
EMNLP 2020

The 2020 Conference on
Empirical Methods in Natural Language Processing

Proceedings of Systems Demonstrations

November 16 – 20, 2020

c©2020 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-952148-62-0

ii

Introduction

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 2020 Conference on Empirical Methods in Natural Language
Processing, which was held online, on November 16–20, 2020.

The system demonstrations session includes papers describing systems ranging from early research
prototypes to mature production-ready software. We received 91 submissions, 10 of which were either
invalid or withdrawn by the authors. Of the 81 valid submissions, 29 were selected for inclusion in the
proceedings after review of three members of the program committee, achieving an overall acceptance
rate of 36%.

We thank all authors for their submissions, and the 115 members of the program committee for their
timely and thoughtful reviews.

David Schlangen and Qun Liu
EMNLP 2020 System Demonstration Co-Chairs

iii

Organizers:

Qun Liu, Huawei Noah’s Ark Lab, Hong Kong
David Schlangen, University of Potsdam, Germany

Program Committee:

Adrián Pastor López Monroy, Ahmed Abdelali, Alan Akbik, Ales Horak, Aljoscha Burchardt,
Amy Siu, Andrea Varga, Anoop Kunchukuttan, Arushi Raghuvanshi, Barbora Hladka, Ben Hachey,
Benjamin Marie, Carlos Escolano, Carlos Ramisch, Carolin Lawrence, Carsten Eickhoff, Chang-
han Wang, Changsong Liu, Chenchen Ding, Christos Christodoulopoulos, Clare Llewellyn, Danilo
Croce, Deyi Xiong, Dezhao Song, Dian Yu, Diane Napolitano, Dimitris Galanis, Doug Downey,
Eleftherios Avramidis, Eugene Kharitonov, Fabian David Schmidt, Falavigna Daniele, Fernando
Alva-Manchego, Georgeta Bordea, German Rigau, Gianni Barlacchi, Guangyou Zhou, Hai Leong
Chieu, Hao Li, Imed Zitouni, Irene Russo, Ivan Vladimir Meza Ruiz, Ivan Vulić, James Fan, Jenna
Kanerva, John Arevalo, John Lee, Jonas Pfeiffer, Joseph P. Dexter, Juan-Manuel Torres-Moreno,
Jun Araki, Jun Zhao, Koji Mineshima, Konstantinos Skianis, Leo Wanner, Leonhard Hennig,
Liang-Chih Yu, Liang-Hsin Shen, Mamoru Komachi, Margot Mieskes, Marie-Jean Meurs, Ma-
rina Danilevsky, Marina Litvak, Masoud Rouhizadeh, Michael Stewart, Michal Shmueli-Scheuer,
Ming Gong, Mo Yu, Montse Cuadros, Natalia Vanetik, Nicolas Rodolfo Fauceglia, Niloofar Safi
Samghabadi, Oren Pereg, Pablo Ruiz Fabo, Pascual Martínez-Gómez, Patrick Ernst, Petya Osen-
ova, Pierre Nugues, Pradipto Das, Preslav Nakov, Prokopis Prokopidis, Qiongkai Xu, Rui Wang,
Sameer Singh, Sanuj Sharma, Saurav Sahay, Sebastin Santy, Seid Muhie Yimam, Shajith Ikbal,
Siddharth Patwardhan, Stelios Piperidis, Stella Markantonatou, Sudipta Kar, Sunayana Sitaram,
Sven Schmeier, Tae Yano, Taesun Moon, Valia Kordoni, vishwajeet kumar, Wei Lu, Wolfgang
Maier, Xianpei Han, Xu Han, Youngsoo Jang, Yuanfeng Song, Yusuke Oda, Zeynep Akkalyoncu
Yilmaz, Zhanming Jie, Zhe Zhao, Ziyue Wang

v

Table of Contents

OpenUE: An Open Toolkit of Universal Extraction from Text
Ningyu Zhang, Shumin Deng, Zhen Bi, Haiyang Yu, Jiacheng Yang, Mosha Chen, Fei Huang, Wei

Zhang and Huajun Chen. .1

BERTweet: A pre-trained language model for English Tweets
Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen . 9

NeuralQA: A Usable Library for Question Answering (Contextual Query Expansion + BERT) on Large
Datasets

Victor Dibia . 15

Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities
from Wikipedia

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu Takefuji and
Yuji Matsumoto . 23

ARES: A Reading Comprehension Ensembling Service
Anthony Ferritto, Lin Pan, Rishav Chakravarti, Salim Roukos, Radu Florian, J William Murdock

and Avi Sil .31

Transformers: State-of-the-Art Natural Language Processing
Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, Anthony Moi,

Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, Remi Louf, Patrick von Platen, Tim Rault,
Yacine Jernite, Teven Le Scao, Sylvain Gugger, Julien Plu, Clara Ma, Canwei Shen, Mariama Drame,
Quentin Lhoest and Alexander Rush. .38

AdapterHub: A Framework for Adapting Transformers
Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,

Kyunghyun Cho and Iryna Gurevych . 46

HUMAN: Hierarchical Universal Modular ANnotator
Moritz Wolf, Dana Ruiter, Ashwin Geet D’Sa, Liane Reiners, Jan Alexandersson and Dietrich

Klakow. 55

DeezyMatch: A Flexible Deep Learning Approach to Fuzzy String Matching
Kasra Hosseini, Federico Nanni and Mariona Coll Ardanuy . 62

CoSaTa: A Constraint Satisfaction Solver and Interpreted Language for Semi-Structured Tables of Sen-
tences

Peter Jansen . 70

InVeRo: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles
Simone Conia, Fabrizio Brignone, Davide Zanfardino and Roberto Navigli 77

Youling: an AI-assisted Lyrics Creation System
Rongsheng Zhang, Xiaoxi Mao, Le Li, Lin Jiang, Lin Chen, Zhiwei Hu, Yadong Xi, Changjie Fan

and Minlie Huang . 85

A Technical Question Answering System with Transfer Learning
Wenhao Yu, Lingfei Wu, Yu Deng, Ruchi Mahindru, Qingkai Zeng, Sinem Guven and Meng Jiang

92

vii

ENTYFI: A System for Fine-grained Entity Typing in Fictional Texts
Cuong Xuan Chu, Simon Razniewski and Gerhard Weikum . 100

The Language Interpretability Tool: Extensible, Interactive Visualizations and Analysis for NLP Models
Ian Tenney, James Wexler, Jasmijn Bastings, Tolga Bolukbasi, Andy Coenen, Sebastian Gehrmann,

Ellen Jiang, Mahima Pushkarna, Carey Radebaugh, Emily Reif and Ann Yuan . 107

TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP
John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin and Yanjun Qi 119

Easy, Reproducible and Quality-Controlled Data Collection with CROWDAQ
Qiang Ning, Hao Wu, Pradeep Dasigi, Dheeru Dua, Matt Gardner, Robert L Logan IV, Ana Maraso-

vić and Zhen Nie . 127

SciSight: Combining faceted navigation and research group detection for COVID-19 exploratory scien-
tific search

Tom Hope, Jason Portenoy, Kishore Vasan, Jonathan Borchardt, Eric Horvitz, Daniel Weld, Marti
Hearst and Jevin West . 135

SIMULEVAL: An Evaluation Toolkit for Simultaneous Translation
Xutai Ma, Mohammad Javad Dousti, Changhan Wang, Jiatao Gu and Juan Pino144

Agent Assist through Conversation Analysis
Kshitij Fadnis, Nathaniel Mills, Jatin Ganhotra, Haggai Roitman, Gaurav Pandey, Doron Cohen,

Yosi Mass, Shai Erera, Chulaka Gunasekara, Danish Contractor, Siva Patel, Q. Vera Liao, Sachindra
Joshi, Luis Lastras and David Konopnicki . 151

NeuSpell: A Neural Spelling Correction Toolkit
Sai Muralidhar Jayanthi, Danish Pruthi and Graham Neubig . 158

LibKGE - A knowledge graph embedding library for reproducible research
Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz and Rainer Gemulla 165

WantWords: An Open-source Online Reverse Dictionary System
Fanchao Qi, Lei Zhang, Yanhui Yang, Zhiyuan Liu and Maosong Sun. .175

BENNERD: A Neural Named Entity Linking System for COVID-19
Mohammad Golam Sohrab, Khoa Duong, Makoto Miwa, Goran Topic, Ikeda Masami and Taka-

mura Hiroya . 182

RoFT: A Tool for Evaluating Human Detection of Machine-Generated Text
Liam Dugan, Daphne Ippolito, Arun Kirubarajan and Chris Callison-Burch 189

A Data-Centric Framework for Composable NLP Workflows
Zhengzhong Liu, Guanxiong Ding, Avinash Bukkittu, Mansi Gupta, Pengzhi Gao, Atif Ahmed,

Shikun Zhang, Xin Gao, Swapnil Singhavi, Linwei Li, Wei Wei, Zecong Hu, Haoran Shi, Xiaodan
Liang, Teruko Mitamura, Eric Xing and Zhiting Hu . 197

CoRefi: A Crowd Sourcing Suite for Coreference Annotation
Ari Bornstein, Arie Cattan and Ido Dagan . 205

Langsmith: An Interactive Academic Text Revision System
Takumi Ito, Tatsuki Kuribayashi, Masatoshi Hidaka, Jun Suzuki and Kentaro Inui 216

viii

IsOBS: An Information System for Oracle Bone Script
Xu Han, Yuzhuo Bai, Keyue Qiu, Zhiyuan Liu and Maosong Sun. .227

ix

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 1–8
November 16-20, 2020. c©2020 Association for Computational Linguistics

OpenUE: An Open Toolkit of Universal Extraction from Text

Ningyu Zhang 1,2, Shumin Deng 1,2, Zhen Bi 1,2, Haiyang Yu 1,2, Jiacheng Yang 1,2,
Mosha Chen 3, Fei Huang 3, Wei Zhang 2,3, Huajun Chen1,2 ∗

1 Zhejiang University
2 AZFT Joint Lab for Knowledge Engine

3 Alibaba Group
{zhangningyu,231sm,21921233,yuhaiyang,21951039,huajunsir}@zju.edu.cn

{chenmosha.cms,f.huang,lantu.zw}@alibaba-inc.com

Abstract

Natural language processing covers a wide va-
riety of tasks with token-level or sentence-
level understandings. In this paper, we provide
a simple insight that most tasks can be repre-
sented in a single universal extraction format.
We introduce a prototype model and provide
an open-source and extensible toolkit called
OpenUE for various extraction tasks. OpenUE
allows developers to train custom models to ex-
tract information from the text and supports
quick model validation for researchers. Be-
sides, OpenUE provides various functional
modules to maintain sufficient modularity and
extensibility. Except for the toolkit, we also
deploy an online demo1 with restful APIs to
support real-time extraction without training
and deploying. Additionally, the online sys-
tem can extract information in various tasks,
including relational triple extraction, slot &
intent detection, event extraction, and so on.
We release the source code, datasets, and pre-
trained models to promote future researches in
http://github.com/zjunlp/openue.

1 Introduction

A large number of natural language processing
(NLP) tasks exist to analyze various aspects of
human language. Most of them focus on token-
level classification (e.g., named entity recognition,
slot filling, and argument role classification) or
sentence-level understanding (e.g., relation classi-
fication, intent detection, and event classification).
Previous researchers usually use specifically de-
signed neural network architectures for those tasks.
Note that most of those tasks share similar encoder
and decoder modules (Jiang et al., 2019). It is ben-
eficial to achieve a unified model for all diverse
information extraction tasks without task-specific
architectures.

∗ Corresponding author: C.Hua(huajunsir@zju.edu.cn)
1http://openue.top

Intuitively, we rethink most of the previous tasks
and find that most tasks fall in two categories:
token-oriented tasks, where the goal is to predict
labeled spans (e.g., named entities, slots, aspects)
and sentence-oriented tasks, where the goal is to
predict labels regarding the semantic understanding
of sentences (e.g., relations, intents, sentiments).
The commonality of these tasks inspires us whether
there is a universal framework. Moreover, in the
domain of efficient human annotation interfaces, it
is already standard to use unified representations
for a wide variety of NLP tasks. Taking the BRAT
(Stenetorp et al., 2012) annotation as an example,
this framework has a single unified format which
consists of spans (e.g., the span of an entity), and
labeled relations between the spans (e.g., “born-in”
and “live-in”).

Motivated by this, we formulate those tasks re-
garding both token and sentence as universal ex-
traction and design a simple unified model. Our
prototype model studies the possibility of bridg-
ing the gap between tasks with single architec-
ture and providing future insight for unified nat-
ural language understanding. Furthermore, as there
is a lack of practical and stable toolkit to support
the implementation, deployment and evaluation of
those tasks, we develop a toolkit which is a compli-
ment for existing toolsets such as Spacy2 for named
entity recognition (NER), TagMe (Ferragina and
Scaiella, 2010) for entity linking (EL), OpenKE
(Han et al., 2018) for knowledge embedding, Stan-
ford OpenIE (Angeli et al., 2015) for open informa-
tion extraction, and OpenNER (Han et al., 2019)
for relation extraction.

To be specific, we develop an open and exten-
sible toolkit named “OpenUE”. The toolkit prior-
itizes operational efficiency based on TensorFlow

2https://spacy.io/

1

Marry

Husband Wife
Place

Trigger Argument Role

Event Extraction

Jack is married to the microbiologist known as Dr. Germ in the USA.

Lived_in

Slot Filling & Intent Detection

Relational Triple Extraction

In 1979, Hanks lived in the New York City.

https://en.wikipedia.org/wiki/Serena_Williams
https://www.serenawilliams.com

…

Knowledge Extraction From the Web

...
(Serena Williams, born in, Florida)

Listen to westbam alumb allergic on google musicWord

Slot

Intent PlayMusic

artist album service

Figure 1: The examples of all application scenarios in OpenUE.

and Pytorch3, which supports quick model train-
ing and validation. Besides, OpenUE is able to
meet some individual requirements of incorporat-
ing new models with system encapsulation and
model extensibility. OpenUE provides interfaces
for developers aiming at custom models; thus, it is
convenient to start up an extraction system based
on OpenUE without writing tedious glue code and
knowing too many technical details. We provide
an online system to extract structured relational
facts, slots as well as intents or events from the text
with friendly interactive interfaces and fast reaction
speed. We will provide maintenance to meet new
requests, add new tasks, and fix bugs in the future.
This toolkit may benefit both researchers and in-
dustry developers. We highlight our contributions
as follows:

• We provide a simple prototype implementa-
tion of one single model to perform various
NLP tasks.

• We provide an open and extensible toolkit to
train, evaluate, and serve with multilingual
support for universal extraction.

• We open-source our code and release dataset,
as well as pre-trained models with open restful
APIs for future researchers.

3Pytorch version is under development.

2 Application Scenarios

OpenUE is designed for various tasks, including
relational triple extraction, slot filling, intent detec-
tion, event extraction, and knowledge extraction
from the Web, etc. As shown in Figure 1, we give
some examples of these application scenarios.

2.1 Relational Triple Extraction

Relational Triple Extraction is an essential task
in Information Extraction (IE) for Natural Lan-
guage Processing (NLP) and Knowledge Graph
(KG) (Zhang et al., 2018b; Yu et al., 2017; Zhang
et al., 2019; Huang et al., 2020; Nan et al., 2020;
Zhang et al., 2020a; Ye et al., 2020; Zhang et al.,
2020b), which is aimed at detecting a pair of en-
tities along with their relations from unstructured
text. For instance, there is a sentence “Paris is
known as the romantic capital of France.”, and in
this example, an ideal relational triple extraction
system should extract the relational triple 〈Paris,
Capital of, France〉, in which Capital of is the re-
lation between Paris and France. In this paper, we
provide a simple implementation which firstly clas-
sifies relations with the sentence and then conduct
sequence labeling to extract entities. The relation
first approach is beneficial in the real-world set-
ting as most of the sentences contain NA relations;
therefore, openUE can filter out noisy candidates
that do not have relations to improve computation
efficacy.

2

I
-obj

B
-obj

I-
sub

I-
sub

I
-sub

B
-sub

Class Prediction

Combine

1.（head,relation,tail）
2.（Intent,slot1,slot2,…,slotN）
3.（Event,arg1,arg2,…,argN）

w1

Classification

Sequence Labeling

Extractor

ENCODER

ENCODER

B
-sub

I
-sub

OI-
sub

I-
sub

O B
-obj

I
-obj

O O O O OO O O

𝜈"#$

Entities

Slots

O O O O O O OO O O

Arguments

Relations

Intents

Events

Input

w2 w3 w4 w5[CLS] [SEP]w6 w7 w14w13w12w11w10w9w8

Figure 2: The architecture of OpenUE. Best view in color.

Moreover, we also provide a simple implemen-
tation of knowledge extraction from the Web. We
implement crawler to obtain raw web pages and
apply our approach to extract fact knowledge. Note
that the recent knowledge graph is far from com-
plete, while vast numbers of facts exist in web
pages. OpenUE is suitable to serve as a schema-
based never ended learner from the Web.

2.2 Event Extraction
Extracting events from natural language text is an
essential yet challenging task for natural language
understanding (Deng et al., 2020). When given a
document, event extraction systems need to rec-
ognize event triggers with their specific types and
their corresponding arguments with the roles. In
real-world settings, classifying documents with spe-
cific event types and extracting arguments with role
types is necessary. We integrate event extraction
into OpenUE (without trigger identification).

2.3 Slot Filling and Intent Detection
Natural language understanding (NLU) is critical
to the performance of goal-oriented spoken dia-
logue systems. NLU typically includes the intent
detection and slot filling tasks, aiming to form a
semantic parse for user utterances. For example,
given an utterance from the user, the slot filling
annotates the utterance on a word-level, indicating
the slot type mentioned by a specific word such as

the slot artist mentioned by the word westbam as
shown in Figure 1. At the same time, the intent
detection works on the utterance-level to give in-
tent label(s) to the whole sentence. As slot filling
and intent detection rely on both token-level and
sentence-level understanding, we integrate this task
into OpenUE.

Note that the OpenUE can also be applied to
more related tasks such as aspect-based sentiment
analysis (Pontiki et al., 2016), semantic role label-
ing (Carreras and Màrquez, 2005), and so on.

3 Toolkit Design and Implementation

To implement a single prototype model for all tasks,
we introduce our OpenUE approach, as Figure
2 shows. We design the prototype implementa-
tion with separated sentence classification and se-
quence labeling modules based the following three
empirical observations: 1) joint optimization of se-
quence labeling and sentence classification requires
labor-intensive hyper-parameters fine-tuning (Chen
et al., 2019); 2) sentence classification first can fil-
ter out vast amounts of instances which can reduce
computation for sequence labeling; 3) sentence la-
bels with additional information (like a machine
reading comprehension style) can provide more
signals for sequence labeling (Li et al., 2019).

To design the toolkit, we build a unified under-
lying platform. OpenUE encapsulates various data

3

processing and training strategies, which implies
that developers can maximize the reuse of code to
avoid redundant and unnecessary model implemen-
tations. We design OpenUE based on TensorFlow
and PyTorch, enabling developers to train models
on GPUs for operational efficiency. We introduce
the model and design details in the following sec-
tions.

3.1 Tokenization
The tokenization module is designed for tokeniz-
ing input text into several tokens. In OpenUE,
we implement both word-level tokenization and
subword-level tokenization. These two kinds of to-
kenization can satisfy most tokenization demands;
thus, developers can avoid spending too much time
writing glue code for data processing. Develop-
ers can also build customer tokenizer by extending
the BasicTokenizer class and implementing
specific tokenization operations.

3.2 Classification
The classification module is designed for the
sentence-level task. We adopt pre-trained language
models as default instance encoders in OpenUE.
For each sentence x = {w1, w2, . . . , wn} in the
training set, where wi ∈ x is the word token in
sentence x, we first construct input sentence in the
form: {[CLS], w1, w2, . . . , wn, [SEP]}. Then we
leverage the output of [CLS] representation to en-
code the entire sentence information. We apply an
MLP layer with a cross-entropy loss to perform
sentence classification. In OpenUE, we have also
implemented other common encoders such as XL-
Net (Yang et al., 2019).

3.3 Sequence Labeling
The sequence labeling module is designed for
the token-level task. We utilize the same en-
coder from the previous section to represent in-
stance. We concatenate the output of the clas-
sification module (e.g., relations, event types
or intents) with the raw sentence as input for
sequence labeling. Specifically, take the rela-
tional triple extraction as an example, the input
is {[CLS], relation, [SEP], w1, w2, ..., wn}. To
perform sequence labeling, we provide different
kinds of implementations. Traditionally, when
the hidden states of the words in the sentence are
learned, it is convenient to apply the softmax func-
tion to obtain final logits. Moreover, we also pro-
vide sequence labeling implementations such as

CRF (Ye et al., 2009) to tag dependencies for each
transition pattern between adjacent tags.

3.4 Extractor

To obtain final results, we implement an extractor
module to combine the outputs of classification
and sequence labeling. For entity and relation ex-
traction, we utilize greedy methods to combine the
final results. For other tasks such as slot filling and
intent detection, we group those outputs as final
predictions.

4 Experiment and Evaluation

In this section, we evaluate our toolkit OpenUE
on several datasets in different tasks. The exper-
imental results illustrate that our implementation
with OpenUE can achieve comparable or even bet-
ter performance compared to some state-of-the-art
results.

4.1 Relational Triple Extraction

We carry out experiments on four datasets of
relational triple extraction: NYT (Riedel et al.,
2010), WebNLG (Gardent et al., 2017), SKE and
ChMedIE. NYT dataset was originally produced
by the distant supervision method. It consists of
1.18M sentences with 24 predefined relation types.
WebNLG dataset was originally created for Natu-
ral Language Generation (NLG) tasks and adapted
by (Zeng et al., 2018) for relational triple extrac-
tion task. It contains 246 predefined relation types.
Different from the two previous English datasets,
SKE is a Chinese dataset for information extrac-
tion, which is released in the 2019 Language and
Intelligence Challenge4. SKE contains 50 relation
types, and training texts exceed 200,000. We build
our training set, development set, and test set by
randomly selecting 50,000, 5,000, and 5,000 texts.
ChMedIE is also a Chinese dataset for informa-
tion extraction in the medical domain. We craw
corpus from the Chinese health website5 and build
this dataset via distant supervision. It contains 4
relation types.

We compare our OpenUE with four baseliens.
Tagging (Zheng et al., 2017) is an end-to-end
method with a novel tagging scheme. CopyR
(Zeng et al., 2018) is a Seq2Seq learning frame-
work with a copy mechanism. HRL (Takanobu

4http://lic2019.ccf.org.cn/kg
5http://www.39.net/

4

Model SNIPS-NLU ATIS
Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

CNN TriCRF - - - 0.944 - -
Joint Seq 0.873 0.969 0.732 0.942 0.926 0.807
Attention BiRNN 0.878 0.967 0.741 0.942 0.911 0.789
Slot-Gated Full Atten 0.888 0.970 0.755 0.948 0.936 0.822
Capsule-NLU 0.918 0.973 0.809 0.952 0.950 0.834
Joint-BERT 0.986 0.970 0.928 0.975 0.961 0.882

OpenUE 0.985 0.988 0.930 0.953 0.960 0.874

Table 1: Evaluation results of slot filling and intent detection on SNIPS-NLU and ATIS datasets.

Model NYT WebNLG SKE ChMedIE

Tagging 42.0 28.3 - -
CopyR 58.7 37.1 - -
HRL 68.3 66.0 - -

CasRel 89.6 91.8 78.4 81.0

OpenUE 89.9 89.9 79.3 81.2

Table 2: Evaluation results of entity and relation extrac-
tion on NYT, WebNLG, SKE and ChMedIE datasets.

Model ACE DuEE
Type Arg Type Arg

DMCNN 69.1 53.5 - -
dbRNN 71.9 58.7 - -
JMEE 73.7 60.3 80.2 79.5

OpenUE 75.5 60.5 86.2 85.3

Table 3: Evaluation results of event extraction extrac-
tion on ACE and DuEE datasets.

et al., 2019) addresses relation extraction by re-
garding related entities as the arguments of relation
via hierarchical reinforcement learning. CasRel
(Wei et al., 2019) provides a novel cascade binary
tagging framework which models relations as func-
tions that map subjects to objects in a sentence.
From Table 2 we observe that OpenUE can archive
comparable results with CasRel,

4.2 Event Extraction

We carry out experiments on two datasets of event
extraction: ACE05 6, DuEE. The ACE 2005 dataset
annotates 33 event subtypes and 36 role classes,
along with the NONE class and BIO annotation
schema, we classify each sentence into 67 cate-
gories in event classification and 37 categories in
argument extraction. DuEE is a Chinese dataset for
event extraction, which is released in the 2020 Lan-

6https://catalog.ldc.upenn.edu/
LDC2006T06

guage and Intelligence Challenge7. DuEE contains
65 event types and 121 argument roles.

We compare our OpenUE with three baseliens.
DMCNN (Chen et al., 2015) uses dynamic multi-
pooling to keep multiple events’ information.
dbRNN (Sha et al., 2018) adds dependency which
bridges over Bi-LSTM for event extraction. JMEE
(Liu et al., 2018) proposes an approach which
jointly extract multiple event triggers and argu-
ments by introducing syntactic shortcut arcs to en-
hance information flow and attention-based graph
convolution networks to model graph information.
From Table 3 we observe that OpenUE can archive
comparable results with JMEE,

4.3 Slot Filling and Intent Detection

We conduct experiments on two benchmarks NLU
datasets: SNIPS Natural Language Understanding
benchmark8 (SNIPS-NLU) and the Airline Travel
Information Systems (ATIS) dataset (Tur et al.,
2010). SNIPS-NLU dataset is collected from the
Snips personal voice assistant. There are 72 slot la-
bels and 7 intent types in the SNIPS dataset. ATIS
dataset is a widely used dataset in NLU research,
which includes audio recordings of people making
flight reservations. There are 120 slot labels and 21
intent types in the ATIS dataset.

We compare OpenUE with six baselines as fol-
lows: CNN TriCRF (Xu and Sarikaya, 2013) intro-
duces a Convolution Neural Network (CNN) based
sequential labeling model for slot filling. Joint
Seq (Hakkani-Tür et al., 2016) proposes a Recur-
rent Neural Network (RNN) for slot filling and
utilizes the last hidden state of the RNN to pre-

7https://aistudio.baidu.com/aistudio/
competition/detail/32

8https://github.com/snipsco/
nlu-benchmark/

5

Figure 3: An example of the online system.

dict the utterance intent. Attention BiRNN (Liu
and Lane, 2016) proposes a RNN based encoder-
decoder model for joint intent detection and slot
filling. Slot-gated Full Atten (Goo et al., 2018)
proposes a slot gate that focuses on learning the
relationship between intent and slot attention vec-
tors in order to obtain better semantic frame results
by the global optimization. Capsule-NLU (Zhang
et al., 2018a) proposes a capsule-based neural net-
work model that accomplishes slot filling and in-
tent detection via a dynamic routing-by-agreement
schema. Joint-BERT (Chen et al., 2019) adapts
the standard BERT classification, and token classi-
fication pipeline to jointly model the slot and intent.
From Table 1, we observe that OpenUE can archive
comparable performance with Capsule-NLU.

In summary, we conclude that there exist
general architectures for diverse tasks and
OpenUE can achieve comparable performance
compared with baselines.

5 Online System

Besides the toolkit, we also release an online sys-
tem in http://openue.top. As shown in Figure 3,
we train models in different scenarios with multi-
lingual support (English and Chinese) and deploy
the model for online access. The online system
can be directly applied to extract structured facts,
events, and slots & intents from plain text. We
also visualize the graph of relational triples and the
probabilities of sentence logits (e.g., relation prob-
abilities) to help to analyze model performance.

Additionally, we deploy a schema-based never
ended learner that can extract factual knowledge
from the Web. Our system has already obtained
millions of facts. More details can be shown
in the https://openue-docs.readthedocs.io/

en/latest/.
Moreover, we provide open restful APIs9 for di-

verse tasks by OpenUE. More tasks, such as aspect-
based sentiment analysis, semantic role labeling,
and more domains, will be supported in the future.

6 Conclusion

We provide a simple insight that lots of NLP tasks
can be represented in a single format. To this end,
we provide a prototype model implementation of
universal extraction and introduce an open and ex-
tensible toolkit, namely, OpenUE. We conduct ex-
tensive experiments which demonstrate that the
models implemented by OpenUE are efficient, ef-
fective, and can achieve comparable performance
compared to the state-of-the-art results. Further-
more, we also provide an online system with restful
APIs for meeting real-time extraction without train-
ing and deploying. In the future, we plan to utilize
the multitask learning or meta-learning algorithms
to enhance extraction performance. We will pro-
vide long-term maintenance to fix bugs and meet
new requests.

9https://github.com/zjunlp/openue/
blob/master/API.md

6

Acknowledgments

We want to express gratitude to the anony-
mous reviewers for their hard work and kind
comments, which will further improve our
work in the future. This work is funded by
NSFC91846204/SQ2018YFC000004/2018YFB1402800,
Alibaba CangJingGe (Knowledge Engine) Re-
search Plan.

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
344–354.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduc-
tion to the conll-2005 shared task: Semantic role la-
beling. In Proceedings of the ninth conference on
computational natural language learning (CoNLL-
2005), pages 152–164.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176.

Shumin Deng, Ningyu Zhang, Jiaojian Kang, Yichi
Zhang, Wei Zhang, and Huajun Chen. 2020. Meta-
learning with dynamic-memory-based prototypical
network for few-shot event detection. In Proceed-
ings of the 13th International Conference on Web
Search and Data Mining, pages 151–159.

