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Abstract

Aspect sentiment classification, predicting the
sentiment polarity of given aspects, has drawn
extensive attention. Previous attention-based
models emphasize using aspect semantics to
help extract opinion features for classification.
However, these works are either not able to
capture opinion spans as a whole or capture
variable-length opinion spans. In this paper,
we present a neat and effective multiple CRFs
based structured attention model that is capa-
ble of extracting aspect-specific opinion spans.
The sentiment polarity of the target is then clas-
sified based on the extracted opinion features
and contextual information. The experimental
results on four datasets demonstrate the effec-
tiveness of the proposed model, and our fur-
ther analysis shows that our model can capture
aspect-specific opinion spans. !

1 Introduction

Aspect Based Sentiment Analysis (ABSA) (Pang
and Lee, 2008; Liu, 2012) is an extensively studied
sentiment analysis task on a fine-grained semantic
level, i.e., opinion targets explicitly mentioned in
sentences. Previous ABSA studies focused on a
few sub-tasks, such as Aspect Sentiment Classifi-
cation (ASC) (Wang et al., 2016; Chen et al., 2017;
Ma et al., 2018), Aspect Term Extraction (ATE)
(Li et al., 2018b; He et al., 2017), Aspect and Opin-
ion Co-Extraction (Liu et al., 2013; Wang et al.,
2017; Xu et al., 2018; Dai and Song, 2019), E2E-
ABSA (a joint task of ASC and ATE) (Li et al.,
2019a; He et al., 2019; Li et al., 2019b), Aspect
Sentiment Triplet Extraction (ASTE) (Peng et al.,
2019; Xu et al., 2020), etc. ASC analyzes the senti-
ment polarity of given aspects/targets in a review.

* Lu Xu is under the Joint PhD Program between Alibaba
and Singapore University of Technology and Design.
'0ur code is released at https://github.com/
xuuuluuu/Aspect-Sentiment-Classification

For example, consider the review sentence “Food
is usually very good, though occasionally I worry
about freshness of raw vegetables in side orders.”
This review mentions two aspects: Food and raw
vegetables, and for ASC, the objective is to give
a positive sentiment on Food and a negative sen-
timent on raw vegetables. Most of the previous
works (Wang et al., 2016; Chen et al., 2017; Liu
and Zhang, 2017; Yang et al., 2017; Li et al., 2018c;
He et al., 2018; Li and Lu, 2019; Hu et al., 2019)
adopt attention mechanism (Bahdanau et al., 2015)
to capture the semantic relatedness among the con-
text words and the aspect, and learn aspect-specific
features for sentiment classification.

However, it is challenging for attention-based
approaches to consider an opinion span as a whole
during feature extraction because they are over-
reliant on neural models to learn the context-
structural information and perform feature extrac-
tion over individual hidden representations. Previ-
ous work (Wang and Lu, 2018) engage structured
attention networks (Kim et al., 2017), which ex-
tend the previous attention mechanism to incor-
porate structure dependencies, to model the in-
teraction among context words, and perform soft-
selections of word spans. In particular, they intro-
duce two hand-coded regularizers to constrain the
soft-selection process to attend to few short opinion
spans. However, such regularizers disturb the struc-
ture dependencies, and their method is not capable
of emphasizing aspect-specific opinion spans for
sentiment classification.

To better capture opinion features for aspect sen-
timent classification, we propose the MCRF-SA
model, which introduces multiple conditional ran-
dom fields (CRF) (Lafferty et al., 2001) to struc-
tured attention model. While exploiting the ad-
vantages of structured attention mechanisms, our
model avoids the regularizers by the complemen-
tarity among multiple CRFs. We also improve the
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previous position decay function (Li et al., 2018a;
Tang et al., 2019) to reduce the importance of con-
text words that are further away from the aspect
so as to emphasize aspect-specific opinion spans.
Our multi-CRF layer with the effective decay func-
tion extracts aspect-specific features from different
representation sub-spaces to overcome the previ-
ous limitations. The experimental results on the
four datasets demonstrate the effectiveness of our
model, and the analysis shows that the behaviors
are in alignment with our intuition.

2 Model Description

Given a context sequence w€ = {wy, wa, ..., wy}
and a aspect sequence w* = {w;, ..., w;} (1 <i <
j < n) which is a sub-sequence of w€, the goal of
ASC is to predict sentiment polarity y € {positive,
negative, neutral} over the given aspect. Our model
is mainly constructed with a few neural layers, in-
cluding an input layer, an aspect-specific contextu-
alized representation layer, a position decay layer,
a multi-CRF structured attention layer, and a sen-
timent classification layer. Figure 1 presents the
architecture of our MCRF-SA model.

