we demon-
strated a possibility for alleviating the costly pro-
cedure of devising hand-crafted features in the
domain of solving algebraic word problems. As
future work, we plan to generalize the EPT to other
datasets, including non-English word problems
or non-algebraic domains in math, to extend our
model.

Acknowledgments

This work was supported by the National
Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No.
2020R1C1C1010162).

References
Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik

Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable
math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2357–2367, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for
solving and reasoning math word problems.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2656–2668, Minneapolis, Minnesota.
Association for Computational Linguistics.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian
Yin. 2018. Neural math word problem solver with
reinforcement learning. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 213–223, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Danqing Huang, Shuming Shi, Chin-Yew Lin, and Jian
Yin. 2017. Learning fine-grained expressions to

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1272
https://www.aclweb.org/anthology/C18-1018
https://www.aclweb.org/anthology/C18-1018
https://doi.org/10.18653/v1/D17-1084


3777

solve math word problems. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 805–814, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini,
Nate Kushman, and Hannaneh Hajishirzi. 2016.
MAWPS: A math word problem repository. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1152–1157, San Diego, California. Association for
Computational Linguistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 271–281, Baltimore, Maryland. Association
for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations.

D. Lee and G. Gweon. 2020. Solving arithmetic word
problems with a templatebased multi-task deep neu-
ral network (t-mtdnn). In 2020 IEEE International
Conference on Big Data and Smart Computing (Big-
Comp), pages 271–274.

Aaron Meurer, Christopher P. Smith, Mateusz Pa-
procki, Ondřej Čertı́k, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov,
Jason K. Moore, Sartaj Singh, Thilina Rathnayake,
Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats,
Fredrik Johansson, Fabian Pedregosa, Matthew J.
Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh
Saboo, Isuru Fernando, Sumith Kulal, Robert Cimr-
man, and Anthony Scopatz. 2017. Sympy: symbolic
computing in python. PeerJ Computer Science,
3:e103.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran
Associates, Inc.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1743–1752, Lisbon,
Portugal. Association for Computational Linguis-
tics.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17,
page 3082–3088. AAAI Press.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transac-
tions of the Association for Computational Linguis-
tics, 3:1–13.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Shyam Upadhyay and Ming-Wei Chang. 2016. An-
notating derivations: A new evaluation strategy
and dataset for algebra word problems. CoRR,
abs/1609.07197.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang,
and Wen-tau Yih. 2016. Learning from explicit
and implicit supervision jointly for algebra word
problems. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 297–306, Austin, Texas. Association for
Computational Linguistics.

Zalman Usiskin. 1999. Algebraic Thinking, Grades
K-12: Readings from NCTM’s School-Based Jour-
nals and Other Publications, chapter Conceptions
of School Algebra and Uses of Variables. National
Council of Teachers of Mathematics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information
processing systems, pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems 28, pages 2692–
2700. Curran Associates, Inc.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019. Template-based math word problem solvers
with recursive neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7144–7151.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
845–854, Copenhagen, Denmark. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/D17-1084
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.1162/tacl_a_00118
https://doi.org/10.1162/tacl_a_00118
http://arxiv.org/abs/1609.07197
http://arxiv.org/abs/1609.07197
http://arxiv.org/abs/1609.07197
https://doi.org/10.18653/v1/D16-1029
https://doi.org/10.18653/v1/D16-1029
https://doi.org/10.18653/v1/D16-1029
http://papers.nips.cc/paper/5866-pointer-networks.pdf
https://doi.org/10.18653/v1/D17-1088


3778

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Fun-
towicz, and Jamie Brew. 2019. Huggingface’s
transformers: State-of-the-art natural language pro-
cessing. ArXiv, abs/1910.03771.

Yang You, Jing Li, Jonathan Hseu, Xiaodan Song,
James Demmel, and Cho-Jui Hsieh. 2019. Reducing
BERT pre-training time from 3 days to 76 minutes.
CoRR, abs/1904.00962.

D. Zhang, L. Wang, L. Zhang, B. T. Dai, and H. T.
Shen. 2019. The gap of semantic parsing: A
survey on automatic math word problem solvers.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using
quadratic programming. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 817–822, Lisbon, Portugal.
Association for Computational Linguistics.

A Input/output of ablation models

In this section, we describe how we compute the
input and output of the two ablation models: (1) a
vanilla Transformer and (2) a vanilla Transformer
with ‘Expression’ tokens. Figure 3 shows the two
models.

The first ablation model is a vanilla Transformer.
The model generates an ‘Op’ token sequence and
does not use operand-context pointers. The model
manages an ‘Op’ token vocabulary that contains
operators, constants, variables, and number place-
holders (e.g., N0). So the input of this model’s
decoder only utilizes a look-up table for embedding
vectors. For the decoder’s output, the vanilla
Transformer uses a feed-forward softmax layer to
output the probability of selecting an Op token. In
summary, the input vector vi of a token ti and the
output ti+1 can be computed as follows.

vi = LNin (cinEin(ti) + PE(i)) , (11)

ti+1 = argmax
t

σ (FFout(di))t . (12)

The second ablation model is a vanilla Trans-
former model that uses ‘Expression’ tokens as
a unit of input/output. This model generates an
‘Expression’ token sequence but does not apply
operand-context pointers. Instead of using operand-
context pointers, this model uses an operand
vocabulary that contains constants, placeholders for
numbers, and placeholders of previous Expression
token results (e.g., R0). The input of this model’s

decoder is similar to that of EPT’s decoder, but we
replaced the equations 3 and 5 with the following
formulae.

aij = LNa (caunum + Ec(aij)) , (13)

aij = LNa (cauexpr + Ec(aij)) . (14)

For the output of this model’s decoder, we used
a feed-forward softmax layer to output the proba-
bility of selecting an operand. Since the softmax
output can select the unavailable operand, we set
the probability of such unavailable tokens as zeros
to mask them. So, we replace equation 10 with the
following formula.

ai+1,j = argmax
a

σ (a |M(FFj(di))) , (15)

where M is a masking function to set zero probabil-
ity on unavailable tokens when generating ith Op
token. The other unstated equations 1, 2, 4, and 6
remain the same.

B Hyperparameters used for this study

Table 7 shows the best parameters and perfor-
mances on the development set, which are found
using grid search.

http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1904.00962
https://doi.org/10.18653/v1/D15-1096
https://doi.org/10.18653/v1/D15-1096


3779

Figure 3: The architecture of two ablated model of EPT: a vanilla Transformer and a Transformer using Expression
tokens

Model # of Hyper-parameters Performance
Params Learning Rate Warm-up on Dev.

ALG514 dataset
EPT (B) 25.29M .00176 2.0% (10.0 epochs) 78.43

(L) 41.85M .0025 2.5% (12.5 epochs) 81.37
(XL) 155.30M .00176 1.0% ( 5.0 epochs) 83.33

DRAW-1K dataset
EPT (B) 25.29M .00176 2.5% (12.5 epochs) 58.5

(L) 41.86M .00176 0.5% ( 2.5 epochs) 63.5
(XL) 155.31M .00176 1.0% ( 5.0 epochs) 60.5

MAWPS dataset
EPT (B) 25.30M .0025 1.0% ( 1.0 epoch ) 83.33

(L) 41.87M .0025 0.0% ( 0.0 epoch ) 83.97
(XL) 155.33M .00176 2.5% ( 2.5 epochs) 83.97

Table 7: Best performing hyperparameters for each pair of a model and a dataset. (B), (L), and (XL) indicate
albert-base-v2, albert-large-v2, and albert-xlarge-v2.