Paolo Ferragina and Ugo Scaiella. 2010. Tagme:
on-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of the 19th ACM
international conference on Information and knowl-
edge management, pages 1625–1628.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating train-
ing corpora for nlg micro-planning.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li
Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-
Nung Chen. 2018. Slot-gated modeling for joint
slot filling and intent prediction. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 753–757.

Dilek Hakkani-Tür, Gökhan Tür, Asli Celikyilmaz,
Yun-Nung Chen, Jianfeng Gao, Li Deng, and Ye-
Yi Wang. 2016. Multi-domain joint semantic frame
parsing using bi-directional rnn-lstm. In Inter-
speech, pages 715–719.

Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu,
Maosong Sun, and Juanzi Li. 2018. Openke: An
open toolkit for knowledge embedding. In Proceed-
ings of the 2018 conference on empirical methods
in natural language processing: system demonstra-
tions, pages 139–144.

Xu Han, Tianyu Gao, Yuan Yao, Demin Ye, Zhiyuan
Liu, and Maosong Sun. 2019. Opennre: An open
and extensible toolkit for neural relation extraction.
arXiv preprint arXiv:1909.13078.

Luyang Huang, Lingfei Wu, and Lu Wang. 2020.
Knowledge graph-augmented abstractive summa-
rization with semantic-driven cloze reward. ArXiv,
abs/2005.01159.

Zhengbao Jiang, Wei Xu, Jun Araki, and Graham
Neubig. 2019. Generalizing natural language anal-
ysis through span-relation representations. arXiv
preprint arXiv:1911.03822.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2019. A unified mrc
framework for named entity recognition. arXiv
preprint arXiv:1910.11476.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. arXiv preprint arXiv:1609.01454.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly multiple events extraction via attention-
based graph information aggregation. arXiv
preprint arXiv:1809.09078.

Guoshun Nan, Zhijiang Guo, Ivan Sekulić, and Wei Lu.
2020. Reasoning with latent structure refinement for
document-level relation extraction. In In ACL.

Maria Pontiki, Dimitrios Galanis, Haris Papageor-
giou, Ion Androutsopoulos, Suresh Manandhar, Mo-
hammad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, et al. 2016.
Semeval-2016 task 5: Aspect based sentiment anal-
ysis. In 10th International Workshop on Semantic
Evaluation (SemEval 2016).

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In In KDD, pages 148–163.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and argu-
ments by dependency-bridge rnn and tensor-based
argument interaction. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

7

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107.

Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and
Minlie Huang. 2019. A hierarchical framework for
relation extraction with reinforcement learning. In
In AAAI, volume 33, pages 7072–7079.

Gokhan Tur, Dilek Hakkani-Tür, and Larry Heck. 2010.
What is left to be understood in atis? In 2010 IEEE
Spoken Language Technology Workshop, pages 19–
24. IEEE.

Zhepei Wei, Yantao Jia, Yuan Tian, Moham-
mad Javad Hosseini, Mark Steedman, and Yi Chang.
2019. A novel cascade binary tagging frame-
work for relational triple extraction. arXiv preprint
arXiv:1908.08672.

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional
neural network based triangular crf for joint intent
detection and slot filling. In 2013 ieee workshop
on automatic speech recognition and understanding,
pages 78–83. IEEE.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

Hongbin Ye, Ningyu Zhang, Shumin Deng, Mosha
Chen, Chuanqi Tan, Fei Huang, and Huajun Chen.
2020. Contrastive triple extraction with generative
transformer. arXiv preprint arXiv:2009.06207.

Nan Ye, Wee S Lee, Hai L Chieu, and Dan Wu. 2009.
Conditional random fields with high-order features
for sequence labeling. In Advances in neural infor-
mation processing systems, pages 2196–2204.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan,
Cı́cero Nogueira dos Santos, Bing Xiang, and
Bowen Zhou. 2017. Improved neural relation
detection for knowledge base question answering.
ArXiv, abs/1704.06194.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu,
Jun Zhao, et al. 2018. Extracting relational facts by
an end-to-end neural model with copy mechanism.

Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, and
Philip S Yu. 2018a. Joint slot filling and intent de-
tection via capsule neural networks. arXiv preprint
arXiv:1812.09471.

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Jiaoyan
Chen, Wei Zhang, and Huajun Chen. 2020a. Rela-
tion adversarial network for low resource knowledge
graph completion. In Proceedings of The Web Con-
ference 2020, pages 1–12.

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guany-
ing Wang, Xi Chen, Wei Zhang, and Huajun Chen.
2019. Long-tail relation extraction via knowledge
graph embeddings and graph convolution networks.
In Proceedings of NAACL.

Ningyu Zhang, Shumin Deng, Zhanling Sun, Xi Chen,
Wei Zhang, and Huajun Chen. 2018b. Attention-
based capsule networks with dynamic routing for re-
lation extraction. In Proceedings of EMNLP.

Ningyu Zhang, Luoqiu Li, Shumin Deng, Haiyang Yu,
Xu Cheng, Wei Zhang, and Huajun Chen. 2020b.
Can fine-tuning pre-trained models lead to perfect
nlp? a study of the generalizability of relation ex-
traction. arXiv preprint arXiv:2009.06206.

Suncong Zheng, Yuexing Hao, Dongyuan Lu,
Hongyun Bao, Jiaming Xu, Hongwei Hao, and
Bo Xu. 2017. Joint entity and relation extraction
based on a hybrid neural network. Neurocomputing,
257:59–66.

8

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 9–14
November 16-20, 2020. c©2020 Association for Computational Linguistics

BERTweet: A pre-trained language model for English Tweets

Dat Quoc Nguyen1, Thanh Vu2,∗ and Anh Tuan Nguyen3,†
1VinAI Research, Vietnam; 2Oracle Digital Assistant, Oracle, Australia; 3NVIDIA, USA
v.datnq9@vinai.io; thanh.v.vu@oracle.com; tuananhn@nvidia.com

Abstract
We present BERTweet, the first public large-
scale pre-trained language model for English
Tweets. Our BERTweet, having the same ar-
chitecture as BERTbase (Devlin et al., 2019), is
trained using the RoBERTa pre-training pro-
cedure (Liu et al., 2019). Experiments show
that BERTweet outperforms strong baselines
RoBERTabase and XLM-Rbase (Conneau et al.,
2020), producing better performance results
than the previous state-of-the-art models on
three Tweet NLP tasks: Part-of-speech tag-
ging, Named-entity recognition and text clas-
sification. We release BERTweet under the
MIT License to facilitate future research and
applications on Tweet data. Our BERTweet
is available at: https://github.com/
VinAIResearch/BERTweet.

1 Introduction

The language model BERT (Devlin et al., 2019)—
the Bidirectional Encoder Representations from
Transformers (Vaswani et al., 2017)—and its vari-
ants have successfully helped produce new state-
of-the-art performance results for various NLP
tasks. Their success has largely covered the com-
mon English domains such as Wikipedia, news
and books. For specific domains such as biomed-
ical or scientific, we could retrain a domain-
specific model using the BERTology architecture
(Beltagy et al., 2019; Lee et al., 2019; Gururangan
et al., 2020).

Twitter has been one of the most popular micro-
blogging platforms where users can share real-
time information related to all kinds of topics and
events. The enormous and plentiful Tweet data
has been proven to be a widely-used and real-time
source of information in various important ana-
lytic tasks (Ghani et al., 2019). Note that the char-
acteristics of Tweets are generally different from

∗Most of the work done when Thanh Vu was at the Aus-
tralian e-Health Research Centre, CSIRO, Australia.

†Work done during internship at VinAI Research.

those of traditional written text such as Wikipedia
and news articles, due to the typical short length of
Tweets and frequent use of informal grammar as
well as irregular vocabulary e.g. abbreviations, ty-
pographical errors and hashtags (Eisenstein, 2013;
Han et al., 2013). Thus this might lead to a chal-
lenge in applying existing language models pre-
trained on large-scale conventional text corpora
with formal grammar and regular vocabulary to
handle text analytic tasks on Tweet data. To the
best of our knowledge, there is not an existing lan-
guage model pre-trained on a large-scale corpus of
English Tweets.

To fill the gap, we train the first large-scale lan-
guage model for English Tweets using a 80GB
corpus of 850M English Tweets. Our model uses
the BERTbase model configuration, trained based
on the RoBERTa pre-training procedure (Liu et al.,
2019). We evaluate our model and compare it with
strong competitors, i.e. RoBERTabase and XLM-
Rbase (Conneau et al., 2020), on three downstream
Tweet NLP tasks: Part-of-speech (POS) tagging,
Named-entity recognition (NER) and text classi-
fication. Experiments show that our model out-
performs RoBERTabase and XLM-Rbase as well as
the previous state-of-the-art (SOTA) models on all
these tasks. Our contributions are as follows:

• We present the first large-scale pre-trained lan-
guage model for English Tweets.

• Our model does better than its competitors
RoBERTabase and XLM-Rbase and outperforms
previous SOTA models on three downstream
Tweet NLP tasks of POS tagging, NER and text
classification, thus confirming the effectiveness
of the large-scale and domain-specific language
model pre-trained for English Tweets.

• We also provide the first set of experiments in-
vestigating whether a commonly used approach
of applying lexical normalization dictionaries
on Tweets (Han et al., 2012) would help im-

9

prove the performance of the pre-trained lan-
guage models on the downstream tasks.
• We publicly release our model under the name

BERTweet which can be used with fairseq
(Ott et al., 2019) and transformers (Wolf
et al., 2019). We hope that BERTweet can serve
as a strong baseline for future research and ap-
plications of Tweet analytic tasks.

2 BERTweet

In this section, we outline the architecture, and de-
scribe the pre-training data and optimization setup
that we use for BERTweet.

Architecture
Our BERTweet uses the same architecture as
BERTbase, which is trained with a masked lan-
guage modeling objective (Devlin et al., 2019).
BERTweet pre-training procedure is based on
RoBERTa (Liu et al., 2019) which optimizes the
BERT pre-training approach for more robust per-
formance. Given the widespread usage of BERT
and RoBERTa, we do not detail the architecture
here. See Devlin et al. (2019) and Liu et al. (2019)
for more details.

Pre-training data
We use an 80GB pre-training dataset of uncom-
pressed texts, containing 850M Tweets (16B word
tokens). Here, each Tweet consists of at least 10
and at most 64 word tokens. In particular, this
dataset is a concatenation of two corpora:

• We first download the general Twitter Stream
grabbed by the Archive Team,1 containing
4TB of Tweet data streamed from 01/2012 to
08/2019 on Twitter. To identify English Tweets,
we employ the language identification compo-
nent of fastText (Joulin et al., 2017). We to-
kenize those English Tweets using “TweetTo-
kenizer” from the NLTK toolkit (Bird et al.,
2009) and use the emoji package to translate
emotion icons into text strings (here, each icon
is referred to as a word token).2 We also normal-
ize the Tweets by converting user mentions and
web/url links into special tokens @USER and
HTTPURL, respectively. We filter out retweeted
Tweets and the ones shorter than 10 or longer
than 64 word tokens. This pre-process results in
the first corpus of 845M English Tweets.
1https://archive.org/details/

twitterstream
2https://pypi.org/project/emoji

• We also stream Tweets related to the COVID-19
pandemic, available from 01/2020 to 03/2020.3

We apply the same data pre-process step as de-
scribed above, thus resulting in the second cor-
pus of 5M English Tweets.

We then apply fastBPE (Sennrich et al., 2016)
to segment all 850M Tweets with subword units,
using a vocabulary of 64K subword types. On av-
erage there are 25 subword tokens per Tweet.

Optimization
We utilize the RoBERTa implementation in the
fairseq library (Ott et al., 2019). We set a
maximum sequence length at 128, thus generating
850M × 25 / 128 ≈ 166M sequence blocks. Fol-
lowing Liu et al. (2019), we optimize the model
using Adam (Kingma and Ba, 2014), and use a
batch size of 7K across 8 V100 GPUs (32GB each)
and a peak learning rate of 0.0004. We pre-train
BERTweet for 40 epochs in about 4 weeks (here,
we use the first 2 epochs for warming up the learn-
ing rate), equivalent to 166M × 40 / 7K ≈ 950K
training steps.

3 Experimental setup

We evaluate and compare the performance of
BERTweet with strong baselines on three down-
stream NLP tasks of POS tagging, NER and text
classification, using benchmark Tweet datasets.

Downstream task datasets
For POS tagging, we use three datasets Ritter11-
T-POS (Ritter et al., 2011), ARK-Twitter4 (Gim-
pel et al., 2011; Owoputi et al., 2013) and
TWEEBANK-V25 (Liu et al., 2018). For NER, we
employ datasets from the WNUT16 NER shared
task (Strauss et al., 2016) and the WNUT17 shared
task on novel and emerging entity recognition
(Derczynski et al., 2017). For text classification,
we employ the 3-class sentiment analysis dataset
from the SemEval2017 Task 4A (Rosenthal et al.,
2017) and the 2-class irony detection dataset from
the SemEval2018 Task 3A (Van Hee et al., 2018).

For Ritter11-T-POS, we employ a 70/15/15
training/validation/test pre-split available from
Gui et al. (2017).6 ARK-Twitter contains two

3We collect Tweets containing at least one of 11 COVID-
19 related keywords, e.g. covid19, coronavirus, sars-cov-2.

4https://code.google.com/archive/p/
ark-tweet-nlp/downloads (twpos-data-v0.3.tgz)

5https://github.com/Oneplus/Tweebank
6https://github.com/guitaowufeng/TPANN

10

files daily547.conll and oct27.conll in
which oct27.conll is further split into files
oct27.traindev and oct27.test. Fol-
lowing Owoputi et al. (2013) and Gui et al.
(2017), we employ daily547.conll as a test
set. In addition, we use oct27.traindev and
oct27.test as training and validation sets, re-
spectively. For the TWEEBANK-V2, WNUT16
and WNUT17 datasets, we use their existing
training/validation/test split. The SemEval2017-
Task4A and SemEval2018-Task3A datasets are
provided with training and test sets only (i.e. there
is not a standard split for validation), thus we sam-
ple 10% of the training set for validation and use
the remaining 90% for training.

We use a “soft” normalization strategy to all of
the experimental datasets by translating word to-
kens of user mentions and web/url links into spe-
cial tokens @USER and HTTPURL, respectively,
and converting emotion icon tokens into corre-
sponding strings. We also apply a “hard” strategy
by further applying lexical normalization dictio-
naries (Aramaki, 2010; Liu et al., 2012; Han et al.,
2012) to normalize word tokens in Tweets.

Fine-tuning
Following Devlin et al. (2019), for POS tagging
and NER, we append a linear prediction layer on
top of the last Transformer layer of BERTweet
with regards to the first subword of each word to-
ken, while for text classification we append a lin-
ear prediction layer on top of the pooled output.

We employ the transformers library (Wolf
et al., 2019) to independently fine-tune BERTweet
for each task and each dataset in 30 training
epochs. We use AdamW (Loshchilov and Hut-
ter, 2019) with a fixed learning rate of 1.e-5 and
a batch size of 32 (Liu et al., 2019). We compute
the task performance after each training epoch on
the validation set (here, we apply early stopping
when no improvement is observed after 5 continu-
ous epochs), and select the best model checkpoint
to compute the performance score on the test set.

We repeat this fine-tuning process 5 times with
different random seeds, i.e. 5 runs for each task
and each dataset. We report each final test result
as an average over the test scores from the 5 runs.

Baselines
Our main competitors are the pre-trained lan-
guage models RoBERTabase (Liu et al., 2019)
and XLM-Rbase (Conneau et al., 2020), which

Model Ritter11 ARK TB-V2
soft hard soft hard soft hard

O
ur

re
su

lts

RoBERTalarge 91.7 91.5 93.7 93.2 94.9 94.6
XLM-Rlarge 92.6 92.1 94.2 93.8 95.5 95.1
RoBERTabase 88.7 88.3 91.8 91.6 93.7 93.5
XLM-Rbase 90.4 90.3 92.8 92.6 94.7 94.3
BERTweet 90.1 89.5 94.1 93.4 95.2 94.7

DCNN (Gui et al.) 89.9
DCNN (Gui et al.) 91.2 [+a] 92.4 [+a+b]
TPANN 90.9 [+a] 92.8 [+a+b]
ARKtagger 90.4 93.2 [+b] 94.6 [+c]
BiLSTM-CNN-CRF 92.5 [+c]

Table 1: POS tagging accuracy results on the
Ritter11-T-POS (Ritter11), ARK-Twitter (ARK) and
TWEEBANK-V2 (TB-v2) test sets. Result of ARK-
tagger (Owoputi et al., 2013) on Ritter11 is reported
in the TPANN paper (Gui et al., 2017). Note that
Ritter11 uses Twitter-specific POS tags for retweeted
(RT), user-account, hashtag and url word tokens which
can be tagged perfectly using some simple regular ex-
pressions. Therefore, we follow Gui et al. (2017) and
Gui et al. (2018) to tag those words appropriately for
all models. Results of ARKtagger and BiLSTM-CNN-
CRF (Ma and Hovy, 2016) on TB-v2 are reported by
Liu et al. (2018). Also note that “+a”, “+b” and “+c”
denote the additional use of extra training data, i.e.
models trained on bigger training data. “+a”: addi-
tional use of the POS annotated data from the En-
glish WSJ Penn treebank sections 00-24 (Marcus et al.,
1993). “+b”: the use of both training and validation
sets for learning models. “+c”: additional use of the
POS annotated data from the UD English-EWT train-
ing set (Silveira et al., 2014).

have the same architecture configuration as our
BERTweet. In addition, we also evaluate the pre-
trained RoBERTalarge and XLM-Rlarge although it
is not a fair comparison due to their significantly
larger model configurations.

The pre-trained RoBERTa is a strong language
model for English, learned from 160GB of texts
covering books, Wikipedia, CommonCrawl news,
CommonCrawl stories, and web text contents.
XLM-R is a cross-lingual variant of RoBERTa,
trained on a 2.5TB multilingual corpus which con-
tains 301GB of English CommonCrawl texts.

We fine-tune RoBERTa and XLM-R using the
same fine-tuning approach we use for BERTweet.

4 Experimental results

Main results

Tables 1, 2, 3 and 4 present our obtained scores for
BERTweet and baselines regarding both “soft” and
“hard” normalization strategies. We find that for

11

Model
WNUT16 WNUT17

soft hard
entity surface

soft hard soft hard
O

ur
re

su
lts

RoBERTalarge 55.4 54.8 56.9 57.0 55.6 55.6
XLM-Rlarge 55.8 55.3 57.1 57.5 55.9 56.4
RoBERTabase 49.7 49.2 52.2 52.0 51.2 51.0
XLM-Rbase 49.9 49.4 53.5 53.0 51.9 51.6
BERTweet 52.1 51.3 56.5 55.6 55.1 54.1

CambridgeLTL 52.4 [+b]
DATNet (Zhou et al.) 53.0 [+b] 42.3
Aguilar et al. (2017) 41.9 40.2

Table 2: F1 scores on the WNUT16 and WNUT17 test
sets. CambridgeLTL result is reported by Limsopatham
and Collier (2016). “entity” and “surface” denote the
scores computed for the standard entity level and the
surface level (Derczynski et al., 2017), respectively.

Model AvgRec F1
NP Accuracy

soft hard soft hard soft hard

O
ur

re
su

lts

RoBERTalarge 72.5 72.2 72.0 71.8 70.7 71.3
XLM-Rlarge 71.7 71.7 71.1 70.9 70.7 70.6
RoBERTabase 71.6 71.8 71.2 71.2 71.6 70.9
XLM-Rbase 70.3 70.3 69.4 69.6 69.3 69.7
BERTweet 73.2 72.8 72.8 72.5 71.7 72.0

Cliche (2017) 68.1 68.5 65.8
Baziotis et al. (2017) 68.1 67.7 65.1

Table 3: Performance scores on the SemEval2017-
Task4A test set. See Rosenthal et al. (2017) for the
definitions of the AvgRec and F1

NP metrics, in which
AvgRec is the main ranking metric.

Model F1
pos Accuracy

soft hard soft hard

O
ur

re
su

lts

RoBERTalarge 73.2 71.9 76.5 75.1
XLM-Rlarge 70.8 69.7 74.2 73.2
RoBERTabase 71.0 71.2 74.0 74.0
XLM-Rbase 66.6 66.2 70.8 70.8
BERTweet 74.6 74.3 78.2 78.2

Wu et al. (2018) 70.5 73.5
Baziotis et al. (2018) 67.2 73.2

Table 4: Performance scores on the SemEval2018-
Task3A test set. F1

pos—the main ranking metric—
denotes the F1 score computed for the positive label.

each pre-trained language model the “soft” scores
are generally higher than the corresponding “hard”
scores, i.e. applying lexical normalization dictio-
naries to normalize word tokens in Tweets gener-
ally does not help improve the performance of the
pre-trained language models on downstream tasks.

Our BERTweet outperforms its main competi-
tors RoBERTabase and XLM-Rbase on all exper-
imental datasets (with only one exception that
XLM-Rbase does slightly better than BERTweet on
Ritter11-T-POS). Compared to RoBERTalarge and
XLM-Rlarge which use significantly larger model

configurations, we find that they obtain better POS
tagging and NER scores than BERTweet. How-
ever, BERTweet performs better than those large
models on the two text classification datasets.

Tables 1, 2, 3 and 4 also compare our obtained
scores with the previous highest reported results
on the same test sets. Clearly, the pre-trained lan-
guage models help achieve new SOTA results on
all experimental datasets. Specifically, BERTweet
improves the previous SOTA in the novel and
emerging entity recognition by absolute 14+% on
the WNUT17 dataset, and in text classification
by 5% and 4% on the SemEval2017-Task4A and
SemEval2018-Task3A test sets, respectively. Our
results confirm the effectiveness of the large-scale
BERTweet for Tweet NLP.

Discussion
Our results comparing the “soft” and “hard” nor-
malization strategies with regards to the pre-
trained language models confirm the previous
view that lexical normalization on Tweets is a
lossy translation task (Owoputi et al., 2013). We
find that RoBERTa outperforms XLM-R on the
text classification datasets. This finding is similar
to what is found in the XLM-R paper (Conneau
et al., 2020) where XLM-R obtains lower perfor-
mance scores than RoBERTa for sequence classifi-
cation tasks on traditional written English corpora.

We also recall that although RoBERTa and
XLM-R use 160 / 80 = 2 times and 301 / 80≈ 3.75
times bigger English data than our BERTweet, re-
spectively, BERTweet does better than its com-
petitors RoBERTabase and XLM-Rbase. Thus this
confirms the effectiveness of a large-scale and
domain-specific pre-trained language model for
English Tweets. In future work, we will release a
“large” version of BERTweet, which possibly per-
forms better than RoBERTalarge and XLM-Rlarge
on all three evaluation tasks.

5 Conclusion

We have presented the first large-scale language
model BERTweet pre-trained for English Tweets.
We demonstrate the usefulness of BERTweet by
showing that BERTweet outperforms its baselines
RoBERTabase and XLM-Rbase and helps produce
better performances than the previous SOTA mod-
els for three downstream Tweet NLP tasks of POS
tagging, NER, and text classification (i.e. senti-
ment analysis & irony detection).

12

As of September 2020, we have collected a
corpus of about 23M “cased” COVID-19 English
Tweets consisting of at least 10 and at most 64
word tokens. In addition, we also create an “un-
cased” version of this corpus. Then we con-
tinue pre-training from our pre-trained BERTweet
on each of the “cased” and “uncased” corpora of
23M Tweets for 40 additional epochs, resulting
in two BERTweet variants of pre-trained “cased”
and “uncased” BERTweet-COVID19 models, re-
spectively. By publicly releasing BERTweet and
its two variants, we hope that they can foster future
research and applications of Tweet analytic tasks,
such as identifying informative COVID-19 Tweets
(Nguyen et al., 2020) or extracting COVID-19
events from Tweets (Zong et al., 2020).

References
Gustavo Aguilar, Suraj Maharjan, Adrian Pastor

López-Monroy, and Thamar Solorio. 2017. A
Multi-task Approach for Named Entity Recognition
in Social Media Data. In Proceedings of WNUT,
pages 148–153.

Eiji Aramaki. 2010. TYPO CORPUS.
http://luululu.com/tweet/.

Christos Baziotis, Athanasiou Nikolaos, Pinelopi
Papalampidi, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas, and Alexandros
Potamianos. 2018. NTUA-SLP at SemEval-2018
task 3: Tracking ironic tweets using ensembles
of word and character level attentive RNNs. In
Proceedings of SemEval, pages 613–621.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. DataStories at SemEval-2017 task 4:
Deep LSTM with attention for message-level and
topic-based sentiment analysis. In Proceedings of
SemEval, pages 747–754.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of EMNLP-IJCNLP, pages 3615–
3620.

Steven Bird, Ewan Klein, and Edward Loper, editors.
2009. Natural language processing with Python.
O’Reilly.

Mathieu Cliche. 2017. BB twtr at SemEval-2017
task 4: Twitter sentiment analysis with CNNs and
LSTMs. In Proceedings of SemEval, pages 573–
580.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised

Cross-lingual Representation Learning at Scale. In
Proceedings of ACL, page to appear.

Leon Derczynski, Eric Nichols, Marieke van Erp,
and Nut Limsopatham. 2017. Results of the
WNUT2017 Shared Task on Novel and Emerging
Entity Recognition. In Proceedings of WNUT, pages
140–147.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL, pages 4171–
4186.

Jacob Eisenstein. 2013. What to do about bad lan-
guage on the internet. In Proceedings of NAACL-
HLT, pages 359–369.

Norjihan Abdul Ghani, Suraya Hamid, Ibrahim
Abaker Targio Hashem, and Ejaz Ahmed. 2019. So-
cial media big data analytics: A survey. Comput.
Hum. Behav., 101:417–428.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-Speech Tagging
for Twitter: Annotation, Features, and Experiments.
In Proceedings of ACL-HLT, pages 42–47.

Tao Gui, Qi Zhang, Jingjing Gong, Minlong Peng,
Di Liang, Keyu Ding, and Xuanjing Huang. 2018.
Transferring from Formal Newswire Domain with
Hypernet for Twitter POS Tagging. In Proceedings
of EMNLP, pages 2540–2549.

Tao Gui, Qi Zhang, Haoran Huang, Minlong Peng, and
Xuanjing Huang. 2017. Part-of-Speech Tagging for
Twitter with Adversarial Neural Networks. In Pro-
ceedings of EMNLP, pages 2411–2420.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t Stop Pretraining:
Adapt Language Models to Domains and Tasks. In
Proceedings of ACL, pages 8342–8360.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Au-
tomatically Constructing a Normalisation Dictio-
nary for Microblogs. In Proceedings of EMNLP-
CoNLL, pages 421–432.

Bo Han, Paul Cook, and Timothy Baldwin. 2013. Lex-
ical Normalization for Social Media Text. ACM
Transactions on Intelligent Systems and Technology,
4(1).

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of EACL, pages
427–431.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint,
arXiv:1412.6980.

13

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics, page
btz682.

Nut Limsopatham and Nigel Collier. 2016. Bidirec-
tional LSTM for Named Entity Recognition in Twit-
ter Messages. In Proceedings of WNUT, pages 145–
152.

Fei Liu, Fuliang Weng, and Xiao Jiang. 2012. A
Broad-Coverage Normalization System for Social
Media Language. In Proceedings of ACL, pages
1035–1044.

Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan
Schneider, and Noah A. Smith. 2018. Parsing
Tweets into Universal Dependencies. In Proceed-
ings of NAACL-HLT, pages 965–975.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv preprint, arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization. In Proceedings of
ICLR.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of ACL, pages 1064–1074.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Dat Quoc Nguyen, Thanh Vu, Afshin Rahimi,
Mai Hoang Dao, Linh The Nguyen, and Long Doan.
2020. WNUT-2020 Task 2: Identification of Infor-
mative COVID-19 English Tweets. In Proceedings
of WNUT.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A Fast, Extensible
Toolkit for Sequence Modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, pages 48–53.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved Part-of-Speech Tagging for
Online Conversational Text with Word Clusters. In
Proceedings of NAACL-HLT, pages 380–390.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named Entity Recognition in Tweets: An Ex-
perimental Study. In Proceedings of EMNLP, pages
1524–1534.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 Task 4: Sentiment Analysis in Twit-
ter. In Proceedings of SemEval, pages 502–518.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of ACL, pages
1715–1725.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of LREC.

Benjamin Strauss, Bethany Toma, Alan Ritter, Marie-
Catherine de Marneffe, and Wei Xu. 2016. Results
of the WNUT16 Named Entity Recognition Shared
Task. In Proceedings of WNUT, pages 138–144.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of SemEval, pages
39–50.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. arXiv preprint, arXiv:1910.03771.

Chuhan Wu, Fangzhao Wu, Sixing Wu, Junxin
Liu, Zhigang Yuan, and Yongfeng Huang. 2018.
THU NGN at SemEval-2018 task 3: Tweet irony
detection with densely connected LSTM and multi-
task learning. In Proceedings of SemEval, pages 51–
56.

Joey Tianyi Zhou, Hao Zhang, Di Jin, Hongyuan Zhu,
Meng Fang, Rick Siow Mong Goh, and Kenneth
Kwok. 2019. Dual Adversarial Neural Transfer for
Low-Resource Named Entity Recognition. In Pro-
ceedings of ACL, pages 3461–3471.

Shi Zong, Ashutosh Baheti, Wei Xu, and Alan Ritter.
2020. Extracting COVID-19 Events from Twitter.
arXiv preprint, arXiv:2006.02567.