2.1 Input Layer

The input of our model consists of word embed-
ding w}”"’”d and aspect indicator embedding w{°.
The aspect indicator embedding is to differentiate
aspect words and context words and is randomly
initialized. The input representation x; is as fol-

lows: _ word, as
xy = [wY wit] €))

2.2 Aspect-Specific Contextualized
Representation

We employ a bi-directional GRU (Cho et al., 2014)
to generate the contextualized representation. Since
the input representation has already contained the
aspect information, the aspect-specific contextual-
ized representation is obtained by concatenating
the hidden states from both directions:

=
hy = [hy; hy] (2)
%
where h; is the hidden state from the forward GRU
and h; is from the backward.

2.3 Position Decay

Following the previous work (Li et al., 2018a;
Zhang et al., 2019; Tang et al., 2019), we also use
a position decay function to reduce the influence of
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Figure 1: MCRF-SA Architecture.

the context words on the aspect as it goes further
away from the aspect. We propose a higher-order
decay function, which is more sensitive to distance,
and the sensitivity can be tuned by ~ on different
datasets.
(=47t <
flt) =41 i<t<j 0
(B <t
where ¢ and j are the starting and ending position
of an aspect, L is the maximum length of sentences
across all datasets, 7y is a hyper-parameter and a
larger value enables more influence from the con-
text words that are close to the aspect. Then, the
decayed contextual word representation is as fol-
lows:

ry = f(t) h; €]

2.4 Multi-CRF Structured Attention

We use multiple linear-chain CRFs to intensively
incorporate structure dependencies to capture the
corresponding opinion spans of an aspect. In partic-
ular, we create a latent label (Wang and Lu, 2018)
z € {Yes, No} to indicate whether each context
word belongs to part of opinion spans. Similar to
(Lample et al., 2016), given the sentence represen-
tation x, the CRF is defined as:

exp(score(z, X))

P(zfx) = >, exp(score(z’, x))

4)
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where score(z, x) is a score function that is defined
as the summation of transition scores and emission
scores from the Bi-GRU:

n n
score(z,x) = Z Teppr + Z Et. ~ (6)
=0 t=1

where T' is a transition matrix and 77, ., ,, denotes
the transition score from label 2; to 2441. Ei -,
denotes the emission score of label z; at the t-th
position, and the score is obtained from a linear
layer, which takes r; as input and returns a vector
whose length is label size.

2.4.1 Marginal Inference

The latent labels introduced in the CRF layer show
whether the word influences the given aspect’s sen-
timent. Intuitively, we can understand that the
marginal probabilities on the Y es label indicate the
influence of the current context word on the aspect
word’s sentiment. By using the forward-backward
algorithm, we calculate the marginal distribution
of the latent label. With the marginal distribution,
the sentence representation s is obtained:

s = ZP(zt = Yes|x)r; (7)
t=1

The final representation for classification is ob-
tained by concatenating the sentence representa-
tions from all CRFs:

; Sal ®)

where a is the number of CRFs.

q = [s1;82; ...

2.5 Sentiment Classification

The sentence representation q is passed to a senti-
ment classier to obtain the distribution of sentiment
polarities:

P(y|q) = Softmax(Wq + b) )

where W and b are learnable parameters for the
sentiment classifier layer. We learn model parame-
ters by minimizing the negative log-likelihood.

3 Experiments

3.1 Experimental Setup

Our proposed MCRF-SA model is evaluated on
four benchmark datasets: SemEval 2014 Task4
(Pontiki et al., 2014), SemEval 2015 Task12 (Pon-
tiki et al., 2015) and SemEval 2016 Task 5 (Pontiki
et al., 2016). Following the previous works (Tang
et al., 2016; Chen et al., 2017; Wang and Lu, 2018;

Train Dev Test

#Pos. #Neu. #Neg. #Pos. #Neu. #Neg. #Pos. #Neu. #Neg.
14Rest 1796 539 666 368 94 139 728 196 196
14Lap 824 383 717 161 72 149 340 167 128
1SRest 808 29 228 147 5 44 340 28 195
16Rest 1106 54 406 191 9 60 474 29 127

Dataset

Table 1: Statistics of datasets.

He et al., 2018), we remove a few examples that
have conflicting labels. Detailed statistics of the
datasets can be found in Table 1.

We use the 300d GloVe (Pennington et al., 2014)
to initialize our word embeddings. One-sixth of
instances are randomly selected from the original
training dataset as the development dataset, and
the model is only trained with the remaining data.
With the development set, we tune our model hyper-
parameters using an open-source black-box tuner
(Alberto and Giacomo, 2018). We set the hidden
size of GRU to 32 or 64. The batch size is set to 64
or 96. The dropout rate is selected from 0.3 to 0.8,
with a step size of 0.1. The dimension of the aspect
indicator is selected from {50, 70, 90}. The value
of 7y in the position decay function is selected from
{1,2,3}. The number of layer of GRU is selected
from {1,2,3}. We adopt Adam (Kingma and Ba,
2014) to optimize our model with a learning rate
of 0.008. All hyper-parameters are selected based
on the best performance on the development set.