14

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 15–22
November 16-20, 2020. c©2020 Association for Computational Linguistics

NeuralQA: A Usable Library for Question Answering (Contextual Query
Expansion + BERT) on Large Datasets

Victor Dibia
Cloudera Fast Forward Labs
vdibia@cloudera.com

Abstract

Existing tools for Question Answering (QA)
have challenges that limit their use in prac-
tice. They can be complex to set up or
integrate with existing infrastructure, do not
offer configurable interactive interfaces, and
do not cover the full set of subtasks that
frequently comprise the QA pipeline (query
expansion, retrieval, reading, and explana-
tion/sensemaking). To help address these is-
sues, we introduce NeuralQA - a usable li-
brary for QA on large datasets. NeuralQA in-
tegrates well with existing infrastructure (e.g.,
ElasticSearch instances and reader models
trained with the HuggingFace Transformers
API) and offers helpful defaults for QA sub-
tasks. It introduces and implements contex-
tual query expansion (CQE) using a masked
language model (MLM) as well as relevant
snippets (RelSnip) - a method for condensing
large documents into smaller passages that can
be speedily processed by a document reader
model. Finally, it offers a flexible user inter-
face to support workflows for research explo-
rations (e.g., visualization of gradient-based
explanations to support qualitative inspection
of model behaviour) and large scale search de-
ployment. Code and documentation for Neu-
ralQA is available as open source on Github.

1 Introduction

The capability of providing exact answers to
queries framed as natural language questions can
significantly improve the user experience in many
real world applications. Rather than sifting through
lists of retrieved documents, automatic QA (also
known as reading comprehension) systems can sur-
face an exact answer to a query, thus reducing
the cognitive burden associated with the standard
search task. This capability is applicable in ex-
tending conventional information retrieval systems
(search engines) and also for emergent use cases,

 How many rose species are found in the Montreal Botanical Garden?

Figure 1: NeuralQA implements Contextual Query Ex-
pansion (CQE 3.2.1) using Masked Language Models
(MLM) and offers a visualization to explain behaviour.
A rule set is used to determine which tokens are can-
didates for expansion (solid blue box); each candidate
is iteratively masked, and an MLM is used to identify
expansion terms (blue outline box).

such as open domain conversational AI systems
(Gao et al., 2018; Qu et al., 2019). For enterprises,
QA systems that are both fast and precise can help
unlock knowledge value in large unstructured doc-
ument collections. Conventional methods for open
domain QA (Yang et al., 2015, 2019) follow a two-
stage implementation - (i) a retriever that returns a
subset of relevant documents. Retrieval is typically
based on sparse vector space models such as BM25
(Robertson and Zaragoza, 2009) and TF-IDF (Chen
et al., 2017); (ii) a machine reading comprehension
model (reader) that identifies spans from each doc-
ument which contain the answer. While sparse
representations are fast to compute, they rely on ex-
act keyword match, and suffer from the vocabulary
mismatch problem - scenarios where the vocabu-
lary used to express a query is different from the vo-
cabulary used to express the same concepts within
the documents. To address these issues, recent
studies have proposed neural ranking (Lee et al.,
2018; Kratzwald et al., 2019) and retrieval methods
(Karpukhin et al., 2020; Lee et al., 2019; Guu et al.,

15

2020), which rely on dense representations.
However, while dense representations show sig-

nificantly improved results, they introduce addi-
tional complexity and latency, which limits their
practical application. For example, Guu et al.
(2020) require a specialized MLM pretraining
regime, as well as a supervised fine-tuning step,
to obtain representations used in a retriever. Simi-
larly Karpukhin et al. (2020) use dual encoders in
learning a dense representation for queries and all
documents in the target corpus. Each of these meth-
ods require additional infrastructure to compute
dense representation vectors for all documents in
the target corpus as well as implement efficient sim-
ilarity search at run time. In addition, transformer-
based architectures (Vaswani et al., 2017) used for
dense representations are unable to process long se-
quences due to their self-attention operations which
scale quadratically with sequence length. As a re-
sult, these models require that documents are in-
dexed/stored in small paragraphs. For many use
cases, meeting these requirements (rebuilding re-
triever indexes, training models to learn corpus spe-
cific representations, precomputing representations
for all indexed documents) can be cost-intensive.
These costs are hard to justify, given that simpler
methods can yield comparable results (Lin, 2019;
Weissenborn et al., 2017). Furthermore, as reader
models are applied to domain-specific documents,
they fail in counter-intuitive ways. It is thus valu-
able to offer visual interfaces that support debug-
ging or sensemaking of results (e.g., explanations
for why a set of documents were retrieved or why an
answer span was selected from a document). While
several libraries exist to explain NLP models, they
do not integrate interfaces that help users make
sense of both the query expansion, retriever and
the reader tasks. Collectively, these challenges can
hamper experimentation with QA systems and the
integration of QA models into practitioner work-
flows.

In this work, we introduce NeuralQA to help
address these limitations. Our contributions are
summarized as follows:

• An easy to use, end-to-end library for imple-
menting QA systems. It integrates methods
for query expansion, document retrieval (Elas-
ticSearch1), and document reading (QA mod-
els trained using the HuggingFace Transform-
ers API (Wolf et al., 2019)). It also offers an

1ElasticSearch https://www.elastic.co

interactive user interface for sensemaking of
results (retriever + reader). NeuralQA is open
source and released under the MIT License.
• To address the vocabulary mismatch prob-

lem, NeuralQA introduces and implements
a method for contextual query expansion
(CQE), using a masked language model
(MLM) fine-tuned on the target document cor-
pus (see Fig 1). Early qualitative results show
CQE can surface relevant additional query
terms that help improve recall and require
minimal changes for integration with existing
retrieval infrastructure.
• In addition, we implement RelSnip, a sim-

ple method for extracting relevant snippets
from retrieved passages before feeding it into
a document reader. This, in turn, reduces the
latency required to chunk and read lengthy
documents. Importantly, these options offer
the opportunity to improve latency and recall,
with no changes to existing retriever infras-
tructure.

Overall, NeuralQA complements a line of end-
to-end applications that improve QA system de-
ployment (Akkalyoncu Yilmaz et al., 2019; Yang
et al., 2019) and provide visual interfaces for under-
standing machine learning models (Wallace et al.,
2019; Strobelt et al., 2018; Madsen, 2019; Dibia,
2020a,b).

2 The Question Answering Pipeline

There are several subtasks that frequently comprise
the QA pipeline and are implemented in NeuralQA.

2.1 Document Retrieval
The first stage in the QA process focuses on retriev-
ing a list of candidate passages, which are subse-
quently processed by a reader. Conventional ap-
proaches to QA apply representations from sparse
vector space models (e.g., BM25, TF-IDF) in iden-
tifying the most relevant document candidates. For
example, Chen et al. (2017) introduce an end-to-
end system combining TF-IDF retrieval with a
multi-layer RNN for document reading. This is fur-
ther improved upon by Yang et al. (2019), who uti-
lize BM25 for retrieval with a modern BERT trans-
former reader. However, sparse representations
are keyword dependent, and suffer from the vocab-
ulary mismatch problem in information retrieval
(IR); given a query Q and a relevant document D, a
sparse retrieval method may fail to retrieve D if D

16

uses a different vocabulary to refer to the same con-
tent in Q. Furthermore, given that QA queries are
under-specified by definition (users are searching
for unknown information), sparse representations
may lack the contextual information needed to re-
trieve the most relevant documents. To address
these issues, a set of related work has focused on
methods for re-ranking retrieved documents to im-
prove recall (Wang et al., 2018; Kratzwald et al.,
2019). More recently, there have been efforts to
learn representations of queries and documents use-
ful for retrieval. Lee et al. (2019) introduce an
inverse cloze task for pretraining encoders used
to create static embeddings that are indexed and
used for similarity retrieval during inference. Their
work is further expanded by Guu et al. (2020)
who introduce non-static representations that are
learned simultaneous to reader fine-tuning. Finally,
Karpukhin et al. (2020) use dual encoders for re-
trieval: one encoder that learns to map queries to a
fixed dimension vector, and another that learns to
map documents to a similar fixed-dimension vec-
tor (such that representations for similar query and
documents are close).

2.2 Query Expansion

In addition to re-ranking and dense representation
retrieval, query expansion methods have also been
proposed to help address the vocabulary mismatch
problem. They serve to identify additional relevant
query terms, using a variety of sources - such as
the target corpus, external dictionaries (e.g., Word-
Net), or historical queries. Existing research has
explored how implicit information contained in
queries can be leveraged in query expansion. For
example, Lavrenko and Croft (2017); Lv and Zhai
(2010) show how a relevance model (RM3) can be
applied for query expansion and improve retrieval
performance. More recently, (Lin, 2019) also show
that the use of a well-tuned relevance model such
as RM3 (Lavrenko and Croft, 2017; Abdul-Jaleel
et al., 2004) results in performance at par with com-
plex neural retrieval methods. Word embeddings
have been explored as a potential method for query
expansion, as well. In their work, Kuzi et al. (2016)
train a word2vec (Mikolov et al., 2013) CBOW
model on their search corpora and use embeddings
to identify expansion terms that are either seman-
tically related to the query as a whole or to its
terms. Their results suggest that a combination
of word2vec embeddings and a relevance model

(RM3) provide good results. However, while word
embeddings trained on a target corpus are useful,
they are static and do not take into consideration
the context of the words in a specific query. In this
work, we propose an extension to this direction of
thought and explore how contextual embeddings
produced by an MLM, such as BERT (Devlin et al.,
2018), can be applied in generating query expan-
sion terms.

2.2.1 Document Reading
Recent advances in pretrained neural language
models, like BERT (Vaswani et al., 2017) and GPT
(Radford et al., 2019), have enabled robust contex-
tualized representation of natural language, which,
in turn, have enabled significant performance in-
creases on the QA task. Each QA model (reader)
consists of a base representation and an output feed-
forward layer which produces two sets of scores:
(i) scores for each input token that indicate the like-
lihood of an answer span starting at the token offset,
and (ii) scores for each input token that indicate the
likelihood of an answer span ending at the token
offset.

3 NeuralQA System Architecture

In this section, we review the architecture for Neu-
ralQA, as well as design decisions and supported
workflows. The core modules for NeuralQA (Fig.
2) include a user interface, retriever, expander, and
reader. Each of these modules are implemented as
extensible python classes (to facilitate code reuse
and incremental development), and are exposed as
REST API endpoints that can be either consumed
by 3rd party applications or interacted with via the
NeuralQA user interface.

3.1 Retriever
The retriever supports the execution of queries on
an existing ElasticSearch instance, using the indus-
try standard BM25 scoring algorithm.

3.1.1 Condensing Passages with RelSnip

In practice, open corpus documents can be of ar-
bitrary length (sometimes including thousands of
tokens) and are frequently indexed for retrieval as
is. On the other hand, document reader models
have limits on the maximum number of tokens they
can process in a single pass (e.g., BERT-based mod-
els can process a maximum of 512 tokens). Thus,
retrieving large documents can incur latency costs,
as a reader will have to first split the document into

17

Retriever

User Interface

Contextual Query Expander

term 1 term 2 term 3 term 4 term 5 term n

passage 2 passage 3 passage kpassage 1

RelSnip RelSnip RelSnip RelSnip

Reader (BERT)

span 1 span 2 span 3 span n

exp 1 exp 2 exp 3 exp n

….

….

Explainer

 gradients Gradcam …. int. gradients

Get AnswerWhat is the goal of the fourth amendm

List of retriever results with matched keyword highlights

Retriever Results

List of answer spans ranked by score
Visualization of explanations

Answers

term 2 term 3 term nterm 1 ….

…

….

….

 DistilBERT BERT ALBERT X Model….
* QA models trained with the HuggingFace Transformers API

Figure 2: The NeuralQA Architecture is comprised of four primary modules. (a) User interface: enables user
queries and visualizes results from the retriever and reader (b) Contextual Query Expander: offers options for
generating query expansion terms using an MLM (c) Retriever: leverages the BM25 scoring algorithm in retrieving
a list of candidate passages; it also optionally condenses lengthy documents to smaller passages via 3.1 RelSnip.
(d) Document Reader: identifies answer spans within documents (where available) and provides explanations for
each prediction.

manageable chunks, and then process each chunk
individually. To address this issue, NeuralQA intro-
duces RelSnip, a method for constructing smaller
documents from lengthy documents. RelSnip is
implemented as follows: For each retrieved doc-
ument, we apply a highlighter (Lucene Unified
Highlighter), which breaks the document into frag-
ments of size kfrag and uses the BM25 algorithm
to score each fragment as if they were individual
documents in the corpus. Next, we concatenate the
top n fragments as a new document, which is then
processed by the reader. RelSnip relies on the
simplifying assumption that fragments with higher
match scores contain more relevant information.
As an illustrative example, RelSnip can yield a
document of 400 tokens (depending on kfrag and
n) from a document containing 10,000 tokens. In
practice, this can translate to 25x increase in speed.

3.2 Expander

3.2.1 Contextual Query Expansion (CQE)
CQE relies on the assumption that an MLM which
has been fine-tuned on the target document corpus
contains implicit information (Petroni et al., 2019)
on the target corpus. The goal is to exploit this
information in identifying relevant query expan-
sion terms. Ideally, we want to expand a query,
such that expansion tokens serve to increase recall,
while adding minimal noise and without signifi-
cantly altering the semantics of the original query.
We implement CQE as follows: First, we identify a
set of expansion candidate tokens. For each token
ti in the query tquery, we use the SpaCy (Honni-

bal and Montani, 2017) library to infer its part of
speech tag tipos and apply a filter frule to determine
if it is added to a list of candidate tokens for expan-
sion tcandidates. Next, we construct intermediate
versions of the original query, in which each token
in tcandidates is masked, and an MLM (BERT) pre-
dicts the top n tokens that are contextually most
likely to complete the query. These predicted to-
kens texpansion can then be added to the original
query as expansion terms.

To minimize the chance of introducing spurious
terms that are unrelated to the original query, we
find that two quality control measures are useful.
First, we leverage confidence scores returned by
the MLM and only accept expansion tokens above
a certain threshold (e.g., kthresh = 0.5) where
kthresh is a hyperparameter. Secondly, we find
that a conservative filter in selecting token expan-
sion candidates can mitigate the introduction of
spurious terms. Our filter rule frule currently only
expands tokens that are either nouns or adjectives
tipos ∈ (noun, adj) and are not named entities; to-
kens for other parts of speech are not expanded. Fi-
nally, the list of expansion terms are further cleaned
by the removal of duplicate terms, punctuation, and
stop words. Fig. 3 shows a qualitative compari-
son of query expansion terms suggested by a static
word embedding and an MLM for a given query.
The NeuralQA interface offers a user-in-the-loop
visualization of CQE which highlights POS tags
for each token to help the user make sense of ex-
pansion values. The user can then select expansion
candidates for inclusion in retrieval.

18

Steve jobs created

jobs, work,
hiring

years, fortnight
month

computers, networked,
peripherals

blackberry,
apples, pears

the apple computer in which year

jobs apple computer year

Query expansion with static word embeddings (SpaCy)

Query expansion with a masked language model (BERT)

Steve jobs created

jobs, mac, apple world, life, is., :, macintoshapple, word, personal

the apple computer in which year

jobs apple computer year

Figure 3: Examples of qualitative results from apply-
ing query expansion: (a) Query expansion using SpaCy
word embeddings to identify the most similar words for
each expansion candidate token. This approach yields
terms with low relevance (e.g., terms related to work
(jobs, hiring) and fruits (apple, blackberry, pears) are
not relevant to the current query context) (b) Query ex-
pansion using an MLM (BERT). This approach yields
terms that are absent in the original query (e.g., mac,
macintosh, personal) but are, in general, relevant to the
current query.

3.3 Reader

The reader module implements an interface for pre-
dicting answer spans, given a query and context
documents. Underneath, it loads any QA model
trained using the HuggingFace Transformers API
(Wolf et al., 2019). Documents that exceed the
maximum token size for the reader are automati-
cally split into chunks with a configurable stride
and answer spans provided for each chunk. All
answers are then sorted, based on an associated
score (start and end token softmax probabilities).
Finally, each reader model provides a method that
generates gradient-based explanations (Vanilla Gra-
dients (Simonyan et al., 2013; Erhan et al., 2009;
Baehrens et al., 2010)).

3.3.1 User Interface
The NeuralQA user interface (Fig. 4) seeks to
aid the user in performing queries and in sense-
making of underlying model behaviour. As a first
step, we provide a visualization of retrieved doc-
ument highlights that indicate what portions of
the retrieved document contributed to their rele-
vance ranking. Next, following work done in Al-
lenNLP Interpret(Wallace et al., 2019), we imple-
ment gradient-based explanations that help the user
understand what sections of the input (question and
passage) were most relevant to the choice of an-
swer span. We do not use attention weights, as they
have have been shown to be unfaithful explanations
of model behaviour (Jain and Wallace, 2019; Ser-

rano and Smith, 2019) and not intuitive for end user
sensemaking. We also implement a document and
answer tagging scheme that indicates the source
document from which an answer span is derived.

NeuralQA is scalable, as it is built on indus-
try standard OSS tools that are designed for scale
(ElasticSearch, HuggingFace Transformers API,
FastAPI, Uvicorn asgi web server). We have tested
deployments of NeuralQA on docker containers
running on CPU machine clusters which rely on
ElasticSearch clusters. The UI is responsive and
optimized to work on desktop, as well as on mobile
devices.

3.4 Configuration and Workflow
NeuralQA implements a command line interface
for instantiating the library, and a declarative ap-
proach for specifying the parameters for each mod-
ule. At run time, users can provide a command line
argument specifying the location of a configuration
YAML file2. If no configuration file is found in the
provided location and in the current folder, Neu-
ralQA will create a default configuration file that
can be subsequently modified. As an illustrative
example, users can configure properties of the user
interface (views to show or hide, title and descrip-
tion of the page, etc.), retriever properties (a list
of supported retriever indices), and reader proper-
ties (a list of supported models that are loaded into
memory on application startup).

3.4.1 User Personas
NeuralQA is designed to support use cases and per-
sonas at various levels of complexities. We discuss
two specific personas briefly below.
Data Scientists: Janice, a data scientist, has exten-
sive experience applying a collection of machine
learning models to financial data. Recently, she
has started a new project, in which the deliverable
includes a QA model that is skillful at answering
factoid questions on financial data. As part of this
work, Janice has successfully fine-tuned a set of
transformer models on the QA task, but would like
to better understand how the model behaves. More
importantly, she would like to enable visual inter-
action with the model for her broader team. To
achieve this, Janice hosts NeuralQA on an internal
server accessible to her team. Via a configuration
file, she can specify a set of trained models, as well
as enable user selection of reader/retriever parame-
ters. This workflow also extends to other user types

2A sample configuration file can be found on Github.

19

Figure 4: The NeuralQA UI. a.) Basic view (mobile) for closed domain QA, i.e., the user provides a question and
passage. b.) Advanced options view (desktop mode) for open domain QA. The user can select the retriever (e.g., #
of returned documents, toggle RelSnip, fragment size kfrag), set expander and reader parameters (BERT reader
model, token stride size)). View also shows a list of returned documents (D0-D4) with highlights that match query
terms; a list of answers (A0) with gradient-based explanation of which tokens impact the selected answer span.

(such as hobbyists, entry level data scientists, or
researchers) who want an interface for qualitative
inspection of custom reader models on custom doc-
ument indices.
Engineering Teams: Candice manages the inter-
nal knowledge base service for her startup. They
have an internal ElasticSearch instance for search,
but would like to provide additional value via QA
capabilities. To achieve this, Candice provisions
a set of docker containers running instances for
NeuralQA and then modifies the frontend of their
current search application to make requests to the
NeuralQA REST API and serve answer spans.

3.5 Related Work

QA systems that integrate deep learning models
remain an active area of research and practice. For
example, AllenNLP Interpret (Wallace et al., 2019)
provides a demonstration interface and sample code
for interpreting a set of AllenNLP models across
multiple tasks. Similarly, Chakravarti et al. (2019)
provide a gRPC-based orchestration flow for QA.
However, while these projects provide a graphi-
cal user interface (GUI), their installation process
is complex and requires specialized code to adapt
them to existing infrastructure, such as retriever
instances. Several open source projects also offer
a programmatic interface for inference (e.g., Hug-
ginFace Pipelines), as well as joint retrieval paired

with reading (e.g., Deepset Haystack). NeuralQA
makes progress along these lines, by providing an
extensible code base, a low-code declarative con-
figuration interface, tools for query expansion and
a visual interface for sensemaking of results. It sup-
ports a local research/development workflow (via
the pip) package manager and scaled deployment
via containerization (we provide a Dockerfile). We
believe this ease of use can serve to remove barriers
to experimentation for researchers, and accelerate
the deployment of QA interfaces for experienced
teams.

4 Conclusion

In this paper, we presented NeuralQA - a usable
library for question answering on large datasets.
NeuralQA is useful for developers interested in
qualitatively exploring QA models for their custom
datasets, as well as for enterprise teams seeking a
flexible QA interface/API for their customers. Neu-
ralQA is under active development, and roadmap
features include support for a Solr retriever, addi-
tional model explanation methods and additional
query expansion methods such as RM3 (Lavrenko
and Croft, 2017). Future work will also explore
empirical evaluation of our CQE and RelSnip im-
plementation to better understand their strengths
and limitations.

20

Acknowledgments

The author thanks Melanie Beck, Andrew Reed,
Chris Wallace, Grant Custer, Danielle Thorpe and
other members of the Cloudera Fast Forward team
for their valuable feedback.

References

Nasreen Abdul-Jaleel, James Allan, W Bruce Croft,
Fernando Diaz, Leah Larkey, Xiaoyan Li, Mark D
Smucker, and Courtney Wade. 2004. Umass at trec
2004: Novelty and hard. Computer Science Depart-
ment Faculty Publication Series, page 189.

Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei
Yang, Haotian Zhang, and Jimmy Lin. 2019. Ap-
plying BERT to document retrieval with birch. In
Empirical Methods in Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
19–24, Hong Kong, China. Association for Compu-
tational Linguistics.

David Baehrens, Timon Schroeter, Stefan Harmel-
ing, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert MÃžller. 2010. How to explain individual
classification decisions. Journal of Machine Learn-
ing Research, 11(Jun):1803–1831.

Rishav Chakravarti, Cezar Pendus, Andrzej Sakrajda,
Anthony Ferritto, Lin Pan, Michael Glass, Vittorio
Castelli, J William Murdock, Radu Florian, Salim
Roukos, and Avi Sil. 2019. CFO: A framework
for building production NLP systems. In EMNLP-
IJCNLP 2019: System Demonstrations, pages 31–
36, Hong Kong, China. Association for Computa-
tional Linguistics.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. ACL 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Victor Dibia. 2020a. Anomagram: An interactive
visualization for training and evaluating autoen-
coders on the task of anomaly detection. ArXiv.
https://github.com/victordibia/anomagram.

Victor Dibia. 2020b. Convnet playground: A
learning tool for exploring representations
learned by convolutional neural networks. arXiv.
https://github.com/fastforwardlabs/convnetplayground.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and
Pascal Vincent. 2009. Visualizing higher-layer fea-
tures of a deep network. University of Montreal,
1341(3):1.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018.
Neural approaches to conversational ai. In The
41st International ACM SIGIR Conference on Re-
search & Development in Information Retrieval,
pages 1371–1374.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Sarthak Jain and Byron C Wallace. 2019. Attention is
not explanation. NAACL 2019.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-
tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Bernhard Kratzwald, Anna Eigenmann, and Stefan
Feuerriegel. 2019. RankQA: Neural question an-
swering with answer re-ranking. In ACL, pages
6076–6085, Florence, Italy. Association for Compu-
tational Linguistics.

Saar Kuzi, Anna Shtok, and Oren Kurland. 2016.
Query expansion using word embeddings. In Pro-
ceedings of the 25th ACM international on confer-
ence on information and knowledge management,
pages 1929–1932.

Victor Lavrenko and W Bruce Croft. 2017. Relevance-
based language models. In ACM SIGIR Forum, vol-
ume 51, pages 260–267. ACM New York, NY, USA.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung
Ko, and Jaewoo Kang. 2018. Ranking paragraphs
for improving answer recall in open-domain ques-
tion answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 565–569, Brussels, Belgium. As-
sociation for Computational Linguistics.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised
open domain question answering. arXiv preprint
arXiv:1906.00300.

Jimmy Lin. 2019. The neural hype and comparisons
against weak baselines. In ACM SIGIR Forum, vol-
ume 52, pages 40–51. ACM New York, NY, USA.

Yuanhua Lv and ChengXiang Zhai. 2010. Positional
relevance model for pseudo-relevance feedback. In
Proceedings of the 33rd international ACM SIGIR
conference on Research and development in infor-
mation retrieval, pages 579–586.

Andreas Madsen. 2019. Visualizing memorization in
rnns. Distill. https://distill.pub/2019/memorization-
in-rnns.

21

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Chen Qu, Liu Yang, Minghui Qiu, W Bruce Croft,
Yongfeng Zhang, and Mohit Iyyer. 2019. Bert with
history answer embedding for conversational ques-
tion answering. In Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1133–
1136.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Now Publishers Inc.

Sofia Serrano and Noah A. Smith. 2019. Is attention
interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2931–2951, Florence, Italy. Associa-
tion for Computational Linguistics.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2013. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer,
H. Pfister, and A. M. Rush. 2018. Seq2Seq-Vis:
A Visual Debugging Tool for Sequence-to-Sequence
Models. ArXiv e-prints.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subra-
manian, Matt Gardner, and Sameer Singh. 2019. Al-
lenNLP Interpret: A framework for explaining pre-
dictions of NLP models. In Empirical Methods in
Natural Language Processing.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018. R3:
Reinforced ranker-reader for open-domain question
answering. Thirty-Second AAAI Conference on Arti-
ficial Intelligence.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Fastqa: A simple and efficient neu-
ral architecture for question answering. CoRR,
abs/1703.04816.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. arXiv preprint arXiv:1902.01718.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 confer-
ence on empirical methods in natural language pro-
cessing, pages 2013–2018.

22

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 23–30
November 16-20, 2020. c©2020 Association for Computational Linguistics

Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing
the Embeddings of Words and Entities from Wikipedia

Ikuya Yamada1,2

ikuya@ousia.jp

Akari Asai3
akari@cs.washington.edu

Jin Sakuma4

jsakuma@tkl.iis.u-tokyo.ac.jp

Hiroyuki Shindo5,2

shindo@is.naist.jp

Hideaki Takeda6

takeda@nii.ac.jp

Yoshiyasu Takefuji7
takefuji@sfc.keio.ac.jp

Yuji Matsumoto2

matsu@is.naist.jp

1Studio Ousia 2RIKEN AIP 3University of Washington 4The University of Tokyo
5Nara Institute of Science and Technology 6National Institute of Informatics 7Keio University

Abstract

The embeddings of entities in a large knowl-
edge base (e.g., Wikipedia) are highly benefi-
cial for solving various natural language tasks
that involve real world knowledge. In this
paper, we present Wikipedia2Vec, a Python-
based open-source tool for learning the embed-
dings of words and entities from Wikipedia.
The proposed tool enables users to learn the
embeddings efficiently by issuing a single
command with a Wikipedia dump file as an
argument. We also introduce a web-based
demonstration of our tool that allows users to
visualize and explore the learned embeddings.
In our experiments, our tool achieved a state-
of-the-art result on the KORE entity related-
ness dataset, and competitive results on var-
ious standard benchmark datasets. Further-
more, our tool has been used as a key com-
ponent in various recent studies. We publi-
cize the source code, demonstration, and the
pretrained embeddings for 12 languages at
https://wikipedia2vec.github.io.

1 Introduction

Entity embeddings, i.e., vector representations of
entities in knowledge base (KB), have played a vi-
tal role in many recent models in natural language
processing (NLP). These embeddings provide rich
information (or knowledge) regarding entities avail-
able in KB using fixed continuous vectors. They
have been shown to be beneficial not only for tasks
directly related to entities (e.g., entity linking (Ya-
mada et al., 2016; Ganea and Hofmann, 2017)) but
also for general NLP tasks (e.g., text classification
(Yamada and Shindo, 2019), question answering
(Poerner et al., 2019)). Notably, recent studies have
also shown that these embeddings can be used to
enhance the performance of state-of-the-art con-
textualized word embeddings (i.e., BERT (Devlin
et al., 2019)) on downstream tasks (Zhang et al.,
2019; Peters et al., 2019; Poerner et al., 2019).

In this work, we present Wikipedia2Vec, a
Python-based open source tool for learning the em-
beddings of words and entities easily and efficiently
from Wikipedia. Due to its scale, availability in
a variety of languages, and constantly evolving
nature, Wikipedia is commonly used as a KB to
learn entity embeddings. Our proposed tool jointly
learns the embeddings of words and entities, and
places semantically similar words and entities close
to one another in the vector space. In particular, our
tool implements the word-based skip-gram model
(Mikolov et al., 2013a,b) to learn word embeddings,
and its extensions proposed in Yamada et al. (2016)
to learn entity embeddings. Wikipedia2Vec enables
users to train embeddings by simply running a sin-
gle command with a Wikipedia dump file as an
input. We highly optimized our implementation,
which makes our implementation of the skip-gram
model faster than the well-established implementa-
tion available in gensim (Řehůřek and Sojka, 2010)
and fastText (Bojanowski et al., 2017).

Experimental results demonstrated that our tool
achieved enhanced quality compared to the exist-
ing tools on several standard benchmarks. Notably,
our tool achieved a state-of-the-art result on the
entity relatedness task based on the KORE dataset.
Due to its effectiveness and efficiency, our tool has
been successfully used in various downstream NLP
tasks, including entity linking (Yamada et al., 2016;
Eshel et al., 2017; Chen et al., 2019), named en-
tity recognition (Sato et al., 2017; Lara-Clares and
Garcia-Serrano, 2019), question answering (Ya-
mada et al., 2018b; Poerner et al., 2019), knowl-
edge graph completion (Shah et al., 2019), para-
phrase detection (Duong et al., 2019), fake news
detection (Singh et al., 2019), and text classification
(Yamada and Shindo, 2019).

We also introduce a web-based demonstration
of our tool that visualizes the embeddings by plot-
ting them onto a two- or three-dimensional space

23

using dimensionality reduction algorithms. The
demonstration also allows users to explore the em-
beddings by querying similar words and entities.

The source code has been tested on Linux, Win-
dows, and macOS, and released under the Apache
License 2.0. We also release the pretrained em-
beddings for 12 languages (i.e., English, Arabic,
Chinese, Dutch, French, German, Italian, Japanese,
Polish, Portuguese, Russian, and Spanish).

The main contributions of this paper are summa-
rized as follows:
• We present Wikipedia2Vec, a tool for learning

the embeddings of words and entities easily and
efficiently from Wikipedia.
• Our tool achieved a state-of-the-art result on the

KORE entity relatedness dataset, and performed
competitively on the various benchmark datasets.
• We present a web-based demonstration that al-

lows users to explore the learned embeddings.
• We publicize the code, demonstration, and

the pretrained embeddings for 12 languages at
https://wikipedia2vec.github.io.

2 Related Work

Many studies have recently proposed methods to
learn entity embeddings from a KB (Hu et al., 2015;
Li et al., 2016; Tsai and Roth, 2016; Yamada et al.,
2016, 2017, 2018a; Cao et al., 2017; Ganea and
Hofmann, 2017). These embeddings are typically
based on conventional word embedding models
(e.g., skip-gram (Mikolov et al., 2013a)) trained
with data retrieved from a KB. For example, Ris-
toski et al. (2018) proposed RDF2Vec, which learns
entity embeddings using the skip-gram model with
inputs generated by random walks over the large
knowledge graphs such as Wikidata and DBpe-
dia. Furthermore, a simple method that has been
widely used in various studies (Yaghoobzadeh and
Schutze, 2015; Yamada et al., 2017, 2018a; Al-
Badrashiny et al., 2017; Suzuki et al., 2018) trains
entity embeddings by replacing the entity annota-
tions in an input corpus with the unique identifier
of their referent entities, and feeding the corpus
into a word embedding model (e.g., skip-gram).
Two open-source tools, namely Wiki2Vec1 and
Wikipedia Entity Vectors,2 have implemented this
method. Our proposed tool is based on Yamada
et al. (2016), which extends this idea by using

1https://github.com/idio/wiki2vec
2https://github.com/singletongue/

WikiEntVec

$ wget https://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

$ wikipedia2vec train enwiki-latest-pages-articles.
xml.bz2 MODEL_FILE

Figure 1: Shell commands to train embeddings from
the latest English Wikipedia dump.

>>> from wikipedia2vec import Wikipedia2Vec
>>> model = Wikipedia2Vec.load(MODEL_FILE)
>>> model.get_entity_vector("Scarlett Johansson")
memmap([-0.1979, 0.3086, ...,], dtype=float32)
>>> model.get_word_vector("tokyo")
memmap([0.0161, -0.0332, ...,], dtype=float32)
>>> model.most_similar(model.get_entity("Python (

programming language)"))[:3]
[(<Word python>, 0.7265),
(<Entity Ruby (programming language)>, 0.6856),
(<Entity Perl>, 0.6794)]

Figure 2: An example that uses the Wikipedia2Vec em-
beddings on a Python interactive shell.

neighboring entities connected by internal hyper-
links of Wikipedia as additional contexts to train
the model. Note that we used the RDF2Vec and
Wiki2Vec as baselines in our experiments, and
achieved enhanced empirical performance over
these tools on the KORE dataset. Additionally,
there have been various relational embedding mod-
els proposed (Bordes et al., 2013; Wang et al., 2014;
Lin et al., 2015) that aim to learn the entity repre-
sentations that are particularly effective for knowl-
edge graph completion tasks.

3 Overview

Wikipedia2Vec is an easy-to-use, optimized tool
for learning embeddings from Wikipedia. This
tool can be installed using the Python’s pip
tool (pip install wikipedia2vec). Em-
beddings can be learned easily by running
the wikipedia2vec train command with a
Wikipedia dump file3 as an argument. Figure 1
shows the shell commands that download the latest
English Wikipedia dump file and run training of the
embeddings based on this dump using the default
hyper-parameters.4 Furthermore, users can easily
use the learned embeddings. Figure 2 shows the
example Python code that loads the learned embed-
ding file, and obtains the embeddings of an entity
Scarlett Johansson and a word tokyo, as well as the
most similar words and entities of an entity Python.

3The dump file can be downloaded at Wikimedia Down-
loads: https://dumps.wikimedia.org

4The train command has many optional hyper-parameters
that are described in detail in the documentation.

24

+
The�neighboring�words�of�each�word�are�

used�as�contexts

+
The�neighboring�words�of�a�hyperlink�
pointing�to�an�entity�are�used�as�contexts

Word-based�skip-gram�model Anchor�context�model

Aristotle�was�a�philosopher� Aristotle�was�a�philosopher�

The�neighboring�entities�of�each�entity�in�
Wikipedia sˏ�link�graph�are�used�as�contexts

Logic�

Science�

Europe� Socrates�
Renaissance�

Metaphysics�

Philosopher�
Philosophy�

Avicenna�Aristotle�
Plato�

Link�graph�model

Figure 3: Wikipedia2Vec learns embeddings by jointly optimizing word-based skip-gram, anchor context, and link
graph models.

3.1 Model

Wikipedia2Vec implements the conventional skip-
gram model (Mikolov et al., 2013a,b) and its ex-
tensions proposed in Yamada et al. (2016) to map
words and entities into the same d-dimensional vec-
tor space. The skip-gram model is a neural network
model with a training objective to find embeddings
that are useful for predicting context items (i.e.,
words or entities in this paper) given each item.
The loss function of the model is defined as:

Ls = −
∑

oi∈O

∑

oc∈Coi

logP (oc|oi), (1)

where O is a set of all items (i.e., words or entities),
Co is the set of context items of o, and the condi-
tional probability logP (oc|oi) is defined using the
following softmax function:

P (oc|oi) =
exp(Voi

>Uoc)∑
o∈O exp(Voi

>Uo)
, (2)

where Vo ∈ Rd and Uo ∈ Rd denote the embed-
dings of item o in embedding matrices V and U,
respectively.

Our tool learns the embeddings by jointly opti-
mizing the three skip-gram-based sub-models de-
scribed below (see also Figure 3). Note that the
matrices V and U contain the embeddings of both
words and entities.

Word-based Skip-gram Model Given each
word in a Wikipedia page, this model learns word
embeddings by predicting the neighboring words
of the given word. Formally, given a sequence
of words w1, w2, ..., wN , the loss function of this
model is defined as follows:

Lw = −
N∑

i=1

∑

−c≤j≤c,j 6=0

logP (wi+j |wi), (3)

where c is the size of the context words, and
P (wi+j |wi) is computed based on Eq.(2).

Anchor Context Model This model aims to
place similar words and entities close to one an-
other in the vector space using hyperlinks and their
neighboring words in Wikipedia. From a given
Wikipedia page, the model extracts the referent
entity and surrounding words (i.e., previous and
next c words) from each hyperlink in the page,
and learns embeddings by predicting surrounding
words given each entity. Consequently, the loss
function of this model is defined as follows:

La = −
∑

(ei,Q)∈A

∑

wc∈Q
logP (wc|ei), (4)

where A denotes a set of all hyperlinks in
Wikipedia, each containing a pair of a referent
entity ei and a set of surrounding words Q, and
P (wc|ei) is computed based on Eq.(2).

Link Graph Model This model aims to learn
entity embeddings by predicting the neighboring
entities of each entity in the Wikipedia’s link graph–
an undirected graph whose nodes are entities and
the edges represent the presence of hyperlinks be-
tween the entities. We create an edge between a
pair of entities if the page of one entity has a hy-
perlink to that of the other entity, or if both pages
link to each other. The loss function of this model
is defined as:

Le = −
∑

ei∈E

∑

eo∈Cei

logP (eo|ei), (5)

where E is the set of all entities in the vocabulary,
and Ce is the neighboring entities of entity e in the
link graph, and P (eo|ei) is computed by Eq.(2).

Finally, we define the loss function of our model
by linearly combining the three loss functions de-
scribed above:

L = Lw + La + Le (6)

The training is performed by minimizing this loss
function using stochastic gradient descent. We use

25

negative sampling (Mikolov et al., 2013b) to con-
vert the softmax function (Eq.(2)) into computa-
tionally feasible ones. The resulting matrix V is
used as the learned embeddings.

3.2 Automatic Generation of Hyperlinks
Because Wikipedia instructs its contributors to cre-
ate a hyperlink only at the first occurrence of the
entity name on a page, many entity names do not
appear as hyperlinks. This is problematic for our
anchor context model because it uses hyperlinks as
a source to learn the embeddings.

To address this problem, our tool automatically
generates hyperlinks using a mention-entity dic-
tionary that maps entity names (e.g., “apple”) to
its possible referent entities (e.g., Apple Inc. or
Apple (food)) (see Section 4 for details). Our tool
extracts all words and phrases from a Wikipedia
page and converts each into a hyperlink to an entity
if either the entity is referred to by a hyperlink on
the same page, or there is only one referent entity
associated with the name in the dictionary.

4 Implementation

Our tool is implemented in Python and most of its
code is compiled into C++ using Cython (Behnel
et al., 2011) to optimize the run-time performance.

As described in Section 3.1, our link graph and
anchor context models are based on the hyperlinks
in Wikipedia. Because Wikipedia contains numer-
ous hyperlinks, it is challenging to use them ef-
ficiently. To address this, we introduce two opti-
mized components–link graph matrix and mention-
entity dictionary–that are used during training.

Link Graph Matrix During training, our link
graph model needs to obtain numerous neighbor-
ing entities of an entity in a large link graph of
Wikipedia. To reduce latency, this component
stores the entire graph in the memory using the
binary sparse matrix in the compressed sparse row
(CSR) format, in which its rows and columns rep-
resent entities and its values represent the presence
of hyperlinks between corresponding entity pairs.
Because the size of this matrix is typically small,
it can easily be stored on the memory.5 Note that
given a row index in the CSR matrix, the time com-
plexity of obtaining its non-zero column indices
(corresponding to the neighboring entities of the
entity that corresponds to the row index) is O(1).

5The size of the matrix of English Wikipedia is less than
500 megabytes with our default hyper-parameter settings.

Mention-entity Dictionary A mention-entity
dictionary is used to generate hyperlinks described
in Section 3.2. The dictionary maps entity names to
their possible referent entities and is created based
on the names and their referent entities obtained
from all hyperlinks in Wikipedia. Our tool extracts
all words and phrases from a Wikipedia page that
are included in the dictionary containing a large
number of entity names. To implement this in an
efficient manner, we use the Aho–Corasick algo-
rithm, which is an efficient string search algorithm
using finite state machine constructed from all en-
tity names. After detecting the words and phrases
in the dictionary, our tool converts them to hyper-
links based on heuristics described in Section 3.2.

The embeddings are trained by simultaneously
iterating over pages in Wikipedia and entities in
the link graph in a random order. The texts and
hyperlinks in each page are extracted using the mw-
parserfromhell MediaWiki parser.6 We do not use
semi-structured data such as tables and infoboxes.
We also generate hyperlinks using the mention-
entity dictionary. We store the embeddings as a
float matrix in a shared memory and update it using
multiple processes. Linear algebraic operations re-
quired to learn embeddings are implemented using
C functions in Basic Linear Algebra Subprograms
(BLAS).

Additionally, our tool uses a tokenizer to de-
tect words from a Wikipedia page. The following
four tokenizers are currently implemented in our
tool: (1) the multi-lingual ICU tokenizer7 that im-
plements the unicode text segmentation algorithm
(Davis, 2019), (2) a simple rule-based tokenizer
that splits the text using white space characters,
(3) the Jieba tokenizer8 for Chinese, and (4) the
MeCab tokenizer9 for Japanese and Korean.

5 Experiments

We conducted experiments to compare the quality
and efficiency of our tool with those of the existing
tools. To evaluate the quality of the entity embed-
dings, we used the KORE entity relatedness dataset
(Hoffart et al., 2012). The dataset consists of 21
entities, and each entity has 20 related entities with
scores assessed by humans. Following past work,
we reported the Spearman’s rank correlation co-

6https://github.com/earwig/
mwparserfromhell

7http://site.icu-project.org
8https://github.com/fxsjy/jieba
9https://taku910.github.io/mecab

26

Name Score
Ours 0.71
Ours (w/o link graph model) 0.61
Ours (w/o hyperlink generation) 0.69
RDF2Vec (Ristoski et al., 2018) 0.69
Wiki2vec 0.52

Table 1: The results of Wikipedia2Vec and the baseline
entity embeddings on the KORE dataset.

efficient between the gold scores and the cosine
similarity between the entity embeddings. We used
two popular entity embedding tools, RDF2Vec (Ris-
toski et al., 2018) and Wiki2vec, as baselines.

We also evaluated the quality of the word em-
beddings by employing two standard tasks: (1) a
word analogy task using the semantic subset (SEM)
and syntactic subset (SYN) of the Google Word
Analogy data set (Mikolov et al., 2013a), and (2)
a word similarity task using two standard datasets,
namely SimLex-999 (SL) (Hill et al., 2015) and
WordSim-353 (WS) (Finkelstein et al., 2002). Fol-
lowing past work, we reported the accuracy for
the word analogy task, and the Spearman’s rank
correlation coefficient between the gold scores and
the cosine similarity between the word embeddings
for the word similarity task. As baselines for these
tasks, we used the skip-gram model (Mikolov et al.,
2013a) implemented in the gensim library 3.6.0
(Řehůřek and Sojka, 2010) and the extended skip-
gram model implemented in the fastText tool 0.1.0
(Bojanowski et al., 2017). We used WikiExtrac-
tor10 to create the training corpus for baselines.
To the extent possible, we used the same hyper-
parameters to train our models and the baselines.11

We also reported the time required for train-
ing using our tool and the baseline word embed-
ding tools. Note that the training of RDF2Vec and
Wiki2vec tools are implemented using gensim.

We conducted experiments using Python 3.6 and
OpenBLAS 0.3.3 installed on the c5d.9xlarge in-
stance with 36 CPU cores deployed on Amazon
Web Services. To train our models and the baseline
word embedding models, we used the April 2018
version of the English Wikipedia dump.

5.1 Results

Table 1 shows the results of our models and the
baseline entity embedding models of the KORE

10https://github.com/attardi/
wikiextractor

11We used the following settings: dim size = 500,
window = 5, negative = 5, iteration = 5

SEM SYN SL WS Time
Ours 0.79 0.68 0.40 0.71 276min
Ours (w/o link graph model) 0.77 0.67 0.39 0.70 170min
Ours (w/o hyperlink generation) 0.79 0.67 0.39 0.72 211min
Ours (word-based skip-gram) 0.75 0.67 0.36 0.70 154min
gensim (Řehůřek and Sojka, 2010) 0.75 0.67 0.37 0.70 197min
fastText (Bojanowski et al., 2017) 0.63 0.70 0.37 0.69 243min

Table 2: The results of Wikipedia2Vec and the baseline
word embeddings on the word analogy and word simi-
larity datasets.

dataset.12 w/o link graph model and w/o hyper-
link generation are the results of ablation studies
disabling the link graph model and automatic gen-
eration of hyperlinks, respectively.

Our model successfully outperformed the
RDF2Vec and Wiki2vec models and achieved a
state-of-the-art result on the KORE dataset. The
results also indicated that the link graph model and
automatic generation of hyperlinks improved the
performance of the KORE dataset.

Table 2 shows the results of our models with the
baseline word embedding models on the word anal-
ogy and word similarity datasets. We also tested
the performace of the word-based skip-gram model
implemented in our tool by disabling the link graph
and anchor context models.

Our model performed better than the baseline
word embedding models on the SEM dataset, as
well as on both word similarity datasets. This
demonstrates that the semantic signals of entities
provided by the link graph and anchor context mod-
els are beneficial for improving the quality of word
embeddings. Additionally, the feature of the auto-
matic generation of hyperlinks did not generally
contribute to the performance on these datasets.

Our implementation of the word-based skip-
gram model was substantially faster than gensim
and fastText. Furthermore, the training time of our
full model was comparable to that of the baseline
word embedding models.

6 Interactive Demonstration

We developed a web-based interactive demonstra-
tion that enables users to explore the embeddings
of words and entities learned by our proposed tool
(see Figure 4). This demonstration enables users
to visualize the embeddings onto a two- or three-
dimensional space using three dimensionality re-
duction algorithms, namely t-distributed stochastic

12We obtained the results of the RDF2Vec and Wiki2vec
models from Ristoski et al. (2018).

27

Figure 4: The screenshot of our web-based demonstration. Users can select the target embeddings (top left),
configure the dimensionality reduction algorithm (bottom left), explore the visualized embeddings (center), and
query similar words and entities based on an arbitrary word or an entity (right).

neighbor embedding (t-SNE) (Maaten and Hinton,
2008), uniform manifold approximation and projec-
tion (UMAP) (McInnes et al., 2018), and principal
component analysis (PCA). Users can move around
the visualized embedding space by dragging and
zooming using the mouse. Moreover, the demon-
stration also allows users to explore the embed-
dings by querying similar items (words or entities)
of an arbitrary item.

We used the pretrained embeddings of 12 lan-
guages released with this paper as the target embed-
dings. Furthermore, we also provided the English
embeddings trained without the link graph model
to allow users to qualitatively investigate how the
link graph model affects the resulting embeddings.

Our demonstration is developed by extending the
TensorFlow Embedding Projector.13 The demon-
stration is available at https://wikipedia2vec.
github.io/demo.

7 Use Cases

The embeddings learned using our proposed tool
have already been used effectively in various recent
studies. Poerner et al. (2019) have recently demon-
strated that by combining BERT with the entity
embeddings trained by our tool outperforms BERT
and knowledge-enhanced contextualized word em-
beddings (i.e., ERNIE (Zhang et al., 2019)) on
unsupervised question answering and relation clas-
sification tasks, without any computationally ex-
pensive additional pretraining of BERT. Yamada

13https://projector.tensorflow.org

et al. (2018b) developed a neural network-based
question answering system based on our tool, and
won a competition held by the NIPS 2017 con-
ference. Sato et al. (2017), Chen et al. (2019),
and Yamada and Shindo (2019) achieved state-of-
the-art results on named entity recognition, entity
linking, and text classification tasks, respectively,
based on the embeddings learned by our tool. Fur-
thermore, Papalampidi et al. (2019) proposed a
neural network model of analyzing the plot struc-
ture of movies using the entity embeddings learned
by our tool. Other examples include entity linking
(Yamada et al., 2016; Eshel et al., 2017), named
entity recognition (Lara-Clares and Garcia-Serrano,
2019), paraphrase detection (Duong et al., 2019),
fake news detection (Singh et al., 2019), and knowl-
edge graph completion (Shah et al., 2019).

8 Conclusions

In this paper, we present Wikipedia2Vec, an open-
source tool for learning the embeddings of words
and entities easily and efficiently from Wikipedia.
Our experiments demonstrate the superiority of
the proposed tool in terms of the quality of the
embeddings and the efficiency of the training com-
pared to the existing tools. Furthermore, our tool
has been effectively used in many recent state-of-
the-art models, which indicates the effectiveness
of our tool on downstream tasks. We also intro-
duce a web-based interactive demonstration that
enables users to explore the learned embeddings.
The source code and the pre-trained embeddings
for 12 languages are released with this paper.

28

References
Mohamed Al-Badrashiny, Jason Bolton, Arun Tejasvi

Chaganty, Kevin Clark, Craig Harman, Lifu Huang,
Matthew Lamm, Jinhao Lei, Di Lu, Xiaoman Pan,
and others. 2017. TinkerBell: Cross-lingual Cold-
Start Knowledge Base Construction. In Text Analy-
sis Conference.

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro
Dalcin, Dag Sverre Seljebotn, and Kurt Smith. 2011.
Cython: The Best of Both Worlds. Computing in
Science & Engineering, 13(2):31–39.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating Embeddings for Modeling Multi-
relational Data. In Advances in Neural Information
Processing Systems 26, pages 2787–2795.

Yixin Cao, Lifu Huang, Heng Ji, Xu Chen, and Juanzi
Li. 2017. Bridge Text and Knowledge by Learning
Multi-Prototype Entity Mention Embedding. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1623–1633.

Haotian Chen, Sahil Wadhwa, Xi David Li, and An-
drej Zukov-Gregoric. 2019. YELM: End-to-End
Contextualized Entity Linking. arXiv preprint
arXiv:1911.03834v1.

Mark Davis. 2019. Unicode Text Segmentation. Uni-
code Technical Reports.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Phuc H. Duong, Hien T. Nguyen, Hieu N. Duong, Khoa
Ngo, and Dat Ngo. 2019. A Hybrid Approach to
Paraphrase Detection. In Proceedings of 2018 5th
NAFOSTED Conference on Information and Com-
puter Science, pages 366–371.

Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul
Markovitch, Ikuya Yamada, and Omer Levy. 2017.
Named Entity Disambiguation for Noisy Text. In
Proceedings of the 21st Conference on Computa-
tional Natural Language Learning, pages 58–68.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing Search in Context: The Con-
cept Revisited. ACM Transactions on Information
Systems, 20(1):116–131.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep Joint Entity Disambiguation with Local Neural
Attention. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2619–2629.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating Semantic Models with
Genuine Similarity Estimation. Computational Lin-
guistics, 41(4):665–695.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012.
KORE: Keyphrase Overlap Relatedness for Entity
Disambiguation. In Proceedings of the 21st ACM In-
ternational Conference on Information and Knowl-
edge Management, pages 545–554.

Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao,
and Eric Xing. 2015. Entity Hierarchy Embedding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1292–1300.

Alicia Lara-Clares and Ana Garcia-Serrano. 2019.
LSI2 UNED at eHealth-KD Challenge 2019: A Few-
shot Learning Model for Knowledge Discovery from
eHealth Documents. In Proceedings of the Iberian
Languages Evaluation Forum.

Yuezhang Li, Ronghuo Zheng, Tian Tian, Zhiting Hu,
Rahul Iyer, and Katia Sycara. 2016. Joint Embed-
ding of Hierarchical Categories and Entities for Con-
cept Categorization and Dataless Classification. In
Proceedings of the 26th International Conference on
Computational Linguistics, pages 2678–2688.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning Entity and Relation Em-
beddings for Knowledge Graph Completion. In Pro-
ceedings of the 29th AAAI Conference on Artificial
Intelligence, pages 2181–2187.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing Data using t-SNE. Journal of machine
learning research, 9(Nov):2579–2605.

Leland McInnes, John Healy, and James Melville.
2018. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction. arXiv
preprint arXiv:1802.03426v1.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proceedings of the
2013 International Conference on Learning Repre-
sentations, pages 1–12.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013b. Distributed Representa-
tions of Words and Phrases and their Compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

29

Pinelopi Papalampidi, Frank Keller, and Mirella Lap-
ata. 2019. Movie Plot Analysis via Turning Point
Identification. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, pages 1707–
1717.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge Enhanced Contextual
Word Representations. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint
Conference on Natural Language Processing, pages
43–54.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze.
2019. BERT is Not a Knowledge Base (Yet): Fac-
tual Knowledge vs. Name-Based Reasoning in Unsu-
pervised QA. arXiv preprint arXiv:1911.03681v1.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50.

Petar Ristoski, Jessica Rosati, Tommaso Di Noia,
Renato De Leone, and Heiko Paulheim. 2018.
RDF2Vec: RDF Graph Embeddings and Their Ap-
plications. Semantic Web, 10(4):721–752.

Motoki Sato, Hiroyuki Shindo, Ikuya Yamada, and Yuji
Matsumoto. 2017. Segment-Level Neural Condi-
tional Random Fields for Named Entity Recogni-
tion. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 97–102.

Haseeb Shah, Johannes Villmow, Adrian Ulges, Ulrich
Schwanecke, and Faisal Shafait. 2019. An Open-
World Extension to Knowledge Graph Completion
Models. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 33:3044–3051.

Iknoor Singh, Deepak P, and Anoop K. 2019. On the
Coherence of Fake News Articles. arXiv preprint
arXiv:1906.11126v1.

Masatoshi Suzuki, Koji Matsuda, Satoshi Sekine,
Naoaki Okazaki, and Kentaro Inui. 2018. A Joint
Neural Model for Fine-Grained Named Entity Clas-
sification of Wikipedia Articles. IEICE Transac-
tions on Information and Systems, E101.D(1):73–
81.

Chen-Tse Tsai and Dan Roth. 2016. Cross-lingual
Wikification Using Multilingual Embeddings. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 589–598.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge Graph and Text Jointly Em-
bedding. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing,
pages 1591–1601.

Yadollah Yaghoobzadeh and Hinrich Schutze. 2015.
Corpus-level Fine-grained Entity Typing Using Con-
textual Information. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 715–725.

Ikuya Yamada and Hiroyuki Shindo. 2019. Neural
Attentive Bag-of-Entities Model for Text Classifica-
tion. In Proceedings of the 23rd Conference on Com-
putational Natural Language Learning, pages 563–
573.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint Learning of the
Embedding of Words and Entities for Named En-
tity Disambiguation. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 250–259.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2017. Learning Distributed
Representations of Texts and Entities from Knowl-
edge Base. Transactions of the Association for Com-
putational Linguistics, 5:397–411.

Ikuya Yamada, Hiroyuki Shindo, and Yoshiyasu Take-
fuji. 2018a. Representation Learning of Entities and
Documents from Knowledge Base Descriptions. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 190–201.

Ikuya Yamada, Ryuji Tamaki, Hiroyuki Shindo, and
Yoshiyasu Takefuji. 2018b. Studio Ousia’s Quiz
Bowl Question Answering System. In The NIPS

’17 Competition: Building Intelligent Systems, pages
181–194.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced Language Representation with Informative
Entities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1441–1451.

30

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 31–37
November 16-20, 2020. c©2020 Association for Computational Linguistics

ARES: A Reading Comprehension Ensembling Service

Anthony Ferritto, Lin Pan, Rishav Chakravarti, Salim Roukos
Radu Florian, J. William Murdock, Avirup Sil∗

IBM Research AI
Yorktown Heights, NY

aferritto@ibm.com
{panl, rchakravarti, roukos, raduf, murdockj, avi}@us.ibm.com

Abstract

We introduce ARES (A Reading Comprehen-
sion Ensembling Service): a novel Machine
Reading Comprehension (MRC) demonstra-
tion system which utilizes an ensemble of
models to increase F1 by 2.3 points. While
many of the top leaderboard submissions in
popular MRC benchmarks such as the Stan-
ford Question Answering Dataset (SQuAD)
and Natural Questions (NQ) use model ensem-
bles, the accompanying papers do not publish
their ensembling strategies. In this work, we
detail and evaluate various ensembling strate-
gies using the NQ dataset. ARES leverages
the CFO (Chakravarti et al., 2019) and Reac-
tJS distributed frameworks to provide a scal-
able interactive Question Answering experi-
ence that capitalizes on the agreement (or lack
thereof) between models to improve the an-
swer visualization experience.

1 Introduction
Machine Reading Comprension (MRC) involves
computer systems that can take a question and
some text and produce an answer to that question
using the content in that text. This field has recently
received considerable attention, yielding popular
leaderboard challenges such as SQuAD (Rajpurkar
et al., 2016, 2018) and NQ (Kwiatkowski et al.,
2019).

Currently, the top submissions on both the
SQuAD and NQ leaderboards combine multiple
system outputs. These ensembled systems tra-
ditionally outperform single models by 1-4 F-
measure. Unfortunately, many of the papers for
these systems provide little to no information about
the ensembling techniques they use.

In this work, we use GAAMA, a prototype
question-answering system using the MRC tech-
niques of (Pan et al., 2019), as our starting point

∗Corresponding author.

and explore how to ensemble multiple MRC mod-
els from GAAMA1. We evaluate these techniques
on the NQ short answer task. Using our ensemble
of models, for each example (question, passage
pair), we take the top predictions per system, group
by span (answer extracted from the passage), nor-
malize and aggregate the scores, take the mean
score across systems for each span, and then take
the highest scoring short and long answer spans
as our final prediction. These improved ensem-
bling techniques are applied to our MRC systems
to produce stronger answers.

Whereas other systems such as (Chakravarti
et al., 2019; Yang et al., 2019a) and Allen NLP’s2

make use of a single model, we are able to use
multiple models to produce a stronger result. We
further take advantage of the fact that both the in-
dividual model predictions and the ensembed pre-
dictions are returned to help increase explainability
for the user. For the graphical interface we use a
heatmap to show the level of (dis)agreement be-
tween the underlying models along with the “best
ensemble” answer. An example of this can be seen
in Figure 1.

More completely, our contributions include:

• A novel MRC demonstration system, which
leverages multiple underlying MRC model
predictions and ensembles them for the user.

• A system architecture that provides scalabil-
ity to the system designer (by leveraging the
cloud ready CFO3 (Chakravarti et al., 2019)
orchestration framework) and flexibility to
add and remove models based on the desired
latency versus accuracy trade-off.

1ARES can use any MRC model.
2https://demo.allennlp.org/

reading-comprehension
3https://github.com/IBM/

flow-compiler/

31

Figure 1: ARES client interface. The correct answer
2018 is boxed and the MRC system answers are high-
lighted based on a heatmap.

• A GUI with enhanced explainability that al-
lows users to see the (dis)agreement of re-
sponses from individual models.

• An analysis of various ensembling strategies
with experimental results on the challenging
NQ dataset which show that diversity of mod-
els is better for ensembling than seed variation.
We detail the process for selecting the “best-
diverse” set.