3.2 Baselines

Our MCRF-SA model is compared with the follow-
ing methods®>. SVM (Kiritchenko et al., 2014) is
a support vector machine based method that inte-
grates surface, lexicon, and parse features. ATAE-
LSTM (Wang et al., 2016) is an LSTM (Hochreiter
and Schmidhuber, 1997) based model, which has
an extra attention to perform soft-selection over
the context words. MemNet (Tang et al., 2016)
introduces a deep memory network to implement
attention mechanisms to learn the relatedness of
context words towards the aspect. IAN (Ma et al.,
2017) utilizes two LSTM based attention models
to learn both context and aspect representations
interactively. SA-LSTM-P (Wang and Lu, 2018)
employs structured attention networks with mul-
tiple regularizers to capture the opinion spans for
ASC. TNets (Li et al., 2018a) implements a context-
preserving mechanism to get the aspect-specific
word representations and uses a Convolutional Neu-

Note that our focus is not on exploring the power of pre-
trained models (e.g., BERT and ELMo) for ASC.
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Models 14Rest 14Lap 15Rest 16Rest
Ace. It Ace. I3 Ace. It Ace. I3
SVM (Kiritchenko et al., 2014) 80.167 - 70.49° - - - - -
ATAE-LSTM (Wang et al., 2016)  77.20" - 68.70" - - - - -
MemNet (Tang et al., 2016) 79.61*  69.64* 70.64* 65.17* 77.31* 58.28* 85.44* 65.99*
IAN (Ma et al., 2017) 79.26*  70.09* 72.05* 67.38% 78.54* 52.65* 84.74* 55.21*
Baselines SA-LSTM-P (Wang and Lu, 2018)  81.60" - 75.10% - - - 88.70" -
TNet-LF (Li et al., 2018a) 80.42* 71.03* 74.61* 70.14* 78.47* 59.47* 89.07* 70.43*
TNet-ATT (Tang et al., 2019) 81.531 72907 77.62¢ 73.84" - - - -
ASCNN (Zhang et al., 2019) 81.73* 73.10% 72.62* 66.72* 78.48* 58.90* 87.39* 64.56*
ASGCN (Zhang et al., 2019) 80.86* 72.19* 74.14* 69.24* 79.34* 60.78* 88.69* 66.64*
Reproduce’ TNet-ATT (Tang et al., 2019) 7938 69.44 7622 7151 - - - -
ASGCN (Zhang et al., 2019) 79.73 7048 7291 68.06 7874 57.67 8771 70.29
Ours MCRF-SA 82.86" 73.787 77.64T 74237 80.827 61.597 89.517 75.92f

Table 2: Experimental results (%). The results with symbol“f” are retrieved from the original papers, and those
with * are retrieved from Zhang et al. (2019). The marker ' refers to p-value < 0.01 when comparing with ASGCN.

ral Network (CNN) (Lecun et al., 1998) layer to ob-
tain the sentence representation. TNet-ATT (Tang
et al., 2019) is an extension of TNet-LF, and it
provides an attention supervision mining mecha-
nism to improve the previous model. ASCNN and
ASGCN (Zhang et al., 2019) use CNN and Graph
Convolutional Network (GCN) (Kipf and Welling,
2017) to capture the long-range dependencies and
syntactic information.

3.3 Experimental Results

Our proposed model shows significant improve-
ments on the four datasets, Table 2 shows the per-
formance comparisons. Our method outperforms
SVM (Kiritchenko et al., 2014) by 2.7 and 7.15
Acc. score on 14Rest and 14Lap, respectively. This
indicates that our neural approach extracts more
effective features than hard-coded feature engineer-
ing. Compared to the attention-based methods —
ATAE (Wang et al., 2016), MemNet (Tang et al.,
2016), IAN (Maet al., 2017), and TNet-ATT (Tang
et al., 2019), our MCRF-SA model pays more at-
tention to the aspect-specific opinion spans, which
bring significant performance improvement on the
four datasets.