2 Related Work

2.1 Ensembled MRC Systems

There have been multiple works creating systems
utilizing MRC models. BERTserini (Yang et al.,
2019a) is an end-to-end question answering sys-
tem utilizing a BERT (Devlin et al., 2019) model.
(Ma et al., 2019) creates an end-to-end dialogue
tracking system featuring an XLNet (Yang et al.,
2019b) model. (Qu et al., 2020) performs conver-
sational question answering and utilizes separate
ALBERT (Lan et al., 2019) encoders for the ques-
tion and passage in addition to a BERT (Devlin
et al., 2019) model. Allen NLP’s MRC demo pro-
vides reading comprehension through the use of a
variety of different model types. However, to the
best of our knowledge we are the first to propose
using an ensemble of MRC models to provide a
MRC service.

There have likewise been multiple approaches
to visualization of system results. BertSerini high-
lights the answer in the context. Allen NLP’s demo
allows using gradients to view the most important
words in the passage. ARES allows for viewing

the most important regions of the passage from
the perspective of different models in addition to
boxing in the ensembled answer as seen in Figure
1.

2.2 Ensembling Techniques

Many of the top recent MRC systems publish few
details on their ensembling strategies. Systems
such as (Devlin et al., 2019; Alberti et al., 2019;
Liu et al., 2019; Wang et al., 2019; Lan et al., 2019;
Group, 2017; Seo et al., 2016) report using ensem-
bles of 5 to 18 models to gain 1.3 - 4 F1 points
on tasks such as GLUE, SQuAD 1.0, and SQuAD
2.0; unfortunately most of these systems report
little information on their ensembling techniques.
(Liu et al., 2020) reports slightly more information:
gaining 1.8 and 0.6 F1 points short answer (SA)
and long answer (LA) respectively on the NQ dev
set with an ensemble of three models with different
hyperparameters.

We also consider work in the field of information
retrieval (IR) as a way to aggregate multiple scores
for the same span. Similar to the popular Comb-
SUM and CombMNZ (Kurland and Culpepper,
2018; Wu, 2012) methods, considering the spans
as the “documents”, we use span-score weighted
aggregation in our noisy-or aggregator. Futher, we
additionally incorporate the use of rank-based scor-
ing from Borda (Young, 1974) and RRF (Cormack
et al., 2009) for our exponential sum approach (in
addition to utilizing score for this approach). We
finally consider a reciprocal rank sum aggregation
strategy based on the ideas in RRF (Cormack et al.,
2009). To our knowledge this is the first published
application of IR methods for this purpose.

3 System Overview
We describe the architecture of the system and ad-
ditionally provide an overview of the client (GUI)
used in this demonstration. The system is com-
posed of MRC and ensembling services which are
orchestrated by CFO. The MRC services (in our
case GAAMA) provide reading comprehension via
a transformer model (Pan et al., 2019); multiple
services utilizing different model architectures are
run to extract answers for a given question and pas-
sage. After the MRC services extract their answers,
they are all passed to ARES which ensembles the
results. The ensembling algorithm used by ARES
is detailed in Sections 4 and 5. Note that the MRC
service only extracts short answers, therefore only
those portions of our ensembling approach are used.

32

Both the ensembled and original answers are then
returned to the caller, allowing the clients to dis-
play the final ensembled answers and the original
answers they were generated from to the end user.

More completely, the system takes the follow-
ing as input through a grpc (Talvar, 2016) inter-
face: question, passage, minimum confidence score
threshold δ, maximum number of answers N , max-
imum number of answers per model n, and num-
ber of models k. These inputs are sent from the
client (we discuss our client below) and received
by the CFO node which orchestrates the contain-
ers. The choice of k is bounded on how many
GAAMA containers are deployed (e.g. if there
are 3 then k ∈ {1, 2, 3}). By tweaking the pa-
rameter k, clients can opt for increased accuracy
(higher k) or decreased latency (lower k) as when
multiple models run on the same GPU the request
latency increases. As depicted in Figure 2 (where
there are 3 MRC models running), each of the k=2
GAAMA containers then receive the question and
passage from CFO, returning at most n answers
to CFO. These answers, together with their con-
fidence scores, are then sent to the ensembler by
CFO which produces at most N ensembled an-
swers (each with confidence score at least δ) and
returns them to CFO. Finally, both the answers of
the k models and the ensembled answers predicted
by ARES are returned by CFO to the caller.

The GUI client for our system is based on a Reac-
tJS4 web interface. A request is taken as input from
the user and sent to the system where is is processed
as described above. When an answer with suffi-
cient confidence score is returned, it is displayed
to the user as seen in Figure 1. Both the ensem-
bled answer and the individual answers are shown
together with their respective confidence scores.
These answers are also shown in the context of the
original passage. The ensembled answer is boxed
in. For the individual answers a character heatmap
is created representing how many of the candidate
answers each character appears in. This heatmap
is used to highlight the passage different different
colors corresponding to the heatmap (characters
not used in any answers are not highlighted). Both
the boxing and highlighting of answers are done us-
ing MarkJS5. Note that while these visualizations
only show the top answer for each MRC model,
n answers per model are ensembled together. If

4https://reactjs.org/
5https://markjs.io/

Figure 2: Architecture of the the ARES system. We
use GAAMA as our MRC service.

an answer with sufficient confidence score is not
returned, this is relayed to the user through the
GUI.

4 Methods
We investigate a number of strategies for ensem-
bling models on the NQ dataset. We use the NQ
dataset as it is more realistic and challenging than
SQuAD, as its questions were created by Google
Search users prior to seeing the answer documents
(so they do not suffer from observational bias). In
order to formally compare approaches we partition
the NQ dev set into “dev-train” and “dev-test” by
taking the first three dev files for the “train” set and
using the last two for the “test” set (the original dev
set for NQ is partitioned into 5 files for distribu-
tion). This yields “train” and “test” sets of 4,653
and 3,177 examples respectively.

For each strategy considered we search for the
best k-model ensemble over the “train” set and then
evaluate on the “test” set. For these experiments
we use k = 4 as this is the number of models
that we can decode in the 24 hours (the limit for
the NQ leaderboard). We begin by outlining our
core strategy that underlies the approaches we have
investigated.

Using this strategy we investigate a baseline ap-
proach of ensembling multiple versions of the same
model trained with different seeds. We then investi-
gate search strategies for choosing the best models
from candidates trained with different hyperparam-
eters, in addition to different normalization and
aggregation strategies that are used on a set of can-
didates.

33

4.1 Core Strategy

For each example processed by the k systems being
ensembled, our system assigns a score to each long
and short span according to the normalization and
aggregation strategies (see below). Note that our
system currently only predicts single short spans
rather than sets, so we currently score each short
span independently.

We use the top-20 candidate long and short an-
swers (LA and SA respectively) for each system.
We experimented with additional values, but em-
pirically found 20 to provide an ideal accuracy
versus latency trade-off given hardware resources.
To combine systems we take the arithmetic mean
of the scores for each long and short span predicted
by at least one system. We have experimented with
other approaches such as median, geometric mean,
and harmonic mean; however these are omitted
here as they resulted in much lower scores than
arithmetic mean. For spans which are only pre-
dicted by some systems a score of zero is assigned
(for the systems which do not predict the span) to
penalize spans which are only predicted by some
systems. The predicted long span is then the span
with the greatest arithmetic mean. Similarly for
short answers the predicted span is the one with
the greatest arithmetic mean (it must also be in a
non-null long answer span).

4.2 Seed Ensembles

We first examine the baseline approach of ensem-
bling k versions of the same model trained with
the same hyperparameters, only varying the seed
between models. We use the model with the best
hyperparameters based on (Pan et al., 2019) having
the highest sum of short and long answer F1 scores
on dev. This model is trained k−1 additional times
with different seeds and then they are all ensembled
using the core strategy.

4.3 Search Strategies

We consider two main strategies when searching for
ensembles: exhaustive and greedy. These search
over model candidates with different hyperparame-
ters as described in (Pan et al., 2019). Note that we
also considered a “simple greedy” approach where
the k best models on dev were selected, however
this underperformed other approaches by 1 - 2 F1
points.

In exhaustive search we consider all possible
ensembles, whereas in greedy search we build the
ensemble one model at a time by looking for which

model we can add to an i model ensemble to make
the best i+ 1 model ensemble.

4.3.1 Exhaustive Search (ES)

In the exhaustive search approach where we con-
sider each of the

(
m
k

)
ensembles of k candidates

from our group of m models. We then use our
core strategy for each ensemble to obtain short and
long answer F1 scores for each ensemble. After
searching all possible ensembles we return two en-
sembles: (i) the ensemble with the highest long
answer F1 score and (ii) the ensemble with the
highest short answer F1 score.

4.3.2 Greedy Search (GS)

We select the models by greedily building 1, 2, ..., k
model ensembles optimizing for short or long an-
swer F1 using our core strategy.

4.4 Normalization Strategies

We investigate two primary methods for normaliz-
ing the scores predicted for a span: not normalizing
and logistic regression. We also investigated nor-
malizing by dividing the scores for a span by the
sum of all scores for the span, however we omit
these results for brevity as they did not produce
interesting results.

4.4.1 None

As a baseline we run experiments where the scores
for a span are used as-is.

4.4.2 Logistic Regression

We also experiment with normalization using lo-
gistic regression where the scores from the top pre-
diction for the “dev-train” examples is used to pre-
dict whether the example is correctly answered. In
our experiments using the top example performed
equally well to using the top 20 predictions per ex-
ample to train on. We also experimented with using
other features which did not improve performance.
To ensure an appropriate regularization strength
is used, we use the scikit-learn (Pedregosa et al.,
2011) implementation of logistic regression with
stratified 5-fold cross-validation to select the L2
regularization strength.

4.5 Aggregation Strategies

We consider a number of aggregation strategies to
produce a single span score for each span predicted
by a system for an example. These include the base-
line approach of max as well as the exponentially
decaying sum, reciprocal rank sum, and noisy-or

34

methods influenced by IR. These approaches op-
erate on a vector P of scores on which one of the
above normalization strategies has been applied.

4.5.1 Max

For a vector P , score = max
|P |
i=1 Pi.

4.5.2 Exponential Sum (ExS)

Based on the ideas of (Young, 1974; Cormack et al.,
2009), we sort P in descending order and take

score =

|P |∑

i=1

Pi ∗ βi−1

for some constant β (we use β = 0.5).

4.5.3 Reciprocal Rank Sum (RRS)

Based on the ideas of (Cormack et al., 2009), we
sort P in descending order and take

score =

|P |∑

i=1

Pi ∗
1

i

4.5.4 Noisy-Or (NO)

Based on the ideas of (Kurland and Culpepper,
2018; Wu, 2012), we take

score = 1−
|P |∏

i=1

(1− Pi)

5 Experiments and Results
We examine two types of ensembling experiments:
(i) ensembling the same model trained with dif-
ferent seeds and (ii) ensembling different models.
Ensembling the same model trained on different
seeds attempts to smooth the variance to produce a
stronger result. On the other hand ensembling dif-
ferent models attempts to find models that may not
be the strongest individually but harmonize well
to produce strong results. Throughout this section
we will use SA F1 and LA F1 to denote the short
and long answer performance on “dev-test”. Sim-
ilarly we will use NS to indicate the number of
models searched for an experiment and types SA
and LA to indicate optimization for SA and LA F1
respectively.

5.1 Seed experiments

In Table 1 we find that there is a benefit to ensem-
bling multiple versions of the same model trained
with different seeds. Note that there is some data

Models SA F1 LA F1

1 56.1 67.1
4 58.7 69.6

Table 1: Ensembling the same model trained with dif-
ferent seeds.

Search NS Type SA F1 LA F1

- - - 58.7 69.6
ES 20 LA 59.6 70.5
ES 20 SA 59.6 70.0
GS 41 LA 59.7 70.8
GS 41 SA 59.1 69.8

Table 2: Comparison of Search Strategies. All exper-
iments run without normalization using max aggrega-
tion. The first row is 4 seed ensemble from Table 1.

snooping ocuring here as the model is selected
based on full dev performance (which is a superset
of “dev-test”). RikiNet (Liu et al., 2020) and the
1 model performance reported above represent the
top published NQ models at the time of writing this
paper.

5.2 Main experiments

We investigate the different search strategies in Ta-
ble 2. We find that the greedy approach performs
best overall, with the greedy ensemble optimized
for LA performance performing the best on both
short and long answer F1. Note that the numbers
seen here, particularly when optimizing greedily
for long answer performance are higher than those
observed for ensembling the same model with mul-
tiple seeds. We hypothesize the superior general-
ization of greedy is due to exhaustive search “over-
fitting”. For the remainder of this paper we will
focus on greedy search optimized for long answer
to keep the number of experiments presented to a
manageable level.

We investigate the impact of the IR inspired nor-
malization strategies in Table 3. The max exper-
iment is as-before run without normalization to
greedily optimize for long answer F1. The other
experiments here are normalized with logistic re-
gression, as our experiments showed that not nor-
malizing decreased performance. We find that us-
ing max aggregation results in the best short answer
F1 whereas using normalized noisy-or aggregation
results in the best long answer F1. Based on these
results, we run a final experiment using unnormal-

35

Aggregator SA F1 LA F1

Max 59.7 70.8
Exponential Sum 58.3 70.4
Reciprocal Rank Sum 57.3 70.7
Noisy-Or 57.3 71.5

Table 3: Comparison of IR inspired aggregation strate-
gies. All experiments run with a greedy search strategy
optimized exclusively for long answer F1 with logistic
regression normalization (except max which is not nor-
malized).

ized max for short answers and logistic regression
normalized noisy-or works for long answers. We
find that this approach produces the strongest per-
formance for both short and long answers with 59.3
SA F1 and 71.5 LA F1. Consequently we use un-
normalized max ensembling of GAAMA answers
(as GAAMA works on short answers) from 4 mod-
els in ARES. These numbers translate to a full dev
performance of 59.3 short answer F1 and 71.1 long
answer F1, which represents an improvement of
2.3 short answer F1 and 4.0 long answer F1 over
our best single model.

6 Ensemble Candidate Contributions
When doing manual error analysis on the NQ dev
set, we do observe patterns suggesting that each
of the ensemble components do bring different
strengths over the single best model. For exam-
ple, the Wikipedia article for Salary Cap contains
multiple sentences related to the query “when did
the nfl adopt a salary cap”:

The new Collective Bargaining Agreement (CBA)
formulated in 2011 had an initial salary cap of
$120 million...The cap was first introduced for
the 1994 season and was initially $34.6 million.
Both the cap and...

The later sentence contains the correct answer,
1994, since the question is asking for when the
salary cap was initially adopted. One of our mod-
els A correctly makes this prediction whereas an-
other one of our models B predicts 2011 from the
earlier sentence. There are also cases where the
correct answer span appears in the middle or later
part of a paragraph and, though our model B pre-
dict the spans correctly, they assign a lower score
(relative to its optimal threshold) than the model
A. The position bias, therefore, appears to hurt
the performance of the system in certain situations
where location of the answer span relative to the
paragraph is not a useful signal of correctness.

Finally, in our manual review we do see that the
ensemble of these models performs better in the
expected ways: (1) boosting scores when multiple
models agree on an answer span even though no
one model is extremely confident (2) reducing con-
fidence when there is disagreement among models.

7 Conclusion
We introduce a novel concept for a MRC service,
ARES, which uses an ensemble of models to re-
spond to requests. This provides for multiple advan-
tages over the traditional single model paradigm:
improved F1, the ability to control the performance
vs runtime tradeoff for each individual request, and
improved explaiability of results by showing both
candidate answers in addition to the final ensem-
bled answer. We outline several ensembling ap-
proaches for question answering models investi-
gated for use in ARES and compare their perfor-
mance on the NQ challenge. Our findings show
that ensembling unique models outperforms en-
sembling the same model trained with different
seeds and provide further analysis to show how
ensembling diverse models improves performance.
We also show that using unnormalized max aggre-
gation for short answers and logistic regression
normalized noisy-or aggregation for long answers
yields an F1 improvement of 2 to 4 points over
single model performance on the NQ challenge.

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob De-

vlin, and Michael Collins. 2019. Synthetic QA cor-
pora generation with roundtrip consistency. CoRR,
abs/1906.05416.

Rishav Chakravarti, Cezar Pendus, Andrzej Sakrajda,
Anthony Ferritto, Lin Pan, Michael Glass, Vittorio
Castelli, J William Murdock, Radu Florian, Salim
Roukos, and et al. 2019. Cfo: A framework for
building production nlp systems. Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations.

Gordon V. Cormack, Charles L A Clarke, and Ste-
fan Buettcher. 2009. Reciprocal rank fusion outper-
forms condorcet and individual rank learning meth-
ods. In Proceedings of the 32Nd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’09, pages 758–759,
New York, NY, USA. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

36

deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Natural Language Computing Group. 2017. R-net:
Machine reading comprehension with self-matching
networks.

Oren Kurland and J. Culpepper. 2018. Fusion in infor-
mation retrieval: Sigir 2018 half-day tutorial. pages
1383–1386.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral Questions: a benchmark for question answering
research. TACL.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations.

Dayiheng Liu, Yeyun Gong, Jie Fu, Yu Yan, Jiusheng
Chen, Daxin Jiang, Jiancheng Lv, and Nan Duan.
2020. Rikinet: Reading wikipedia pages for natural
question answering.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Yue Ma, Zengfeng Zeng, Dawei Zhu, Xuan Li, Yiy-
ing Yang, Xiaoyuan Yao, Kaijie Zhou, and Jianping
Shen. 2019. An end-to-end dialogue state tracking
system with machine reading comprehension and
wide & deep classification.

Lin Pan, Rishav Chakravarti, Anthony Ferritto,
Michael Glass, Alfio Gliozzo, Salim Roukos, Radu
Florian, and Avirup Sil. 2019. Frustratingly easy nat-
ural question answering.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce
Croft, and Mohit Iyyer. 2020. Open-retrieval conver-
sational question answering.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. EMNLP.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. CoRR,
abs/1611.01603.

Varun Talvar. 2016. grpc design and implementation.
Talk by Varun Talwar, Product Manager at Google
at Stanford, California [Accessed: 2019 06 20].

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Shengli Wu. 2012. Data Fusion in Information Re-
trieval. Springer Publishing Company, Incorpo-
rated.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019a.
End-to-end open-domain question answering with.
Proceedings of the 2019 Conference of the North.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G.
Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. 2019b. XLNet: Generalized autoregressive
pretraining for language understanding. CoRR,
abs/1906.08237.

H.P Young. 1974. An axiomatization of borda’s rule.
Journal of Economic Theory, 9(1):43 – 52.

37

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 38–45
November 16-20, 2020. c©2020 Association for Computational Linguistics

Transformers: State-of-the-Art Natural Language Processing

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,

Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, Alexander M. Rush

Hugging Face, Brooklyn, USA / {first-name}@huggingface.co

Abstract

Recent progress in natural language process-
ing has been driven by advances in both model
architecture and model pretraining. Trans-
former architectures have facilitated building
higher-capacity models and pretraining has
made it possible to effectively utilize this ca-
pacity for a wide variety of tasks. Trans-
formers is an open-source library with the
goal of opening up these advances to the
wider machine learning community. The li-
brary consists of carefully engineered state-
of-the art Transformer architectures under a
unified API. Backing this library is a cu-
rated collection of pretrained models made
by and available for the community. Trans-
formers is designed to be extensible by re-
searchers, simple for practitioners, and fast
and robust in industrial deployments. The li-
brary is available at https://github.com/
huggingface/transformers.

1 Introduction

The Transformer (Vaswani et al., 2017) has rapidly
become the dominant architecture for natural lan-
guage processing, surpassing alternative neural
models such as convolutional and recurrent neural
networks in performance for tasks in both natural
language understanding and natural language gen-
eration. The architecture scales with training data
and model size, facilitates efficient parallel training,
and captures long-range sequence features.

Model pretraining (McCann et al., 2017; Howard
and Ruder, 2018; Peters et al., 2018; Devlin et al.,
2018) allows models to be trained on generic cor-
pora and subsequently be easily adapted to specific
tasks with strong performance. The Transformer
architecture is particularly conducive to pretrain-
ing on large text corpora, leading to major gains in
accuracy on downstream tasks including text classi-
fication (Yang et al., 2019), language understanding

(Liu et al., 2019b; Wang et al., 2018, 2019), ma-
chine translation (Lample and Conneau, 2019a),
coreference resolution (Joshi et al., 2019), com-
monsense inference (Bosselut et al., 2019), and
summarization (Lewis et al., 2019) among others.

This advance leads to a wide range of practical
challenges that must be addressed in order for these
models to be widely utilized. The ubiquitous use of
the Transformer calls for systems to train, analyze,
scale, and augment the model on a variety of plat-
forms. The architecture is used as a building block
to design increasingly sophisticated extensions and
precise experiments. The pervasive adoption of pre-
training methods has led to the need to distribute,
fine-tune, deploy, and compress the core pretrained
models used by the community.

Transformers is a library dedicated to supporting
Transformer-based architectures and facilitating the
distribution of pretrained models. At the core of
the libary is an implementation of the Transformer
which is designed for both research and production.
The philosophy is to support industrial-strength im-
plementations of popular model variants that are
easy to read, extend, and deploy. On this founda-
tion, the library supports the distribution and usage
of a wide-variety of pretrained models in a cen-
tralized model hub. This hub supports users to
compare different models with the same minimal
API and to experiment with shared models on a
variety of different tasks.

Transformers is an ongoing effort maintained by
the team of engineers and researchers at Hugging
Face with support from a vibrant community of
over 400 external contributors. The library is re-
leased under the Apache 2.0 license and is available
on GitHub1. Detailed documentation and tutorials
are available on Hugging Face’s website2.

1https://github.com/huggingface/
transformers

2https://huggingface.co/transformers/

38

Figure 1: Average daily unique downloads of the most downloaded pretrained models, Oct. 2019 to May 2020.

2 Related Work

The NLP and ML communities have a strong cul-
ture of building open-source research tools. The
structure of Transformers is inspired by the pi-
oneering tensor2tensor library (Vaswani et al.,
2018) and the original source code for BERT (De-
vlin et al., 2018), both from Google Research.
The concept of providing easy caching for pre-
trained models stemmed from AllenNLP (Gard-
ner et al., 2018). The library is also closely re-
lated to neural translation and language modeling
systems, such as Fairseq (Ott et al., 2019), Open-
NMT (Klein et al., 2017), Texar (Hu et al., 2018),
Megatron-LM (Shoeybi et al., 2019), and Mar-
ian NMT (Junczys-Dowmunt et al., 2018). Build-
ing on these elements, Transformers adds extra
user-facing features to allow for easy downloading,
caching, and fine-tuning of the models as well as
seamless transition to production. Transformers
maintains some compatibility with these libraries,
most directly including a tool for performing infer-
ence using models from Marian NMT and Google’s
BERT.

There is a long history of easy-to-use, user-
facing libraries for general-purpose NLP. Two core
libraries are NLTK (Loper and Bird, 2002) and
Stanford CoreNLP (Manning et al., 2014), which
collect a variety of different approaches to NLP in
a single package. More recently, general-purpose,
open-source libraries have focused primarily on
machine learning for a variety of NLP tasks, these
include Spacy (Honnibal and Montani, 2017), Al-
lenNLP (Gardner et al., 2018), flair (Akbik et al.,
2019), and Stanza (Qi et al., 2020). Transform-
ers provides similar functionality as these libraries.
Additionally, each of these libraries now uses the

Transformers library and model hub as a low-level
framework.

Since Transformers provides a hub for NLP mod-
els, it is also related to popular model hubs includ-
ing Torch Hub and TensorFlow Hub which collect
framework-specific model parameters for easy use.
Unlike these hubs, Transformers is domain-specific
which allows the system to provide automatic sup-
port for model analysis, usage, deployment, bench-
marking, and easy replicability.

3 Library Design

Transformers is designed to mirror the standard
NLP machine learning model pipeline: process
data, apply a model, and make predictions. Al-
though the library includes tools facilitating train-
ing and development, in this technical report we
focus on the core modeling specifications. For
complete details about the features of the library
refer to the documentation available on https:

//huggingface.co/transformers/.
Every model in the library is fully defined by

three building blocks shown in the diagram in Fig-
ure 2: (a) a tokenizer, which converts raw text to
sparse index encodings, (b) a transformer, which
transforms sparse indices to contextual embed-
dings, and (c) a head, which uses contextual em-
beddings to make a task-specific prediction. Most
user needs can be addressed with these three com-
ponents.

Transformers Central to the library are carefully
tested implementations of Transformer architecture
variants which are widely used in NLP. The full list
of currently implemented architectures is shown in
Figure 2 (Left). While each of these architectures

39

Heads
Name Input Output Tasks Ex. Datasets

Language Modeling x1:n−1 xn ∈ V Generation WikiText-103
Sequence Classification x1:N y ∈ C Classification,

Sentiment Analysis
GLUE, SST,
MNLI

Question Answering x1:M ,xM :N y span [1 : N] QA, Reading
Comprehension

SQuAD,
Natural Questions

Token Classification x1:N y1:N ∈ CN NER, Tagging OntoNotes, WNUT
Multiple Choice x1:N ,X y ∈ X Text Selection SWAG, ARC
Masked LM x1:N\n xn ∈ V Pretraining Wikitext, C4
Conditional Generation x1:N y1:M ∈ VM Translation,

Summarization
WMT, IWSLT,
CNN/DM, XSum

Transformers

Masked [x1:N\n ⇒ xn]

BERT (Devlin et al., 2018)
RoBERTa (Liu et al., 2019a)

Autoregressive [x1:n−1 ⇒ xn]

GPT / GPT-2 (Radford et al., 2019)
Trans-XL (Dai et al., 2019)
XLNet (Yang et al., 2019)

Seq-to-Seq [∼ x1:N ⇒ x1:N]

BART (Lewis et al., 2019)
T5 (Raffel et al., 2019)
MarianMT (J.-Dowmunt et al., 2018)

Specialty: Multimodal

MMBT (Kiela et al., 2019)

Specialty: Long-Distance

Reformer (Kitaev et al., 2020)
Longformer (Beltagy et al., 2020)

Specialty: Efficient

ALBERT (Lan et al., 2019)
Electra (Clark et al., 2020)
DistilBERT (Sanh et al., 2019)

Specialty: Multilingual

XLM/RoBERTa (Lample and Conneau, 2019b)

Transformer

Tokenizer

Head Head

Tokenizers

Name Ex. Uses

Character-Level BPE NMT, GPT
Byte-Level BPE GPT-2
WordPiece BERT
SentencePiece XLNet
Unigram LM
Character Reformer
Custom Bio-Chem

Figure 2: The Transformers library. (Diagram-Right) Each model is made up of a Tokenizer, Transformer, and
Head. The model is pretrained with a fixed head and can then be further fine-tuned with alternate heads for different
tasks. (Bottom) Each model uses a specific Tokenizer either implemented in Python or in Rust. These often differ
in small details, but need to be in sync with pretraining. (Left) Transformer architectures specialized for different
tasks, e.g. understanding versus generation, or for specific use-cases, e.g. speed, image+text. (Top) heads allow a
Transformer to be used for different tasks. Here we assume the input token sequence is x1:N from a vocabulary V ,
and y represents different possible outputs, possibly from a class set C. Example datasets represent a small subset
of example code distributed with the library.

40

shares the same multi-headed attention core, there
are significant differences between them including
positional representations, masking, padding, and
the use of sequence-to-sequence design. Addition-
ally, various models are built to target different
applications of NLP such as understanding, gener-
ation, and conditional generation, plus specialized
use cases such as fast inference or multi-lingual
applications.

Practically, all models follow the same hierarchy
of abstraction: a base class implements the model’s
computation graph from an encoding (projection
on the embedding matrix) through the series of self-
attention layers to the final encoder hidden states.
The base class is specific to each model and closely
follows the model’s original implementation which
gives users the flexibility to easily dissect the inner
workings of each individual architecture. In most
cases, each model is implemented in a single file
to enable ease of extensibility.

Wherever possible, different architectures fol-
low the same API allowing users to switch easily
between different models. A set of Auto classes
provides a unified API that enables very fast switch-
ing between models and even between frameworks.
These classes automatically instantiate with the
configuration specified by the user-specified pre-
trained model.

Tokenizers A critical NLP-specific aspect of the
library is the implementations of the tokenizers nec-
essary to use each model. Tokenizer classes (each
inheriting from a common base class) can either be
instantiated from a corresponding pretrained model
or can be configured manually. These classes store
the vocabulary token-to-index map for their corre-
sponding model and handle the encoding and de-
coding of input sequences according to a model’s
specific tokenization process. The tokenizers im-
plemented are shown in Figure 2 (Right). Users
can easily modify tokenizer with interfaces to add
additional token mappings, special tokens (such as
classification or separation tokens), or otherwise
resize the vocabulary.

Tokenizers can also implement additional useful
features for the users. These range from token type
indices in the case of sequence classification to
maximum length sequence truncating taking into
account the added model-specific special tokens
(most pretrained Transformer models have a maxi-
mum sequence length).

For training on very large datasets, Python-based

tokenization is often undesirably slow. In the
most recent release, Transformers switched its im-
plementation to use a highly-optimized tokeniza-
tion library by default. This low-level library,
available at https://github.com/huggingface/
tokenizers, is written in Rust to speed up the
tokenization procedure both during training and
deployment.

Heads Each Transformer can be paired with
one out of several ready-implemented heads
with outputs amenable to common types of
tasks. These heads are implemented as ad-
ditional wrapper classes on top of the base
class, adding a specific output layer, and op-
tional loss function, on top of the Transformer’s
contextual embeddings. The full set of im-
plemented heads are shown in Figure 2 (Top).
These classes follow a similar naming pattern:
XXXForSequenceClassification where
XXX is the name of the model and can be used
for adaptation (fine-tuning) or pretraining. Some
heads, such as conditional generation, support extra
functionality like sampling and beam search.

For pretrained models, we release the heads used
to pretrain the model itself. For instance, for BERT
we release the language modeling and next sen-
tence prediction heads which allows easy for adap-
tation using the pretraining objectives. We also
make it easy for users to utilize the same core Trans-
former parameters with a variety of other heads for
finetuning. While each head can be used generally,
the library also includes a collection of examples
that show each head on real problems. These ex-
amples demonstrate how a pretrained model can be
adapted with a given head to achieve state-of-the-
art results on a large variety of NLP tasks.

4 Community Model Hub

Transformers aims to facilitate easy use and dis-
tribution of pretrained models. Inherently this is
a community process; a single pretraining run fa-
cilitates fine-tuning on many specific tasks. The
Model Hub makes it simple for any end-user to ac-
cess a model for use with their own data. This hub
now contains 2,097 user models, both pretrained
and fine-tuned, from across the community. Fig-
ure 1 shows the increase and distribution of popular
transformers over time. While core models like
BERT and GPT-2 continue to be popular, other spe-
cialized models including DistilBERT (Sanh et al.,
2019), which was developed for the library, are

41

Figure 3: Transformers Model Hub. (Left) Example of a model page and model card for SciBERT (Beltagy
et al., 2019), a pretrained model targeting extraction from scientific literature submitted by a community contrib-
utor. (Right) Example of an automatic inference widget for the pretrained BART (Lewis et al., 2019) model for
summarization. Users can enter arbitrary text and a full version of the model is deployed on the fly to produce a
summary.

now widely downloaded by the community.
The user interface of the Model Hub is designed

to be simple and open to the community. To upload
a model, any user can sign up for an account and
use a command-line interface to produce an archive
consisting a tokenizer, transformer, and head. This
bundle may be a model trained through the library
or converted from a checkpoint of other popular
training tools. These models are then stored and
given a canonical name which a user can use to
download, cache, and run the model either for fine-
tuning or inference in two lines of code. To load
FlauBERT (Le et al., 2020), a BERT model pre-
trained on a French training corpus, the command
is:

1 tknzr = AutoTokenizer.from_pretrained(
2 "flaubert/flaubert_base_uncased")
3 model = AutoModel.from_pretrained(
4 "flaubert/flaubert_base_uncased")

When a model is uploaded to the Model Hub, it
is automatically given a landing page describing its
core properties, architecture, and use cases. Addi-
tional model-specific metadata can be provided via
a model card (Mitchell et al., 2018) that describes
properties of its training, a citation to the work,
datasets used during pretraining, and any caveats
about known biases in the model and its predictions.
An example model card is shown in Figure 3 (Left).

Since the Model Hub is specific to transformer-
based models, we can target use cases that would

be difficult for more general model collections. For
example, because each uploaded model includes
metadata concerning its structure, the model page
can include live inference that allows users to ex-
periment with output of models on a real data. Fig-
ure 3 (Right) shows an example of the model page
with live inference. Additionally, model pages in-
clude links to other model-specific tools like bench-
marking and visualizations. For example, model
pages can link to exBERT (Hoover et al., 2019), a
Transformer visualization library.

Community Case Studies The Model Hub high-
lights how Transformers is used by a variety of
different community stakeholders. We summarize
three specific observed use-cases in practice. We
highlight specific systems developed by users with
different goals following the architect, trainer, and
end-user distinction of Strobelt et al. (2017):
Case 1: Model Architects AllenAI, a major NLP
research lab, developed a new pretrained model for
improved extraction from biomedical texts called
SciBERT (Beltagy et al., 2019). They were able
to train the model utilizing data from PubMed to
produce a masked language model with state-of-
the-art results on targeted text. They then used the
Model Hub to distribute the model and promote
it as part of their CORD - COVID-19 challenge,
making it trivial for the community to use.
Case 2: Task Trainers Researchers at NYU were

42

interested in developing a test bed for the per-
formance of Transformers on a variety of differ-
ent semantic recognition tasks. Their framework
Jiant (Pruksachatkun et al., 2020) allows them to
experiment with different ways of pretraining mod-
els and comparing their outputs. They used the
Transformers API as a generic front-end and per-
formed fine-tuning on a variety of different models,
leading to research on the structure of BERT (Ten-
ney et al., 2019).
Case 3: Application Users Plot.ly, a company fo-
cused on user dashboards and analytics, was in-
terested in deploying a model for automatic doc-
ument summarization. They wanted an approach
that scaled well and was simple to deploy, but had
no need to train or fine-tune the model. They were
able to search the Model Hub and find DistilBART,
a pretrained and fine-tuned summarization model
designed for accurate, fast inference. They were
able to run and deploy the model directly from the
hub with no required research or ML expertise.

5 Deployment

An increasingly important goal of Transformers is
to make it easy to efficiently deploy model to pro-
duction. Different users have different production
needs, and deployment often requires solving sig-
nificantly different challenges than training. The
library thereforce allows for several different strate-
gies for production deployment.

One core propery of the libary is that models
are available both in PyTorch and TensorFlow, and
there is interoperability between both frameworks.
A model trained in one of frameworks can be saved
through standard serialization and be reloaded from
the saved files in the other framework seamlessly.
This makes it particularly easy to switch from one
framework to the other one along the model life-
time (training, serving, etc.).

Each framework has deployment recommenda-
tions. For example, in PyTorch, models are compat-
ible with TorchScript, an intermediate representa-
tion of a PyTorch model that can then be run either
in Python in a more efficient way, or in a high-
performance environment such as C++. Fine-tuned
models can thus be exported to production-friendly
environment, and run through TorchServing. Ten-
sorFlow includes several serving options within its
ecosystem, and these can be used directly.

Transformers can also export models to interme-
diate neural network formats for further compila-

Figure 4: Experiments with Transformers inference in
collaboration with ONNX.

tion. It supports converting models to the Open
Neural Network Exchange format (ONNX) for de-
ployment. Not only does this allow the model to
be run in a standardized interoperable format, but
also leads to significant speed-ups. Figure 4 shows
experiments run in collaboration with the ONNX
team to optimize BERT, RoBERTa, and GPT-2
from the Transformers library. Using this interme-
diate format, ONNX was able to achieve nearly a
4x speedup on this model. The team is also ex-
perimenting with other promising intermediate for-
mats such as JAX/XLA (Bradbury et al., 2018) and
TVM (Chen et al., 2018).

Finally, as Transformers become more widely
used in all NLP applications, it is increasingly im-
portant to deploy to edge devices such as phones
or home electronics. Models can use adapters to
convert models to CoreML weights that are suit-
able to be embedded inside a iOS application, to
enable on-the-edge machine learning. Code is also
made available3. Similar methods can be used for
Android devices.

6 Conclusion

As Transformer and pretraining play larger roles in
NLP, it is important for these models to be acces-
sible to researchers and end-users. Transformers
is an open-source library and community designed
to facilitate users to access large-scale pretrained
models, to build and experiment on top of them,
and to deploy them in downstream tasks with state-
of-the-art performance. Transformers has gained
significant organic traction since its release and is
set up to continue to provide core infrastructure
while helping to facilitate access to new models.

3https://github.com/huggingface/
swift-coreml-transformers

43

References
a. PyTorch Hub. https://pytorch.org/hub/. Ac-

cessed: 2020-6-29.

b. TensorFlow hub. https://www.tensorflow.
org/hub. Accessed: 2020-6-29.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics (Demonstrations), pages 54–
59. aclweb.org.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The Long-Document transformer.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Çelikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for auto-
matic knowledge graph construction. In ACL.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, and Skye Wanderman-Milne.
2018. JAX: composable transformations of
Python+NumPy programs.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018.
{TVM}: An automated end-to-end optimizing com-
piler for deep learning. In 13th {USENIX} Sympo-
sium on Operating Systems Design and Implementa-
tion ({OSDI} 18), pages 578–594.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a Fixed-Length context.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear, 7(1).

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2019. exBERT: A visual analysis tool to
explore learned representations in transformers mod-
els.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
ACL.

Zhiting Hu, Haoran Shi, Bowen Tan, Wentao Wang,
Zichao Yang, Tiancheng Zhao, Junxian He, Lianhui
Qin, Di Wang, Xuezhe Ma, Zhengzhong Liu, Xiao-
dan Liang, Wangrong Zhu, Devendra Singh Sachan,
and Eric P Xing. 2018. Texar: A modularized, ver-
satile, and extensible toolkit for text generation.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2019. Spanbert:
Improving pre-training by representing and predict-
ing spans. arXiv preprint arXiv:1907.10529.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann, Al-
ham Fikri Aji, Nikolay Bogoychev, André F T Mar-
tins, and Alexandra Birch. 2018. Marian: Fast neu-
ral machine translation in c++.

Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, and
Davide Testuggine. 2019. Supervised multimodal
bitransformers for classifying images and text.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67–72, Vancouver, Canada. Association for
Computational Linguistics.

Guillaume Lample and Alexis Conneau. 2019a. Cross-
lingual language model pretraining. In NeurIPS.

Guillaume Lample and Alexis Conneau. 2019b. Cross-
lingual language model pretraining.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A lite BERT for self-supervised
learning of language representations.

Hang Le, Loı̈c Vial, Jibril Frej, Vincent Segonne, Max-
imin Coavoux, Benjamin Lecouteux, Alexandre Al-
lauzen, Benoı̂t Crabbé, Laurent Besacier, and Didier
Schwab. 2020. Flaubert: Unsupervised language
model pre-training for french. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 2479–2490, Marseille, France. Euro-
pean Language Resources Association.

44

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer.
2019. BART: Denoising Sequence-to-Sequence pre-
training for natural language generation, translation,
and comprehension.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019a.
RoBERTa: A robustly optimized BERT pretraining
approach.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar S. Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke S. Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Edward Loper and Steven Bird. 2002. NLTK: The nat-
ural language toolkit.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
annual meeting of the association for computational
linguistics: system demonstrations, pages 55–60.
aclweb.org.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In I Guyon, U V Luxburg,
S Bengio, H Wallach, R Fergus, S Vishwanathan,
and R Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30, pages 6294–6305. Cur-
ran Associates, Inc.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2018. Model cards for model reporting.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason
Phang, Phu Mon Htut, Alex Wang, Ian Tenney, and
Samuel R Bowman. 2020. jiant: A software toolkit
for research on general-purpose text understanding
models. arXiv preprint arXiv:2003.02249.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified Text-to-Text trans-
former.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using gpu model paral-
lelism. arXiv preprint arXiv:1909.08053.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfis-
ter, and Alexander M Rush. 2017. Lstmvis: A tool
for visual analysis of hidden state dynamics in recur-
rent neural networks. IEEE transactions on visual-
ization and computer graphics, 24(1):667–676.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. In ACL.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2tensor for neural machine
translation. CoRR, abs/1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł Ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I Guyon, U V Luxburg, S Bengio,
H Wallach, R Fergus, S Vishwanathan, and R Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. ArXiv, abs/1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In ICLR.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. ArXiv, abs/1906.08237.

45

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 46–54
November 16-20, 2020. c©2020 Association for Computational Linguistics

AdapterHub: A Framework for Adapting Transformers

Jonas Pfeiffer∗1, Andreas Rücklé∗1, Clifton Poth∗1,
Aishwarya Kamath2, Ivan Vulić4, Sebastian Ruder5,

Kyunghyun Cho2,3, Iryna Gurevych1

1Technical University of Darmstadt
2New York University 3CIFAR Associate Fellow

4University of Cambridge
5DeepMind

AdapterHub.ml

Abstract
The current modus operandi in NLP involves
downloading and fine-tuning pre-trained mod-
els consisting of hundreds of millions, or
even billions of parameters. Storing and
sharing such large trained models is expen-
sive, slow, and time-consuming, which im-
pedes progress towards more general and ver-
satile NLP methods that learn from and for
many tasks. Adapters—small learnt bottle-
neck layers inserted within each layer of a pre-
trained model— ameliorate this issue by avoid-
ing full fine-tuning of the entire model. How-
ever, sharing and integrating adapter layers is
not straightforward. We propose AdapterHub,
a framework that allows dynamic “stiching-
in” of pre-trained adapters for different tasks
and languages. The framework, built on top
of the popular HuggingFace Transformers li-
brary, enables extremely easy and quick adap-
tations of state-of-the-art pre-trained models
(e.g., BERT, RoBERTa, XLM-R) across tasks
and languages. Downloading, sharing, and
training adapters is as seamless as possible
using minimal changes to the training scripts
and a specialized infrastructure. Our frame-
work enables scalable and easy access to shar-
ing of task-specific models, particularly in low-
resource scenarios. AdapterHub includes all
recent adapter architectures and can be found
at AdapterHub.ml.

1 Introduction

Recent advances in NLP leverage transformer-
based language models (Vaswani et al., 2017), pre-
trained on large amounts of text data (Devlin et al.,
2019; Liu et al., 2019; Conneau et al., 2020). These
models are fine-tuned on a target task and achieve
state-of-the-art (SotA) performance for most nat-
ural language understanding tasks. Their perfor-
mance has been shown to scale with their size (Ka-
plan et al., 2020) and recent models have reached

∗*Equal contribution.

billions of parameters (Raffel et al., 2019; Brown
et al., 2020). While fine-tuning large pre-trained
models on target task data can be done fairly effi-
ciently (Howard and Ruder, 2018), training them
for multiple tasks and sharing trained models is
often prohibitive. This precludes research on more
modular architectures (Shazeer et al., 2017), task
composition (Andreas et al., 2016), and injecting
biases and external information (e.g., world or lin-
guistic knowledge) into large models (Lauscher
et al., 2019; Wang et al., 2020).

Adapters (Houlsby et al., 2019) have been in-
troduced as an alternative lightweight fine-tuning
strategy that achieves on-par performance to full
fine-tuning (Peters et al., 2019) on most tasks.
They consist of a small set of additional newly
initialized weights at every layer of the transformer.
These weights are then trained during fine-tuning,
while the pre-trained parameters of the large model
are kept frozen/fixed. This enables efficient pa-
rameter sharing between tasks by training many
task-specific and language-specific adapters for the
same model, which can be exchanged and com-
bined post-hoc. Adapters have recently achieved
strong results in multi-task and cross-lingual trans-
fer learning (Pfeiffer et al., 2020a,b).

However, reusing and sharing adapters is not
straightforward. Adapters are rarely released in-
dividually; their architectures differ in subtle yet
important ways, and they are model, task, and lan-
guage dependent. To mitigate these issues and fa-
cilitate transfer learning with adapters in a range of
settings, we propose AdapterHub, a framework that
enables seamless training and sharing of adapters.

AdapterHub is built on top of the popular
transformers framework by HuggingFace1

(Wolf et al., 2020), which provides access to state-
of-the-art pre-trained language models. We en-

1https://github.com/huggingface/transformers

46

hance transformers with adapter modules that
can be combined with existing SotA models with
minimal code edits. We additionally provide a web-
site that enables quick and seamless upload, down-
load, and sharing of pre-trained adapters. Adapter-
Hub is available online at: AdapterHub.ml.

AdapterHub for the first time enables NLP re-
searchers and practitioners to easily and efficiently
share and obtain access to models that have been
trained for particular tasks, domains, and languages.
This opens up the possibility of building on and
combining information from many more sources
than was previously possible, and makes research
such as intermediate task training (Pruksachatkun
et al., 2020), composing information from many
tasks (Pfeiffer et al., 2020a), and training models
for very low-resource languages (Pfeiffer et al.,
2020b) much more accessible.

Contributions. 1) We propose an easy-to-use
and extensible adapter training and sharing frame-
work for transformer-based models such as BERT,
RoBERTa, and XLM(-R); 2) we incorporate it into
the HuggingFace transformers framework, re-
quiring as little as two additional lines of code to
train adapters with existing scripts; 3) our frame-
work automatically extracts the adapter weights,
storing them separately to the pre-trained trans-
former model, requiring as little as 1Mb of stor-
age; 4) we provide an open-source framework and
website that allows the community to upload their
adapter weights, making them easily accessible
with only one additional line of code; 5) we in-
corporate adapter composition as well as adapter
stacking out-of-the-box and pave the way for a
wide range of other extensions in the future.

2 Adapters

While the predominant methodology for transfer
learning is to fine-tune all weights of the pre-trained
model, adapters have recently been introduced as
an alternative approach, with applications in com-
puter vision (Rebuffi et al., 2017) as well as the
NLP domain (Houlsby et al., 2019; Bapna and Firat,
2019; Wang et al., 2020; Pfeiffer et al., 2020a,b).

2.1 Adapter Architecture

Adapters are neural modules with a small amount
of additional newly introduced parameters Φ within
a large pre-trained model with parameters Θ. The
parameters Φ are learnt on a target task while keep-
ing Θ fixed; Φ thus learn to encode task-specific

representations in intermediate layers of the pre-
trained model. Current work predominantly fo-
cuses on training adapters for each task separately
(Houlsby et al., 2019; Bapna and Firat, 2019; Pfeif-
fer et al., 2020a,b), which enables parallel training
and subsequent combination of the weights.

In NLP, adapters have been mainly used within
deep transformer-based architectures (Vaswani
et al., 2017). At each transformer layer l, a set of
adapter parameters Φl is introduced. The place-
ment and architecture of adapter parameters Φ
within a pre-trained model is non-trivial and may
impact their efficacy: Houlsby et al. (2019) experi-
ment with different adapter architectures, empiri-
cally validating that a two-layer feed-forward neu-
ral network with a bottleneck works well. While
this down- and up-projection has largely been
agreed upon, the actual placement of adapters
within each transformer block, as well as the in-
troduction of new LayerNorms2 (Ba et al., 2016)
varies in the literature (Houlsby et al., 2019; Bapna
and Firat, 2019; Stickland and Murray, 2019; Pfeif-
fer et al., 2020a). In order to support standard
adapter architectures from the literature, as well as
to enable easy extensibility, AdapterHub provides
a configuration file where the architecture settings
can be defined dynamically. We illustrate the dif-
ferent configuration possibilities in Figure 3, and
describe them in more detail in §3.

2.2 Why Adapters?

Adapters provide numerous benefits over fully fine-
tuning a model such as scalability, modularity, and
composition. We now provide a few use-cases for
adapters to illustrate their usefulness in practice.

Task-specific Layer-wise Representation Learn-
ing. Prior to the introduction of adapters, in order
to achieve SotA performance on downstream tasks,
the entire pre-trained transformer model needs to
be fine-tuned (Peters et al., 2019). Adapters have
been shown to work on-par with full fine-tuning,
by adapting the representations at every layer. We
present the results of fully fine-tuning the model
compared to two different adapter architectures
on the GLUE benchmark (Wang et al., 2018) in
Table 1. The adapters of Houlsby et al. (2019,
Figure 3c) and Pfeiffer et al. (2020a, Figure 3b)
comprise two and one down- and up-projection

2Layer normalization learns to normalize the inputs across
the features. This is usually done by introducing a new set of
features for mean and variance.

47

Full Pfeif. Houl.

RTE (Wang et al., 2018) 66.2 70.8 69.8
MRPC (Dolan and Brockett, 2005) 90.5 89.7 91.5
STS-B (Cer et al., 2017) 88.8 89.0 89.2
CoLA (Warstadt et al., 2019) 59.5 58.9 59.1
SST-2 (Socher et al., 2013) 92.6 92.2 92.8
QNLI (Rajpurkar et al., 2016) 91.3 91.3 91.2
MNLI (Williams et al., 2018) 84.1 84.1 84.1
QQP (Iyer et al., 2017) 91.4 90.5 90.8

Table 1: Mean development scores over 3 runs on
GLUE (Wang et al., 2018) leveraging the BERT-Base
pre-trained weights. We present the results with full
fine-tuning (Full) and with the adapter architectures of
Pfeiffer et al. (2020a, Pfeif., Figure 3b) and Houlsby
et al. (2019, Houl., Figure 3c) both with bottleneck size
48. We show F1 for MRPC, Spearman rank correlation
for STS-B, and accuracy for the rest. RTE is a combi-
nation of datasets (Dagan et al., 2005; Bar-Haim et al.,
2006; Giampiccolo et al., 2007).

within each transformer layer, respectively. The
former adapter thus has more capacity at the cost
of training and inference speed. We find that for
all settings, there is no large difference in terms
of performance between the model architectures,
verifying that training adapters is a suitable and
lightweight alternative to full fine-tuning in order
to achieve SotA performance on downstream tasks.

Small, Scalable, Shareable. Transformer-based
models are very deep neural networks with mil-
lions or billions of weights and large storage re-
quirements, e.g., around 2.2Gb of compressed stor-
age space is needed for XLM-R Large (Conneau
et al., 2020). Fully fine-tuning these models for
each task separately requires storing a copy of the
fine-tuned model for each task. This impedes both
iterating and parallelizing training, particularly in
storage-restricted environments.

Adapters mitigate this problem. Depending on
the model size and the adapter bottleneck size, a
single task requires as little as 0.9Mb storage space.
We present the storage requirements in Table 2.
This highlights that > 99% of the parameters re-
quired for each target task are fixed during training
and can be shared across all models for inference.
For instance, for the popular Bert-Base model with
a size of 440Mb, storing 2 fully fine-tuned models
amounts to the same storage space required by 125
models with adapters, when using a bottleneck size
of 48 and adapters of Pfeiffer et al. (2020a). More-
over, when performing inference on a mobile de-
vice, adapters can be leveraged to save a significant
amount of storage space, while supporting a large

Base Large
CRate #Params Size #Params Size

64 0.2M 0.9Mb 0.8M 3.2Mb
16 0.9M 3.5Mb 3.1M 13Mb
2 7.1M 28Mb 25.2M 97Mb

Table 2: Number of additional parameters and com-
pressed storage space of the adapter of Pfeiffer et al.
(2020a) in (Ro)BERT(a)-Base and Large transformer
architectures. The adapter of Houlsby et al. (2019) re-
quires roughly twice as much space. CRate refers to the
adapter’s compression rate: e.g., a. rate of 64 means
that the adapter’s bottleneck layer is 64 times smaller
than the underlying model’s hidden layer size.

number of target tasks. Additionally, due to the
small size of the adapter modules—which in many
cases do not exceed the file size of an image—new
tasks can be added on-the-fly. Overall, these factors
make adapters a much more computationally—and
ecologically (Strubell et al., 2019)—viable option
compared to updating entire models (Rücklé et al.,
2020). Easy access to fine-tuned models may also
improve reproducibility as researchers will be able
to easily rerun and evaluate trained models of pre-
vious work.

Modularity of Representations. Adapters learn
to encode information of a task within designated
parameters. Due to the encapsulated placement of
adapters, wherein the surrounding parameters are
fixed, at each layer an adapter is forced to learn
an output representation compatible with the sub-
sequent layer of the transformer model. This set-
ting allows for modularity of components such that
adapters can be stacked on top of each other, or
replaced dynamically. In a recent example, Pfeiffer
et al. (2020b) successfully combine adapters that
have been independently trained for specific tasks
and languages. This demonstrates that adapters are
modular and that output representations of differ-
ent adapters are compatible. As NLP tasks become
more complex and require knowledge that is not di-
rectly accessible in a single monolithic pre-trained
model (Ruder et al., 2019), adapters will provide
NLP researchers and practitioners with many more
sources of relevant information that can be easily
combined in an efficient and modular way.

Non-Interfering Composition of Information.
Sharing information across tasks has a long-
standing history in machine learning (Ruder, 2017).
Multi-task learning (MTL), which shares a set of
parameters between tasks, has arguably received

48

the most attention. However, MTL suffers from
problems such as catastrophic forgetting where in-
formation learned during earlier stages of training
is “overwritten” (de Masson d’Autume et al., 2019),
catastrophic interference where the performance of
a set of tasks deteriorates when adding new tasks
(Hashimoto et al., 2017), and intricate task weight-
ing for tasks with different distributions (Sanh et al.,
2019).

The encapsulation of adapters forces them to
learn output representations that are compatible
across tasks. When training adapters on different
downstream tasks, they store the respective infor-
mation in their designated parameters. Multiple
adapters can then be combined, e.g., with atten-
tion (Pfeiffer et al., 2020a). Because the respective
adapters are trained separately, the necessity of
sampling heuristics due to skewed data set sizes
no longer arises. By separating knowledge extrac-
tion and composition, adapters mitigate the two
most common pitfalls of multi-task learning, catas-
trophic forgetting and catastrophic interference.

Overcoming these problems together with the
availability of readily available trained task-specific
adapters enables researchers and practitioners to
leverage information from specific tasks, domains,
or languages that is often more relevant for a spe-
cific application—rather than more general pre-
trained counterparts. Recent work (Howard and
Ruder, 2018; Phang et al., 2018; Pruksachatkun
et al., 2020; Gururangan et al., 2020) has shown the
benefits of such information, which was previously
only available by fully fine-tuning a model on the
data of interest prior to task-specific fine-tuning.

3 AdapterHub

AdapterHub consists of two core components:
1) A library built on top of HuggingFace
transformers, and 2) a website that dynam-
ically provides analysis and filtering of pre-trained
adapters. AdapterHub provides tools for the entire
life-cycle of adapters, illustrated in Figure 1 and dis-
cussed in what follows: ¬ introducing new adapter
weights Φ into pre-trained transformer weights Θ;
 training adapter weights Φ on a downstream
task (while keeping Θ frozen); ® automatic extrac-
tion of the trained adapter weights Φ′ and open-
sourcing the adapters; ¯ automatic visualization
of the adapters with configuration filters; ° on-the-
fly downloading/caching the pre-trained adapter
weights Φ′ and stitching the adapter into the pre-

1

2
3

4

5

6

Θ
Φ

Θ,Φ’

Φ’

Θ

Φ’

Training
Adapters Inference

1

2 3

4

5

6

Θ
Φ

Θ,Φ’

Φ’

Θ

Φ’

Training
adapters Inference

Load
ing m

odel

& ad
ding new

 ad
ap

ter
s

Extracting
and
uploading
adapters

Loading model

& pre-trained adapters

Finding
adapters

Figure 1: The AdapterHub Process graph. Adapters Φ
are introduced into a pre-trained transformer Θ (step
¬) and are trained (). They can then be extracted
and open-sourced (®) and visualized (¯). Pre-trained
adapters are downloaded on-the-fly (°) and stitched
into a model that is used for inference (±).

trained transformer model Θ; ± performing infer-
ence with the trained adapter transformer model.

¬ Adapters in Transformer Layers
We minimize the required changes to existing
HuggingFace training scripts, resulting in only
two additional lines of code. In Figure 2 we
present the required code to add adapter weights
(line 3) and freeze all the transformer weights
Θ (line 4). In this example, the model is pre-
pared to train a task adapter on the binary ver-
sion of the Stanford Sentiment Treebank (SST;
Socher et al., 2013) using the adapter architec-
ture of Pfeiffer et al. (2020a). Similarly, language
adapters can be added by setting the type parameter
to AdapterType.text language, and other
adapter architectures can be chosen accordingly.

While we provide ready-made configuration files
for well-known architectures in the current litera-
ture, adapters are dynamically configurable, which
makes it possible to define a multitude of architec-
tures. We illustrate the configurable components as
dashed lines and objects in Figure 3. The config-
urable components are placements of new weights,
residual connections as well as placements of Lay-
erNorm layers (Ba et al., 2016).

The code changes within the HuggingFace
transformers framework are realized through
MixIns, which are inherited by the respective
transformer classes. This minimizes the amount of
code changes of our proposed extensions and en-

49

1 from transformers import AutoModelForSequenceClassification, AdapterType
2 model = AutoModelForSequenceClassification.from_pretrained("roberta-base")
3 model.add_adapter("sst-2", AdapterType.text_task, config="pfeiffer")
4 model.train_adapter(["sst-2"])
5 # Train model ...
6 model.save_adapter("adapters/text-task/sst-2/", "sst-2")
7 # Push link to zip file to AdapterHub ...

Figure 2: ¬ Adding new adapter weights Φ to pre-trained RoBERTa-Base weights Θ (line 3), and freezing Θ (line
4). ® Extracting and storing the trained adapter weights Φ′ (line 7).

capsulates adapters as designated classes. It further
increases readability as adapters are clearly sepa-
rated from the main transformers code base,
which makes it easy to keep both repositories in
sync as well as to extend AdapterHub.

 Training Adapters
Adapters are trained in the same manner as full fine-
tuning of the model. The information is passed
through the different layers of the transformer
where additionally to the pre-trained weights at ev-
ery layer the representations are additionally passed
through the adapter parameters. However, in con-
trast to full fine-tuning, the pre-trained weights Θ
are fixed and only the adapter weights Φ and the
prediction head are trained. Because Θ is fixed, the
adapter weights Φ are encapsuled within the trans-
former weights, forcing them to learn compatible
representations across tasks.

® Extracting and Open-Sourcing Adapters
When training adapters instead of full fine-tuning,
it is no longer necessary to store checkpoints of the
entire model. Instead, only the adapter weights Φ′,
as well as the prediction head need to be stored, as
the base model’s weights Θ remain the same. This
is integrated automatically as soon as adapters are
trained, which significantly reduces the required
storage space during training and enables storing a
large number of checkpoints simultaneously.