We also compare our model with methods that
focus on word segmentations for sentiment clas-
sification. Our method outperforms the previous
regularizers guided structured attention model SA-
LSTM-P (Wang and Lu, 2018) by more than 1.2
Acc. score on 14Rest and 14Lap. TNet-LF (Li
et al., 2018a) and ASCNN (Zhang et al., 2019) em-

3We train their models with the default parameters and
their released training data, and report the average results on
our test sets from 3 runs. Note that these works did not release
development sets.

ploy CNN to evaluate word spans regarding how
much it contributed to the sentiment, but the ker-
nel size limits the length of the span. ASGCN
(Zhang et al., 2019) employs GCN over the de-
pendency tree to capture syntactic and dependency
information. However, the performance heavily
relies on the accuracy of the dependency trees.
Our proposed multi-CRF structured attention along
with the position decay function allows MCRF-
SA to perform soft-selection of multiple aspect-
specific opinion spans that influence the aspect’s
sentiment. The large performance gaps between
our model and baseline models confirm the effec-
tiveness of our proposed architecture. Such results
also demonstrate that sentiment classification can
benefit greatly from aspect-specific opinion spans.
Furthermore, we observe that the performance
on 15Rest is not as good as the other three datasets.
Such behavior is caused by the different distribu-
tion of positive, neutral, and negative sentiment
between training and test set, shown in Table 1.

4 Analysis

4.1 Effect of Number of CRFs

To fully investigate the effect of the number
of CRFs, we conduct additional experiments on
14Rest and 14Lap with the number of CRFs &
{1,2,3,...,16}. Figure 2 shows the experimental
results. The model achieves the best performance
when the number of CRFs equals to 4. Particularly,
the performance becomes relatively plateau when a
large number of CRFs is adopted. We believe this
is because the sizes of the four benchmark datasets
are relatively small, and an excessively large num-
ber of parameters may not be able to further extract
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Figure 3: Marginal distributions of ~’Yes” label.

effective features.

4.2 Case Study and Error Analysis

Figure 3 shows the marginal distributions (Equa-
tion 5) of SA-LSTM-P (Wang and Lu, 2018) and
our MCRF-SA model. The aspect for the given ex-
ample is “Indian food” with negative sentiment,
and only our model predicts correct sentiment.
From Figure 3b heat map, the different marginal
distributions on the four CRFs indicate that our
model indeed captures different opinion features.
It can be observed that MCRF-SA is able to attend
to the two major opinion spans: “real” and “n’t”.
The SA-LSTM-P model returns positive sentiment
as it focuses too much on wrong opinion words.

We also analyze some common errors from our
MCRF-SA model, ASGCN, and TNet-ATT on the
Lapl4 dataset. We observe two major types of
errors, and Table 3 shows the examples for error
analysis. The first two sentences belong to the
type 1 error and the last one presents a type 2 er-
ror. The first type of errors appear frequently in
neutral cases. In general, the neural models can-
not well differentiate if the negative expressions
(e.g. “cost”, “shouldn’t’, etc.) is associated with
the target/aspect. The second type typically involve
complicated sentence structures with non-trivial
semantics, which requires advanced language un-
derstanding capability.

Case Study MCRF-SA ASGCN TNet-ATT
1. When considering a Mac, look at the total

cost of ownership and not just the initial NEU NEG NEG
price tagngy -

2. It shouldn’t happen like that, I don’t have
any design appngy open or anything .

3. The smallgr sizepos was a bonus because NEG NEG NEG
of space restrictions.

NEG, NEU NEU

Table 3: The words highlighted in blue denote the given
aspects, and gold sentiment labels are marked as sub-

scripts. x indicates incorrect prediction.
Models 14Rest 14Lap
Ace. Fi Ace. Fi
MCRF-SA 82.86 73.78 77.64 7423
— aspect indicator 79.02 6696 7276 67.56
— decay function 81.52 7094 76.69 73.12
— structured attention  80.00 68.89 69.61 63.74

Table 4: Ablation Study.

4.3 Ablation Study

We examine the effectiveness of the major compo-
nents of our MCRF-SA model, and Table 3 presents
the ablation results on 14Rest and 14Lap datasets.
Without the aspect indicator, our model becomes
a sentence-level sentiment classification method
which inevitably produces wrong predictions for
sentences having multiple aspects with different
sentiments. Removing the position decay function
hurts the performance by 2.84 and 1.11 F} score
on 14Rest and 14Lap, respectively. Lastly, without
multi-CRF structured attention layer, the architec-
ture becomes a simple Bi-GRU based model and
the performance drops significantly by 4.89 and
10.49 F} points on 14Rest and 14Lap.

5 Conclusion

We propose a simple and effective MCRF-SA
model to extract aspect-specific opinion span fea-
tures. In particular, with the proposed multi-CRF
structured attention layer and the effective position
decay function, our model is capable of extracting
various aspect-specific opinion span features from
different representation sub-spaces. The experi-
mental results demonstrate that our method effec-
tively exploits the corresponding opinion features
for sentiment classification. One future direction is
to investigate how to integrate the two different at-
tention mechanisms, namely the standard attention
and structured attention for NLP applications.
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