When adapter training has completed, the param-
eter file together with the corresponding adapter
configuration file are zipped and uploaded to a pub-
lic server. The user then enters the metadata (e.g.,
URL to weights, user info, description of train-
ing procedure, data set used, adapter architecture,
GitHub handle, Twitter handle) into a designated
YAML file and issues a pull request to the Adapter-
Hub GitHub repository. When all automatic checks
pass, the AdapterHub.ml website is automatically
regenerated with the newly available adapter, which
makes it possible for users to immediately find

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Add & Norm

LayerNorm

LayerNorm

FF Down

FF Up

Add & Norm

LayerNorm

LayerNorm

FF Down

FF Up

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

FF Down

FF Up

Add & Norm

(a) Configuration Possibilities

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Add & Norm

LayerNorm

LayerNorm

FF Down

FF Up

Add & Norm

LayerNorm

LayerNorm

FF Down

FF Up

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

FF Down

FF Up

Add & Norm

(b) Pfeiffer ArchitectureFeed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Add & Norm

LayerNorm

LayerNorm

FF Down

FF Up

Add & Norm

LayerNorm

LayerNorm

FF Down

FF Up

Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

FF Down

FF Up

Add & Norm

(c) Houlsby Architecture

Figure 3: Dynamic customization possibilities where
dashed lines in (a) show the current configuration op-
tions. These options include the placements of new
weights Φ (including down and up projections as well
as new LayerNorms), residual connections, bottleneck
sizes as well as activation functions. All new weights Φ
are illustrated within the pink boxes, everything outside
belongs to the pre-trained weights Θ. In addition, we
provide pre-set configuration files for architectures in
the literature. The resulting configurations for the archi-
tecture proposed by Pfeiffer et al. (2020a) and Houlsby
et al. (2019) are illustrated in (b) and (c) respectively.
We also provide a configuration file for the architecture
proposed by Bapna and Firat (2019), not shown here.

and use these new weights described by the meta-
data. We hope that the ease of sharing pre-trained
adapters will further facilitate and speed up new
developments in transfer learning in NLP.

50

1 from transformers import AutoModelForSequenceClassification, AdapterType
2 model = AutoModelForSequenceClassification.from_pretrained("roberta-base")
3 model.load_adapter("sst-2", config="pfeiffer")

Figure 4: ° After the correct adapter has been identified by the user on the explore page of AdapterHub.ml, they
can load and stitch the pre-trained adapter weights Φ′ into the transformer Θ (line 3).

¯ Finding Pre-Trained Adapters

The website AdapterHub.ml provides a dynamic
overview of the currently available pre-trained
adapters. Due to the large number of tasks in many
different languages as well as different transformer
models, we provide an intuitively understandable
hierarchical structure, as well as search options.
This makes it easy for users to find adapters that
are suitable for their use-case. Namely, Adapter-
Hub’s explore page is structured into three hier-
archical levels. At the first level, adapters can be
viewed by task or language. The second level al-
lows for a more fine-grained distinction separating
adapters into data sets of higher-level NLP tasks
following a categorization similar to paperswith-
code.com. For languages, the second level distin-
guishes the adapters by the language they were
trained on. The third level separates adapters into
individual datasets or domains such as SST for
sentiment analysis or Wikipedia for Swahili.

When a specific dataset has been selected, the
user can see the available pre-trained adapters for
this setting. Adapters depend on the transformer
model they were trained on and are otherwise not
compatible.3 The user selects the model architec-
ture and certain hyper-parameters and is shown the
compatible adapters. When selecting one of the
adapters, the user is provided with additional infor-
mation about the adapter, which is available in the
metadata (see ® again for more information).

° Stitching-In Pre-Trained Adapters

Pre-trained adapters can be stitched into the large
transformer model as easily as adding randomly ini-
tialized weights; this requires a single line of code,
see Figure 4, line 3. When selecting an adapter on
the website (see ¯ again) the user is provided with
sample code, which corresponds to the configura-
tion necessary to include the specific weights.4

3We plan to look into mapping adapters between different
models as future work.

4When selecting an adapter based on a name, we allow for
string matching as long as there is no ambiguity.

± Inference with Adapters

Inference with a pre-trained model that relies on
adapters is in line with the standard inference prac-
tice based on full fine-tuning. Similar to training
adapters, during inference the active adapter name
is passed into the model together with the text to-
kens. At every transformer layer the information
is passed through the transformer layers and the
corresponding adapter parameters.

The adapters can be used for inference in the
designated task they were trained on. To this end,
we provide an option to upload the prediction heads
together with the adapter weights. In addition,
they can be used for further research such as trans-
ferring the adapter to a new task, stacking multi-
ple adapters, fusing the information from diverse
adapters, or enriching AdapterHub with adapters
for other modalities, among many other possible
modes of usage and future directions.

4 Conclusion and Future Work

We have introduced AdapterHub, a novel easy-to-
use framework that enables simple and effective
transfer learning via training and community shar-
ing of adapters. Adapters are small neural modules
that can be stitched into large pre-trained trans-
former models to facilitate, simplify, and speed
up transfer learning across a range of languages
and tasks. AdapterHub is built on top of the com-
monly used HuggingFace transformers, and it
requires only adding as little as two lines of code to
existing training scripts. Using adapters in Adapter-
Hub has numerous benefits such as improved re-
producibility, much better efficiency compared to
full fine-tuning, easy extensibility to new models
and new tasks, and easy access to trained models.

With AdapterHub, we hope to provide a suit-
able and stable framework for the community to
train, search, and use adapters. We plan to continu-
ously improve the framework, extend the composi-
tion and modularity possibilities, and support other
transformer models, even the ones yet to come.

51

Acknowledgments

Jonas Pfeiffer is supported by the LOEWE initia-
tive (Hesse, Germany) within the emergenCITY
center. Andreas Rücklé is supported by the Ger-
man Federal Ministry of Education and Research
and the Hessen State Ministry for Higher Educa-
tion, Research and the Arts within their joint sup-
port of the National Research Center for Applied
Cybersecurity ATHENE, and by the German Re-
search Foundation under grant EC 503/1-1 and GU
798/21-1. Aishwarya Kamath is supported in part
by a DeepMind PhD Fellowship. The work of Ivan
Vulić is supported by the ERC Consolidator Grant
LEXICAL: Lexical Acquisition Across Languages
(no 648909). Kyunghyun Cho is supported by Sam-
sung Advanced Institute of Technology (Next Gen-
eration Deep Learning: from pattern recognition
to AI) and Samsung Research (Improving Deep
Learning using Latent Structure).

We would like to thank Isabel Pfeiffer for the
illustrations.

References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2016. Learning to compose neural net-
works for question answering. In NAACL HLT 2016,
The 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, San Diego Califor-
nia, USA, June 12-17, 2016, pages 1545–1554.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization. arXiv preprint.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 1538–
1548.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge. In Proceedings of the
PASCAL@ACL 2006.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. arXiv preprint.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
SemEval-2017.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Conference of the Associ-
ation for Computational Linguistics, ACL 2020, Vir-
tual Conference, July 6-8, 2020, pages 8440–8451.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges, Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication and Recognizing Textual Entailment, First
PASCAL Machine Learning Challenges Workshop,
MLCW 2005, Southampton, UK, April 11-13, 2005,
Revised Selected Papers, pages 177–190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing, IWP@IJCNLP 2005, Jeju Island,
Korea, October 2005, 2005.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
PASCAL@ACL 2007.

Suchin Gururangan, Ana Marasovic, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 8342–8360.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September 9-
11, 2017, pages 1923–1933.

52

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzkeb-
ski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, pages 2790–2799.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 328–339.

Shankar Iyer, Nikhil Dandekar, and Kornel Csernai.
First quora dataset release: Question pairs [online].
2017.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. 2020. Scaling Laws for Neural Language
Models. arXiv preprint.

Anne Lauscher, Ivan Vulić, Edoardo Maria Ponti, Anna
Korhonen, and Goran Glavaš. 2019. Specializing
unsupervised pretraining models for word-level se-
mantic similarity. arXiv preprint.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint.

Cyprien de Masson d’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pages 13122–13131.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP, RepL4NLP@ACL 2019, Florence, Italy,
August 2, 2019, pages 7–14.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020a.
AdapterFusion: Non-destructive task composition
for transfer learning. arXiv preprint.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020b. MAD-X: An Adapter-based
Framework for Multi-task Cross-lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Virtual Conference.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R.
Bowman. 2020. Intermediate-task transfer learning
with pretrained language models: When and why
does it work? In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
5231–5247.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. arXiv preprint.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages
2383–2392.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-
9 December 2017, Long Beach, CA, USA, pages
506–516.

Andreas Rücklé, Gregor Geigle, Max Glockner,
Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020. AdapterDrop: On the Efficiency of
Adapters in Transformers. arXiv preprint.

Sebastian Ruder. 2017. An Overview of Multi-Task
Learning in Deep Neural Networks. arXiv preprint.

Sebastian Ruder, Matthew E Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Trans-
fer learning in natural language processing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Tutorials.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages
6949–6956.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.

53

In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2013, 18-21 October 2013, Grand Hy-
att Seattle, Seattle, Washington, USA, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages
1631–1642.

Asa Cooper Stickland and Iain Murray. 2019. BERT
and pals: Projected attention layers for efficient
adaptation in multi-task learning. In Proceedings
of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, pages 5986–5995.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- Au-
gust 2, 2019, Volume 1: Long Papers, pages 3645–
3650.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2018. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understand-
ing. In Proceedings of the Workshop: Analyzing
and Interpreting Neural Networks for NLP, Black-
boxNLP@EMNLP 2018, Brussels, Belgium, Novem-
ber 1, 2018, pages 353–355.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xu-
anjing Huang, Jianshu Ji, Guihong Cao, Daxin Jiang,
and Ming Zhou. 2020. K-adapter: Infusing knowl-
edge into pre-trained models with adapters. arXiv
preprint.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA,

June 1-6, 2018, Volume 1 (Long Papers), pages
1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi an-
dArt Pierric Cistac, Tim Rault, Rémi Louf, Mor-
gan Funtowicz, and Jamie Brew. 2020. Hugging-
Face’s Transformers: State-of-the-art Natural Lan-
guage Processing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Virtual Conference, 2020
Proceedings of EMNLP: Systems Demonstrations.

54

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 55–61
November 16-20, 2020. c©2020 Association for Computational Linguistics

HUMAN: Hierarchical Universal Modular ANnotator

Moritz Wolf1∗, Dana Ruiter12∗, Ashwin Geet D’Sa3∗

Liane Reiners4, Jan Alexandersson1, Dietrich Klakow2

1DFKI GmbH, 2Spoken Language System Group, Saarland University
3Université de Lorraine, CNRS, Inria, LORIA

4Department of Communication, Johannes Gutenberg University Mainz
{moritz.wolf, jan.alexandersson}@dfki.de

{druiter, dietrich.klakow}@lsv.uni-saarland.de
ashwin-geet.dsa@loria.fr, liane.reiners@uni-mainz.de

Abstract

A lot of real-world phenomena are complex
and cannot be captured by single task annota-
tions. This causes a need for subsequent an-
notations, with interdependent questions and
answers describing the nature of the subject
at hand. Even in the case a phenomenon
is easily captured by a single task, the high
specialisation of most annotation tools can re-
sult in having to switch to another tool if the
task only slightly changes. We introduce HU-
MAN, a novel web-based annotation tool that
addresses the above problems by a) covering
a variety of annotation tasks on both textual
and image data, and b) the usage of an inter-
nal deterministic state machine, allowing the
researcher to chain different annotation tasks
in an interdependent manner. Further, the mod-
ular nature of the tool makes it easy to define
new annotation tasks and integrate machine
learning algorithms e.g., for active learning.
HUMAN comes with an easy-to-use graphi-
cal user interface that simplifies the annotation
task and management.

1 Introduction

Access to suitable annotated data constitutes a fun-
damental prerequisite for R&D of machine learning
algorithms and models. The demand for new an-
notated data is growing as new data is collected or
existing data is being re-annotated from a new per-
spective. In the area of natural language processing
(NLP) alone, there is a large variety of tasks that
require different types of annotations to be covered
by a tool. This includes named-entity recognition
or part-of-speech tagging, which require a tool to
cover sequence labeling (Kiesel et al., 2017), co-
reference and dependency parsing requiring rela-
tional annotations (Stenetorp et al., 2012; Eckart de
Castilho et al., 2016; Shindo et al., 2018), or any

∗ Equal contribution.

type of text classification task requiring document-
level annotations (Nakayama et al., 2018).

Neves and Ševa (2019) find that enabling
document-level classification is the top missing
feature in a large number of reviewed annotation
tools. At the same time, document-level annotation
has been the most frequently sought-after annota-
tion type according to a recent online survey (Tan,
2020). Another feature missing from about half of
the reviewed tools is multi-label annotations.

Since most annotation tools cover only one or
two annotation types, a change in the annotation
task can easily require a change in the annotation
tool itself. Commercial platforms such as Light-
Tag1 or Prodigy2 cover a larger array of tasks to
choose from. However, none of these are able to
chain a mixture of different tasks (e.g., document-
level classification followed by finer-grained se-
quence labeling) to be performed on a single an-
notation instance. One tool that comes close to
achieving this, is Angrist3, however, its lack of
modularity makes it difficult to adapt to new anno-
tation scenarios.

Hierarchical Universal Modular ANnotator (HU-
MAN) follows a highly modular concept, which
makes it easy to adapt to a specific annotation sce-
nario. It uses an internal deterministic state ma-
chine (DSM) to guide the annotator through the
pre-defined annotation task(s). This usage of a
DSM allows annotation tasks to be chained in any
order needed and makes it easy to implement en-
tirely new annotation tasks and custom features in
the future. This modular nature is especially use-
ful when single task annotations do not capture the
reality of a problem or when several dependencies
exist in the annotations. One example being hate
speech corpora (Zampieri et al., 2019; Struß et al.,

1https://www.lighttag.io
2https://prodi.gy/
3https://github.com/Tarlanc/angrist

55

2019), where the target of hate is only supposed
to be annotated if a comment has been previously
annotated as hateful.

Further, HUMAN covers a variety of annotation
tasks, including the often lacking multi-label anno-
tations and document-level classification, but also
sequence labeling on textual data as well as im-
age labeling; a pursuit towards universality. An
example involving both document-level annota-
tion as well as sequence labeling is multi-lingual
Named Entity Recognition (NER), where the anno-
tator has to identify the language on the document
level and then annotate the named entities on the
sequence-level. Moreover, when the annotation
need is single-task, the fact that many tasks are cov-
ered by HUMAN makes it easy to re-use previous
installations of HUMAN for a new scenario, even
if the task at hand changes.

Lastly, HUMAN makes the annotation of hier-
archical data possible. That is, if an annotation
instance is embedded in a context of previous con-
tent (e.g., comments in a forum) this context can
be shown to the annotators.

The remainder of this paper is organized as fol-
lows. In Section 2, we explain the structure of
HUMAN, starting with the architecture and fol-
lowed by the internal deterministic state machine,
annotation protocol, API, database, and graphical
user interface. In Section 3, we demonstrate the
application of HUMAN for a real-life use case.
This is followed by a discussion (Section 4) and
conclusion (Section 5).

2 System Description

The HUMAN annotation tool is primarily designed
to run on a web server. As such its architec-
ture follows a basic client-server model (Figure
1). Clients and servers exchange messages in a
request–response pattern, where the client sends a
request to which the server responds.

The server, consisting of the database and the
API, serves the code for the client. The database
(Section 2.4) is used for sending new annotation in-
stances to the client or saving finished annotations
which are sent by the client.

The client is controlled by a DSM (Section 2.1)
to show an annotation task in the GUI (Section 2.5).
For this it requests new content and sends finished
annotations to the server when an annotation in-
stance is completed. The annotators interact with
the GUI to solve annotation tasks.

DSM

Database

AP

API

Administrators

GUI

Annotators

annotate

provides content causes transitions

provide
data

saves
annotationscalls

returns

parses

creates

define

Figure 1: The basic structure behind HUMAN: Admin-
istrators define the annotation protocol (AP) which gets
parsed to a DSM. The different components in client
(GUI and DSM) and server (API and database) interact
with each other. Annotators annotate using the GUI.

During setup of the HUMAN system, adminis-
trators design the annotation protocol (AP), which
is a JSON-style definition of the annotation task(s)
at hand. This is then used to generate both the
database and the DSM. Further, it is possible for
the administrator to write a custom API on the
server and call its functions through the DSM (Sec-
tion 2.3. Annotations can be given as arguments
to these functions making it easy to realize active
learning or similar tasks.

The server is implemented using Flask (Grin-
berg, 2018), a common web framework for Python.
The client is written in Typescript and tran-
spiled to JavaScript. The client was tested on
Chrome/Chromium (v85.0) and Firefox (v80.0.1).

2.1 Deterministic State Machine

The back-bone of HUMAN is its deterministic state
machine implemented using XState4, a library for
finite state machines and statecharts for JavaScript.
It controls how each annotation instance is handled
during the annotation process.

4https://github.com/davidkpiano/xstate

56

start: loading

s1: read
q: Please read the comment.

s2: select
q: What is the sentiment of the comment?
o: [positive, neutral, negative]

s3a: checkmark
q: Who is/are the recipient(s) of the sentiment?
o: [politician, civic actor, migrant, media actor, other]

s3b: boolean
q: Is the comment written in a factual manner?
o: [yes, no]

s4: label
q: Please label the recipient(s) of the sentiment.

end: sendData

positive, negative neutral

yes, no

Figure 2: Visualization of a deterministic state machine
as used by HUMAN.

The DSM (Figure 2) starts at a start state
which assigns and loads an annotation instance
to be presented to the annotator. It then passes
through all of the annotation states (AS) that have
been defined by the administrator. This allows
for the definition of complex transitions between
ASs, as the answer an annotator provided to a given
question can influence to which subsequent AS the
DSM will guide them. As such, it is easy to design
a flow of questions presented to the annotator that
contains sub-branches and even loops. While ac-
counting for the transitions between ASs, the DSM
can also accommodate different actions, such as
saving annotations.

By default the DSM comes with three obligatory
states:

• start: Assigns and loads an annotation in-
stance to the annotator.

• failure: If any unexpected errors occur during
annotation, the platform automatically gener-
ates an error message and displays it to the
user. This state serves as a dead state.

• end: The end state passes the annotations col-
lected to the annotations table in the data
base.

All other states that handle the transitions be-
tween questions, need to be defined in the Annota-
tion Protocol by the administrator when setting up
the HUMAN server.

2.2 Annotation Protocol
The annotation protocol is the definition of the
DSM, using a simplified JSON-style syntax.
Within the AP, the project administrators define
each annotation task, i.e., state, that should be
passed by the DSM. Each state comes with at least
two obligatory fields. These are the transition field,
which describes to which state the DSM should
move next, and the state type. Depending on the
state type, there may be additional fields that fur-
ther define the quality of a state. The predefined
state types are:

• Functional States

loading : This is usually used to define the
type of the start state and loads a tex-
tual annotation instance.

loadingFile : Analogous to loading, but
used to load PDF files or images.

callAPI : This state is for calling API func-
tions (Section 2.3) on the server. It re-
quires the api call field.

• Annotation States: An annotation state re-
quires at least the additional question field
in which an instruction or question to be pre-
sented to the annotator is defined.

– read: Shows the annotation instance to
the annotator.

– select: Shows a question and a number
of options to choose from. Only one op-
tion may be selected by the annotator.
It also requires the options field,
which lists the options the annotator can
choose from.

– checkmark: Analogous to select but
allows the choice of multiple options.

– label: Prompts the annotator to highlight
portions of a text and label it with previ-
ously chosen labels.

– boolean: Used for yes-no questions.
– choosePage: Allows the annotator to

choose a page from a PDF to annotate.
– bbox: Asks the annotator to set bound-

ing boxes on an image. By writing a
custom API call, users can connect mod-
els that pre-select parts of an image with
bounding boxes.

– bboxLabel: Analogous to bbox, but an-
notators are required to add a text label
to each bounding box they place.

57

Figure 3: AP definition of a state of type select.

All of these annotation types can be chained af-
ter each other in a modular-fashion. State types
select, and checkmark can be especially use-
ful for document-level annotations, e.g., creating
labels for text classification models. Additionally,
label states can be used for sequence annotations
such as part-of-speech or named entity tagging, or
highlighting certain entities of interest in a text.
States choosePage, bbox and bboxLabel
can be applied to PDFs or images in which some-
thing should be selected. This is practical when
creating data for tasks such as optical character
recognition or object detection and labeling.

Actions Each state can be asked to perform dif-
ferent actions. While the load action is handled
automatically by the loading type, the save ac-
tion can be used in ASs and needs to be explicitly
stated. When the save action is included in the
state definition, then the answer provided by the an-
notator at this AS will be saved. Non-saving states
might be useful to handle transitions in the DSM
that are needed to design specific sub-branches, but
are not needed during the further assessment of the
data annotations.

Syntax The JSON-style AP syntax is simplistic
and can best be explained by the example code in
Figure 3, which is the description of a state named
s2 of type select. It asks the annotator about
the sentiment of the comment and provides three
options positive, neutral, negative to the annota-
tor. If the annotator chooses positive or neutral,
the answer will be saved and the DSM directs the
annotator to another state named s3. If, however,
the annotator chooses negative, they are redirected
to the end state without saving.

We provide full documentation with instructions
on how to define an AP using the defined syntax.5

Parsing Once the AP is defined, the
ap parserwill parse it into XState compatible
format. If any definitions in the AP are ambiguous

5https://github.com/uds-lsv/human/wiki

or undefined, an error message appears that helps
the user resolve the problem.

Apart from creating the DSM, the parser also
initializes the database instance.

2.3 API

We provide the possibility to define a custom API
on the server. Functions of this API can be called
via the DSM with the callAPI state or by adding
a callAPI option to a state in the AP. The argu-
ments can contain annotations and/or the current
annotation instance. The reasoning behind this is
to enable active learning or similar tasks and have
direct access to any machine learning algorithm.

Example We want to train an optical character
recognition algorithm and need to annotate pictures
with bounding boxes around words. We want to
show the predicted boxes of the algorithm to the
annotator and let them correct them. For that we
can write an API function to call the prediction
function of our algorithm. In the AP we define
a state bbox with the callAPI option and the
name of our API function. When entering this state,
the DSM will then call the API function with the
current annotation instance (in this case a picture).
The returned bounding boxes will then be displayed
on the picture and corrected by the user.

2.4 Managing the Database

HUMAN uses an SQLite database with four differ-
ent tables: data, annotations, users, and
options.

Inputs Data can dynamically be input into the
data table via the GUI. All inputs must be format-
ted as tab-separated CSV files consisting of the
three columns content, context, meta.
In content, the content of an instance to be an-
notated is placed, the context is for optional
context information relevant for the annotator, and
meta is an encoded JSON object containing any
meta information that should be stored with an
instance, but that should not be shown to the anno-
tators (e.g., author of a comment, project internal
ID of an instance or date of publication).

After uploading the tab-separated CSV file to
the server, it will be checked for errors and then
parsed into the data table of the database, ready
to be distributed to annotators.

Outputs At any given time, collected annota-
tions can be downloaded from the annotations

58

(a) Read question.

(b) Checkmark question.

(c) Label question.

Figure 4: The annotation page while passing through
different annotation states.

table. It is returned as an Excel file. By default, the
name of a column is tied to the name of the state in
the DSM that generated the annotation contained.
That is, a state named s2 will by default write an-
swers into column s2. The file also contains the
unique instance ID and user ID to match each anno-
tation with its corresponding annotation instance in
data and annotator in users. It is also possible
to separately extract each table of the database on
the server as tab-separated CSV files.

Users Each annotator needs a user account to ac-
cess the HUMAN server. User information such as
username, e-mail, full name and the hashed pass-
word are stored in the users table. Further, the
user type is stored, in order to separate annotator
accounts from administrator accounts. While an-
notators only have access to the annotation page
and their profile information, administrators also
have access to the data upload and download page
as well as the administrator console.

Options The options table contains informa-
tion about the set-up of the tool, such as the number
of annotators an annotation instance should be as-
signed to.

2.5 Graphical User Interface

The graphical user interface (GUI) makes the tool
easy to use for annotators and administrators. On

the annotation page (Figure 4), the left-hand side
shows the current annotation instance, with con-
tent to be annotated on top and optional context
information at the bottom. This makes it possible
to perform hierarchical annotations, by showing
an annotation instance together with the context it
was originally embedded in. The right-hand side is
dedicated to showing the questions one-by-one as
annotators pass through the DSM.

The administrator console in the GUI allows
the administrators to manage annotators and anno-
tation settings. This includes activating users that
have registered for an account, or deactivating users
that should be removed, or changing the annota-
tor’s password when required. The administrator
can check the total number of annotations made
by the annotators. It is further possible to specify
how many annotators are required per annotation
instance. Data upload and download is done via the
data console in the GUI and is also only available
to administrators.

3 Use-Case

In the case of the interdisciplinary project M-
PHASIS, where computer and communication sci-
entists are collaborating to study online hate speech
in user-generated content, an annotation tool was
needed that can implement multiple facets of hate
speech in the AP. Annotating in communication
science means following a complex AP which con-
sists of different theoretically deduced categories
to answer previously defined research questions
or hypotheses (Früh, 2017). Often there are mul-
tiple levels of analysis units which are hierarchi-
cal (Rössler, 2017), e.g., news articles with corre-
sponding comments which can be also divided into
various statements. Due to the analytical splitting
of comments into different statements, it was cru-
cial to have a tool that allows answering specific
questions more than once for the same comment
(loops).

Due to collaboration across disciplines it was
necessary to combine the different types of select
and label questions (Section 2.2). To study media
content, communication scholars apply an empir-
ical method called quantitative content analysis,
by which they try to systematically categorize con-
tent and formal characteristics of messages (Früh,
2017). The computational linguists, on the other
hand, also required sequence labels to identify spe-
cific entities in the texts, e.g., targets of hate speech.

59

For M-PHASIS there are different questions
which depend on the type of text input: news arti-
cles (3 select questions, 1 label question, 1 boolean
question) and comments. For comments, the ques-
tions vary according to type: moderating comment
(1 select question) or user comment (10 label ques-
tions, up to 30 questions of another type). For
the user comments, there are six different thematic
blocks in the AP. Some questions must be answered
for all comments, other (follow-up) questions must
only be answered when certain conditions apply to
the particular comment (branching). This includes,
inter alia, the question of whether statements within
a comment contain a positive or negative evalua-
tion of a target or an action recommendation of how
to deal with a target, for example when the adap-
tion of a specific behavior is demanded or a threat
of physical violence is expressed. Depending on
the annotator’s decision, follow-up questions are
shown, e.g., regarding the characteristics of a nega-
tive evaluation. If required, the tool loops through a
block of questions as many times as needed, for ex-
ample when various evaluations of different targets
are expressed in one comment.

The flexible structure of HUMAN allows one to
change the extent of the tool in consideration of
the actual content. This enables complex annota-
tions when necessary, but also makes it possible
to shorten the AP and therefore the time spent per
annotation – something no other tool has been able
to accomplish until now.

4 Discussion

HUMAN strongly follows its concept of modular-
ity and allows for the design and implementation
of complex annotation protocols. And while it is
currently already able to handle a variety of tasks
on textual data as well as PDFs and images, many
tasks are still uncovered. Two examples here be-
ing relationship annotations or asking open answer
questions. In order to truly reach universality, we
envision that the modular nature of the code will
invite anyone interested to add new and custom
features and annotation types to this open-source
tool.

5 Conclusion and Future Work

We have described HUMAN, a modular annota-
tion tool that covers a variety of annotation tasks,
ranging from document-level annotation over se-
quence labeling to image annotations. Its usage of

a deterministic state machine, also accommodates
different annotation tasks to be chained in such
a way that annotation decisions of the annotator
can be followed by different subsequent questions
(branching) or the revisions of previous questions
(loops). Its context and content fields make it possi-
ble to perform hierarchical annotations, i.e., anno-
tating an instance together with the context it was
embedded in.

This is, as far as we know, the only annotation
tool capable of covering such complex annotation
needs. This is of use not only for disciplines that
require multi-task annotation protocols, but also for
various single-task scenarios where users do not
want change the tool every time they have a new
annotation need with a slightly different task.

While HUMAN is already fully functional and
has been used for a real-life annotation scenario,
it is a work in progress. Possible new annotation
tasks could be e.g., annotations of relationships as
in Brat (Stenetorp et al., 2012), of wave signals,
similar to Praat (Boersma and Weenink, 2001) or
even videos as in NOVA (Heimerl et al., 2019).

In order to improve accessibility of the tool in
the future, we plan to implement a drag-and-drop
GUI for the creation of the AP, as well as a visual-
ization of the internally generated DSM to improve
debugging. Automatic calculation of statistics such
as the inter annotator agreement and average time
spent on an annotation instance are planned.

To further ease the database management, ad-
ministrators should have direct insight on each an-
notation instance in the database, which can then
be added, removed or edited in the GUI without
the need of SQLite commands on the server.

The code6 is published under a GPL-3 licence
together with a Wiki with detailed instructions on
how to setup the server and define an AP. It also
explains how to write custom annotation states and
API calls. Two functioning demos of the HUMAN
annotation page on two different APs are published
on our homepage7.

Acknowledgments

The development of this tool is partially funded by
ANR-DFG Project M-PHASIS (WI 4204/3-1). A
special thanks for all the feedback to Thomas Klein-
bauer, Christian Schemer, Laura Ascone, Angeliki
Monnier, Irina Illina and Dominique Fohr.

6https://github.com/uds-lsv/human
7http://human.lsv.uni-saarland.de/

60

References
Paul Boersma and David Weenink. 2001. Praat, a sys-

tem for doing phonetics by computer. Glot Interna-
tional, 5(9/10):341–345.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of se-
mantic and syntactic structures. In Proceedings of
the Workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH), pages
76–84, Osaka, Japan. The COLING 2016 Organiz-
ing Committee.

Werner Früh. 2017. Inhaltsanalyse. Theorie und
Praxis. UVK, Konstanz.

Miguel Grinberg. 2018. Flask web development: de-
veloping web applications with python. ” O’Reilly
Media, Inc.”.

Alexander Heimerl, Tobias Baur, Florian Lingenfelser,
Johannes Wagner, and Elisabeth André. 2019. Nova
- a tool for explainable cooperative machine learning.
In 2019 8th International Conference on Affective
Computing and Intelligent Interaction (ACII), pages
109–115.

Johannes Kiesel, Henning Wachsmuth, Khalid Al-
Khatib, and Benno Stein. 2017. WAT-SL: A cus-
tomizable web annotation tool for segment label-
ing. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 13–16, Valencia, Spain. Association for Com-
putational Linguistics.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya-
sufumi Taniguchi, and Xu Liang. 2018. doccano:
Text annotation tool for human. Software available
from https://github.com/doccano/doccano.

Mariana Neves and Jurica Ševa. 2019. An extensive
review of tools for manual annotation of documents.
Briefings in Bioinformatics. Bbz130.

Patrick Rössler. 2017. Inhaltsanalyse. UVK, Kon-
stanz.

Hiroyuki Shindo, Yohei Munesada, and Yuji Mat-
sumoto. 2018. PDFAnno: a Web-based Linguistic
Annotation Tool for PDF Documents. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
pages 1082–1086, Miyazaki, Japan. European Lan-
guage Resources Association (ELRA).

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

Julia Maria Struß, Melanie Siegel, Josep Ruppen-
hofer, Michael Wiegand, and Manfred Klenner.
2019. Overview of germeval task 2, 2019 shared
task on the identification of offensive language. In
Proceedings of the 15th Conference on Natural Lan-
guage Processing (KONVENS 2019), pages 354–
365, Erlangen, Germany. German Society for Com-
putational Linguistics & Language Technology.

Liling Tan. 2020. A survey of nlp annotation platforms.
https://github.com/alvations/annotate-questionnaire.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and catego-
rizing offensive language in social media (offense-
val). In Proceedings of the 13th International Work-
shop on Semantic Evaluation, pages 75–86.

61

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 62–69
November 16-20, 2020. c©2020 Association for Computational Linguistics

DeezyMatch: A Flexible Deep Learning Approach
to Fuzzy String Matching

Kasra Hosseini
The Alan Turing Institute

Federico Nanni
The Alan Turing Institute

{khosseini,fnanni,mcollardanuy}@turing.ac.uk

Mariona Coll Ardanuy
The Alan Turing Institute

Abstract

We present DeezyMatch, a free, open-source
software library written in Python for fuzzy
string matching and candidate ranking. Its
pair classifier supports various deep neural
network architectures for training new classi-
fiers and for fine-tuning a pretrained model,
which paves the way for transfer learning in
fuzzy string matching. This approach is espe-
cially useful where only limited training exam-
ples are available. The learned DeezyMatch
models can be used to generate rich vector
representations from string inputs. The can-
didate ranker component in DeezyMatch uses
these vector representations to find, for a given
query, the best matching candidates in a knowl-
edge base. It uses an adaptive searching algo-
rithm applicable to large knowledge bases and
query sets. We describe DeezyMatch’s func-
tionality, design and implementation, accom-
panied by a use case in toponym matching and
candidate ranking in realistic noisy datasets.

1 Introduction

String matching is an integral component of many
natural language processing (NLP) pipelines. One
such application is in entity linking (EL), the task
of mapping a mention (i.e., a string) to its corre-
sponding entry in a knowledge base (KB). Most EL
systems currently rely on a lookup table (Ferragina
and Scaiella, 2010; Mendes et al., 2011; Raiman
and Raiman, 2018; Sil et al., 2018)1 or shallow
string similarity approaches (e.g., based on n-gram
overlaps as in McNamee et al. (2011b); Plu et al.
(2016), or super-string matching, as in Moro et al.

1See, for instance, DBpedia Lexicalization
dataset used as a lookup table by DBpedia Spot-
light: https://wiki.dbpedia.org/lexicalizations, or how
Spacy currently retrieves candidates from a given KB:
https://spacy.io/api/kb/#get candidates.

(2014)) to narrow the entries of a KB down to a
set of potential candidates the mention may refer
to (i.e., aliases). While these choices allow fast
run-time, they generally rely on the assumption
that all surface forms of each entity are present as
aliases in the KB. The performances of these sys-
tems degrade when dealing with domain-specific
vocabulary (Munnelly and Lawless, 2018), local
variations (Rovera et al., 2017), historical materials
(Olieman et al., 2017; McDonough et al., 2019) and,
in general, challenges that emerge when perform-
ing EL on non-standard documents.2 This subtask
of EL, often referred to as candidate ranking (and
selection), is mostly ignored when designing down-
stream systems, even though its significant impact
on downstream NLP pipelines has been shown pre-
viously (Quercini et al., 2010; Hachey et al., 2013).

In this paper, we present DeezyMatch, a new
deep learning approach that strives to address ad-
vanced string matching and candidate ranking in a
more comprehensive and integrated manner than
existing tools. DeezyMatch is a free, open-source
community software written in Python. It uses Py-
Torch (Paszke et al., 2019) to implement various
state-of-the-art neural network architectures, and
it has been tested on both CPU and GPU. One of
the main features of DeezyMatch is its modular
design and flexibility. We describe DeezyMatch’s
functionalities, design choices and technical imple-
mentation. We compare its performance in rela-
tion to other approaches on several realistic string
matching scenarios, covering different languages,
alphabets, and domains, and we evaluate the qual-
ity of the candidate ranker in a real-case setting.
Thanks to its easy-to-use interface, DeezyMatch
can be seamlessly integrated into existing EL sys-
tems. This allows DeezyMatch to be adopted out-

2As opposed to Wikipedia or contemporary newspaper
text, which are employed in widespread EL benchmarks, such
as WikiDisamb30, CoNLL (YAGO), and AC KBP 2010.

62

Figure 1: DeezyMatch architecture consists of two main components: pair classifier (left box) and candidate
ranker (right box). The learnable parameters in pair classifier are highlighted in blue. During fine-tuning, any
of these parameters can be frozen, that is, they will not be changed during fine-tuning. Various hyperparameters
including the architecture of the neural network and tokenization can be changed by the user (see text). In candidate
ranker, for each query and candidate pair, learned vector representations are first generated using a DeezyMatch
model. These vectors are then used to rank candidates according to different metrics (e.g., L2-norm distance,
cosine similarity and prediction scores). The steps of candidate ranker are depicted by dashed lines in the figure.

side the NLP community, especially in Digital Hu-
manities, where it could play a major role in ad-
dressing known issues concerning the EL systems
and their adaptability to the non-standard nature of
the datasets typically used in this field (Olieman
et al., 2017).

DeezyMatch is released under MIT License. It
is available via PyPI,3 and its source codes are
on GitHub.4 We provide extensive documentation,
including examples in Jupyter Notebooks, to enable
the smooth adoption of all its components.

2 Description of the system

Fig. 1 shows the two main components of Deezy-
Match: pair classifier and candidate ranker. To-
gether they allow the training or fine-tuning of a
query-candidate classifier and finding best match-
ing candidates to a query from a KB.

2.1 Pair classifier
Inspired by the work of Santos et al. (2018a),
DeezyMatch’s pair-classifier component has at

3https://pypi.org/project/DeezyMatch
4https://github.com/Living-with-machines/DeezyMatch

its core a siamese deep neural network classifier.
The network takes query-candidate pairs as inputs
which can be further processed (e.g., lower-cased
and normalized) and tokenized at different levels
(character, n-gram and word). Such pairs are ei-
ther possible referents of the same entity or not,
which form the positive and negative examples for
training and testing. The neural network architec-
ture and its hyperparameters can be configured in
the input file without requiring the user to modify
the code. Currently, DeezyMatch supports Elman
Recurrent neural network (RNN) (Elman, 1990),
Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Unit
(GRU) (Cho et al., 2014) architectures. The num-
ber of layers and directions (mono or bi-directional)
in the recurrent units as well as the dimensions of
hidden states and embedding layers can be changed
in the input file. The two parallel recurrent layers
in Fig. 1 share their weights and biases which helps
the model to learn transformations regardless of the
order of strings in an input pair.

During training, a dataset of string pairs is first
read, preprocessed, tokenized, and they are con-
verted into dense vectors (i.e., two embeddings per

63

Figure 2: Impact of fine-tuning and freezing neural network layers on the performance of pair classifier as mea-
sured by F1-score. Three neural network architectures (LSTM, GRU and RNN) are fine-tuned and compared as a
function of data instances (x-axis) used in fine-tuning. In model A, only the last layer (fully-connected layers in
Fig. 1) is fine-tuned while in model B, both the recurrent units and the fully-connected layers are used. By adding
more data instances in fine-tuning, the performance of all models improve logarithmically.

pair); the dimensionality of which can be speci-
fied in the input. The two embedding vectors of a
string pair are then fed into two parallel recurrent
units to generate vector representations (i.e., hidden
states of the last units in each direction and layer).
Next, the two vectors can be combined in different
ways specified in the input, e.g., via concatenation,
element-wise product, difference, or a combination
of these. This aggregated representation is then
given as input to a feed-forward network with one
hidden layer and with Rectified Linear Unit (ReLU)
as the activation function. The output layer has one
unit with a sigmoid activation function for produc-
ing the final prediction. During training, the target
and the predicted outputs are compared by the Bi-
nary Cross Entropy criterion. The dimensionality
of the hidden layer and other hyperparameters (e.g.,
learning rate, number of epochs, batch size, early
stopping and dropout probability) can all be tuned
in the input file. DeezyMatch logs and outputs all
standard evaluation metrics for binary classification
(accuracy, precision, recall and F1) during training,
evaluation and testing. Similar to Tam et al. (2019),
it also calculates mean average precision (MAP),
which evaluates the quality of candidate ranks per
query. After a training is finished, DeezyMatch can
be used to plot loss and evaluation metrics at each
epoch for model selection. The outputs of each
epoch can be also visualized during training via
TensorBoard (Abadi et al., 2016).

2.1.1 Transfer learning

In addition to training a model from scratch, Deezy-
Match supports fine-tuning a pretrained model; this
way, an already trained model on a large dataset
can be fine-tuned to a new domain. This trans-
fer learning approach helps especially where only
limited training examples are available. Any learn-
able parameters (as highlighted by blue boxes in
Fig. 1) can be “frozen” during fine-tuning, and the
fine-tuning can be done on a specified number of
training instances by the user.

Fig. 2 shows the results of two sets of models
fine-tuned progressively on more training instances.
In model A, both embedding and recurrent units are
frozen (i.e., their parameters are not updated during
fine-tuning), and in model B, only the embedding
layer is frozen. The baseline, skyline 1 and 2 are
trained on WG:en, OCR and WG:en+OCR, respec-
tively. Refer to Section 3.1.1 for details on these
datasets. The performance of these models is then
assessed on the OCR test set. To show the impact of
fine-tuning and choice of architecture on the model
performance, we trained various models starting
with the baseline model and included more train-
ing instances from the training set of OCR. In this
experiment, only ≈8K data points were needed to
improve the performance of all models from≈0.45
(baseline) to ≈0.82. In model B, by using around
20% of the data points (≈16K), the performance
of GRU and LSTM architectures improve to ≈0.92
which highlights the importance of fine-tuning in
scenarios with limited training datasets. When in-

64

cluding all the data points, all models, except RNN
in model A, pass skyline-2, and two of them reach
the performance of skyline-1 (≈0.964). It is worth
noting that model B shows better performance com-
pared to model A in fine-tuning. The improved
performance can be attributed to the more unfrozen
parameters during fine-tuning, which increases the
learning capacity.

2.2 Candidate Ranker

The trained pair-classifiers in Section 2.1 predict
if an input string pair is a good match or not by
providing not only the label (True/False) but also
the confidence of the model on each label. The
same models can then be used for the task of can-
didate ranking. First, a trained DeezyMatch model
is used to generate vector representations for all
known variations of entity names in a KB (i.e. “all
candidate mentions” in Fig. 1). These vector rep-
resentations are extracted from the recurrent units
for each direction and layer. This step is done
only once for a given model and KB. The vectors
(e.g. forward/backward vectors in a bi-directional
recurrent network) are then assembled to form one
file containing all the vector representations for
unique candidate mentions. Next, given a query
(i.e. a mention of an entity as a string), the same
DeezyMatch model generates its vector represen-
tation similar to the previous step. At the final
stage, the query vectors are compared with candi-
date vectors using a metric specified by the user.
The choices of this metric are the DeezyMatch pre-
diction scores, L2-norm distances (as implemented
in the faiss library of Johnson et al. (2019)) or co-
sine similarities between the query and candidate
vectors. Based on the selected method and for a
given query, DeezyMatch ranks the results and out-
puts the best matching candidates (the number of
which can be specified by the user).

An advantage of the proposed method is that vec-
tor representations for the KB are computed only
once (for a given trained model). For all subse-
quent queries, only the query vectors are generated
and compared to the KB vectors. This significantly
reduces the computation time compared to more
traditional methods (e.g. Levenshtein distance) in
which one query is compared to n possible varia-
tions of all potential candidates in each run.

When the selected ranking metric is L2-norm
distance or cosine similarity, the above procedure
can be done efficiently using generated matrices

(i.e., assembled vector representations) and avail-
able linear algebra packages. However, model in-
ference on large datasets can be prohibitively ex-
pensive. In DeezyMatch, we developed an adaptive
method to avoid the search of whole KB for a given
query. We start with the query vector and find a
set of “close” candidate vectors as measured by
the L2-norm distance (i.e., two vectors are similar
when the distance is low). We then perform model
inference only on these candidates. If the num-
ber of desired candidates (specified by the user) is
reached, DeezyMatch goes to the next query men-
tion. Otherwise, it expands the search space by a
user-specified search size and repeats the model
inference on new instances. This procedure con-
tinues until the number of desired candidates is
reached or all candidates in the KB are tested. In
our experiments in Section 3.1.2, this adaptive pro-
cedure significantly reduces the computation time
of similarity search in large datasets.

2.3 DeezyMatch interface
DeezyMatch is available as a Python library and
can be used as a stand-alone command-line tool
or as a module in existing Python NLP pipelines.
As an example, the training and inference steps
described in Section 2.1 can be executed by:
from DeezyMatch import train
from DeezyMatch import inference

train a new model
train(input_file_path,

dataset_train_path,
model_name)

model inference
inference(input_file_path,

dataset_inference_path,
pretrained_model_path)

Other functionalities, such as fine-tuning and can-
didate ranking, have similar easy-to-use interfaces.
Consult DeezyMatch’s GitHub page for additional
information and examples.

3 Comparison with existing systems

The majority of readily available EL tools rely on
a lookup table or on shallow string similarity ap-
proaches to select an initial set of candidates, fol-
lowed by a disambiguation step. TagMe! (Ferrag-
ina and Scaiella, 2010), for instance, a well estab-
lished EL baseline, performs candidate selection
through perfect matches between mentions and a
list of alias surface forms derived from Wikipedia,
as also discussed by Hasibi et al. (2016).

65

Alternatives to perfect matches involve the adop-
tion of edit-distance techniques, such as Levens-
thein distance (see, for example, its adoption in
McNamee et al. (2011a); Moreno et al. (2017)).
While there are many implementations of such ap-
proaches readily available, these methods suffer
from poor scalability (i.e., time complexity, as we
discuss in our experiments in Section 3.1.1). Due
to this, some EL pipelines (e.g., Greenfield et al.
(2016)) have incorporated such techniques only
when no exact matching entry can be retrieved.

More recently, researchers have developed deep
learning solutions for candidate selection. Le and
Titov (2019) framed it as a distance learning task
with a noise detector in their EL system, in which
the linkage between mentions that are not neces-
sarily in the KB is learned from lists of positive
candidates (the top matching candidates) and nega-
tive candidates (randomly sampled from the KB).
Tam et al. (2019) have recently presented STANCE,
a model for computing the similarity of two strings
by encoding the characters of each of them, align-
ing the encodings using Sinkhorn Iteration, and
scoring the alignment with a convolutional neural
network. The associated repository5 offers codes
for reproducing the experiments in the paper. Un-
fortunately, their implementation is not directly
comparable with DeezyMatch, as it was not de-
signed to be integrated directly into an EL pipeline.

The work closest to ours, which has directly
inspired our initial development, is by Santos et al.
(2018a). The authors presented a recurrent neural
network architecture to encode pairs of toponyms
followed by a multi-layer perceptron to determine
if they are matching. The authors accompanied
their work with a repository to reproduce the results
presented in the paper.6 However, the user has little
control over the model architecture, including its
hyperparameters and processing steps. Moreover,
the authors do not offer a method for either loading
a trained model and applying it to new data or for
candidate ranking.

Building upon this previous work, we present an
easy to use library that (a) relies on deep neural
networks for fuzzy string matching and candidate
ranking beyond surface similarities; (b) is signif-
icantly faster than edit-distance approaches; and
(c) can be seamlessly integrated into existing EL
pipelines with a single Python command.

5https://github.com/iesl/stance
6https://github.com/ruipds/Toponym-Matching

3.1 Performance

We test DeezyMatch in the context of geographical
candidate selection, the task of identifying potential
entities that can be referred to by a toponym (i.e., a
place name). This can be understood as the middle
step between named entity recognition (in this case,
toponym recognition) and the downstream task of
EL (in this case, toponym resolution). See Coll Ar-
danuy et al. (2020) for a detailed description of
the datasets and KBs, experimental settings, and
analysis of the results reported in Sections 3.1.1
and 3.1.2. Evaluation of the impact of transfer
learning and domain adaptation (as described in
Section 2.1.1) on candidate ranking will be the sub-
ject of future work.

3.1.1 Pair classifier
We compare our method to Santos et al. (2018a)
and normalized Levenshtein Damerau edit distance
(henceforth LevDam)7 on three datasets of posi-
tive and negative string pairs. The datasets against
which we compare the three methods are Santos
(∼4.3M toponym pairs in different alphabets de-
rived from GeoNames8 and introduced in Santos
et al. (2018b)); WG:en (∼670K toponym pairs de-
rived from the English version of WikiGazetteer;
see Coll Ardanuy et al. (2019)); and OCR (∼93K
named entity pairs derived from OCR’d text aligned
to its human correction).

All datasets are balanced and contain an equal
number of positive and negative pairs per query. In
all cases, negative examples have been constructed
carefully to capture both trivial and challenging
transformations. Table 1 reports the F-Score of
the three methods on the three datasets. Both for
LevDam and DeezyMatch, we have left out 10% of
each dataset for testing, whereas for Santos et al.
(2018a), we show an F-Score obtained through two-
fold cross validation (the setting allowed by the
implementation). The DeezyMatch models used
in the experiments have similar architecture and
hyperparameters.9

3.1.2 Candidate ranker
We evaluate the performance of DeezyMatch’s can-
didate ranker in a real-case toponym resolution
application by assessing the quality of ranked can-
didates and its computation time on three datasets:

7https://pypi.org/project/pyxDamerauLevenshtein
8https://www.geonames.org
9Refer to the DeezyMatch Models section in Coll Ardanuy

et al. (2020) for the choice of hyperparameters.

66

Santos WG:en OCR

LevDam 0.70 0.74 0.76
Santos et al. (2018a) 0.82 0.92 0.95

DeezyMatch 0.89 0.94 0.95

Table 1: DeezyMatch’s pair-classifier performance as
measured by F-score compared with other methods.

P@1 MAP@10 MAP@20 T/q

ArgM:exact 0.69 - - -
ArgM:LD 0.78 0.72 0.70 9s
ArgM:DM 0.78 0.76 0.74 0.3s

WOTR:exact 0.86 - - -
WOTR:LD 0.92 0.84 0.80 31.6s
WOTR:DM 0.93 0.90 0.87 0.7s

FMP:exact 0.77 - - -
FMP:LD 0.92 0.82 0.76 14.1s
FMP:DM 0.85 0.82 0.78 0.7s

Table 2: DeezyMatch (DM) candidate ranker perfor-
mance on three datasets compared to two other meth-
ods: LevDam (LD) and exact. T/q indicates ‘Time per
query’ on CPU.

(1) ArgManuscrita (ArgM), a toponym-resolved
dataset in Spanish created from a seventeenth-
century travelogue and composed of 799 toponyms
(of which 200 are unique after lower-casing); (2)
WOTR, an OCR-corrected dataset of letters and re-
ports in English from 1860s, of which we used its
test set. It contains 1,479 toponyms manually anno-
tated with their resolved coordinates (of which 584
unique toponyms, after lower-casing); and (3) BNA-
FMP, a dataset of digitized nineteenth-century
newspaper articles in English with 1,248 toponyms
already recognized and resolved to their correct
geographic coordinates (of which 509 unique to-
ponyms, after lower-casing), containing several to-
ponyms with OCR errors, such as ‘DORSETSIIIRR’
for ‘Dorsetshire’.

As KBs, we used the English version of
WikiGazetteer (with 2,455,966 candidate mentions)
for WOTR and BNA-FMP; and the Spanish version
of WikiGazetteer combined with the HGIS de las
Indias gazetteer (Stangl, 2018) (with 556,985 can-
didate mentions) for ArgManuscrita. We consid-
ered that a retrieved candidate mention correctly
matched a query if it could refer to an entity in our
KB within 10 km of the coordinates in the gold stan-
dard.10 In Table 2, we compare DeezyMatch with

10Due to a lack of a true gold standard of coordinates for
locations, allowing an error distance is common practice in
evaluating toponym resolution systems (DeLozier et al., 2015;

two baselines: exact selects the exact-matching
candidate from the KB, which is the most common
approach in EL systems, and LevDam ranks can-
didates according to the normalized Levenshtein-
Damerau edit distance, traditionally considered a
strong baseline. The advantage of using Deezy-
Match is stressed both in terms of mean average
precision (at 10 and 20 candidates) and especially
by its reduced computation time in comparison
with LevDam.11

4 Conclusions

We presented DeezyMatch, a new user-friendly
Python library for fuzzy string matching and can-
didate ranking, based on deep neural network ar-
chitectures. DeezyMatch can be seamlessly in-
tegrated into existing EL pipelines. Its flexibil-
ity allows the user to easily fine-tune a pretrained
model or to adapt the model architecture to the
specificity of a real-case scenario. We compared
its design, implementation and functionalities with
other approaches. In the future, we plan to sup-
port self-attention and state-of-the-art pretrained
character-based models, integrate learning to rank
functionalities in the candidate selection process
and to release a zoo of models trained on large
datasets which can be fine-tuned further in other
downstream NLP tasks.

DeezyMatch was designed with flexibility in
mind, and we encourage the community to fur-
ther extend its implementation for addressing other
related tasks, such as record linkage, transliteration
and data integration.

Acknowledgments

We thank Katherine McDonough and the anony-
mous reviewers for their careful and construc-
tive reviews. This work was supported by Liv-
ing with Machines (AHRC grant AH/S01179X/1)
and The Alan Turing Institute (EPSRC grant EP/
N510129/1).

Roller et al., 2012; Speriosu and Baldridge, 2013). Addition-
ally, due to this, we skip toponyms if no correct match has
been found by all the tested methods.

11Here, we do not take into account the time spent on train-
ing the model and generating the candidate vectors, as this
is done offline only once and can be reused for all following
candidate ranking tasks that use the same model and gazetteer.
Training a model on a dataset with ≈670K pairs (including
preprocessing) takes 28m on GPU and 54m on CPU, while
generating and combining candidate vectors takes 39m on
GPU and 204m on CPU.

67

References
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–
283.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Mariona Coll Ardanuy, Kasra Hosseini, Katherine Mc-
Donough, Amrey Krause, Daniel van Strien, and
Federico Nanni. 2020. Deezymatch: A deep learn-
ing approach to geographical candidate selection
through toponym matching. In SIGSPATIAL: Poster
Paper.

Mariona Coll Ardanuy, Katherine McDonough, Am-
rey Krause, Daniel CS Wilson, Kasra Hosseini, and
Daniel van Strien. 2019. Resolving places, past
and present: toponym resolution in historical british
newspapers using multiple resources. In Proc. of
GIR.

Grant DeLozier, Jason Baldridge, and Loretta London.
2015. Gazetteer-independent toponym resolution
using geographic word profiles. In Proc. of AAAI.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Paolo Ferragina and Ugo Scaiella. 2010. Tagme:
on-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of the 19th ACM
international conference on Information and knowl-
edge management, pages 1625–1628.

Kara Greenfield, Rajmonda S Caceres, Michael Coury,
Kelly Geyer, Youngjune Gwon, Jason Matterer,
Alyssa C Mensch, Cem Safak Sahin, and Olga
Simek. 2016. A reverse approach to named entity
extraction and linking in microposts. In # Microp-
osts, pages 67–69.

Ben Hachey, Will Radford, Joel Nothman, Matthew
Honnibal, and James R Curran. 2013. Evaluating
entity linking with wikipedia. Artificial intelligence.

Faegheh Hasibi, Krisztian Balog, and Svein Erik Brats-
berg. 2016. On the reproducibility of the tagme en-
tity linking system. In European Conference on In-
formation Retrieval, pages 436–449. Springer.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Jeff Johnson, Matthijs Douze, and Herve Jegou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data.

Phong Le and Ivan Titov. 2019. Distant learning for
entity linking with automatic noise detection. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4081–
4090, Florence, Italy. Association for Computational
Linguistics.

Katherine McDonough, Ludovic Moncla, and Matje
van de Camp. 2019. Named entity recognition goes
to old regime france: geographic text analysis for
early modern french corpora. International Journal
of Geographical Information Science, 33(12):2498–
2522.

Paul McNamee, James Mayfield, Dawn Lawrie, Dou-
glas Oard, and David Doermann. 2011a. Cross-
language entity linking. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 255–263, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Paul McNamee, James Mayfield, Dawn Lawrie, Dou-
glas W Oard, and David Doermann. 2011b. Cross-
language entity linking. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 255–263.

Pablo N Mendes, Max Jakob, Andrés Garcı́a-Silva, and
Christian Bizer. 2011. Dbpedia spotlight: shedding
light on the web of documents. In Proceedings of
the 7th international conference on semantic sys-
tems, pages 1–8.

Jose G Moreno, Romaric Besançon, Romain Beau-
mont, Eva D’hondt, Anne-Laure Ligozat, Sophie
Rosset, Xavier Tannier, and Brigitte Grau. 2017.
Combining word and entity embeddings for entity
linking. In European Semantic Web Conference,
pages 337–352. Springer.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Gary Munnelly and Séamus Lawless. 2018. Investigat-
ing entity linking in early english legal documents.
In Proceedings of the 18th ACM/IEEE on Joint Con-
ference on Digital Libraries, pages 59–68.

Alex Olieman, Kaspar Beelen, Milan van Lange, Jaap
Kamps, and Maarten Marx. 2017. Good applica-
tions for crummy entity linkers? the case of corpus
selection in digital humanities. In Proceedings of
the 13th International Conference on Semantic Sys-
tems, pages 81–88.

68

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Julien Plu, Giuseppe Rizzo, and Raphaël Troncy. 2016.
Enhancing entity linking by combining ner models.
In Semantic Web Evaluation Challenge, pages 17–
32. Springer.

Gianluca Quercini, Hanan Samet, Jagan Sankara-
narayanan, and Michael D Lieberman. 2010. De-
termining the spatial reader scopes of news sources
using local lexicons. In Proc. of SIGSPATIAL.

Jonathan Raphael Raiman and Olivier Michel Raiman.
2018. Deeptype: multilingual entity linking by neu-
ral type system evolution. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Stephen Roller, Michael Speriosu, Sarat Rallapalli,
Benjamin Wing, and Jason Baldridge. 2012. Super-
vised text-based geolocation using language models
on an adaptive grid. In Proc. of EMNLP.

Marco Rovera, Federico Nanni, Simone Paolo
Ponzetto, and Anna Goy. 2017. Domain-specific
named entity disambiguation in historical memoirs.
CLiC-it 2017 11-12 December 2017, Rome, page
287.

Rui Santos, Patricia Murrieta-Flores, Pável Calado, and
Bruno Martins. 2018a. Toponym matching through
deep neural networks. International Journal of Geo-
graphical Information Science.

Rui Santos, Patricia Murrieta-Flores, and Bruno Mar-
tins. 2018b. Learning to combine multiple string
similarity metrics for effective toponym matching.
International journal of digital earth.

Avirup Sil, Gourab Kundu, Radu Florian, and Wael
Hamza. 2018. Neural cross-lingual entity linking.
In Thirty-Second AAAI Conference on Artificial In-
telligence.

Michael Speriosu and Jason Baldridge. 2013. Text-
driven toponym resolution using indirect supervi-
sion. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1466–1476, Sofia, Bul-
garia. Association for Computational Linguistics.

Werner Stangl. 2018. ‘the empire strikes back’?: Hgis
de las indias and the postcolonial death star. IJHAC.

Derek Tam, Nicholas Monath, Ari Kobren, Aaron Tray-
lor, Rajarshi Das, and Andrew McCallum. 2019. Op-
timal transport-based alignment of learned character

representations for string similarity. arXiv preprint
arXiv:1907.10165.

69

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 70–76
November 16-20, 2020. c©2020 Association for Computational Linguistics

COSATA: A Constraint Satisfaction Solver and Interpreted
Language for Semi-Structured Tables of Sentences

Peter A. Jansen
School of Information, University of Arizona, Tucson, AZ, USA

pajansen@email.arizona.edu

Abstract

This work presents COSATA, an intuitive con-
straint satisfaction solver and interpreted lan-
guage for knowledge bases of semi-structured
tables expressed as text. The stand-alone
COSATA solver allows easily expressing com-
plex compositional “inference patterns” for
how knowledge from different tables tends to
connect to support inference and explanation
construction in question answering and other
downstream tasks, while including advanced
declarative features and the ability to operate
over multiple representations of text (words,
lemmas, or part-of-speech tags). COSATA
also includes a hybrid imperative/declarative
interpreted language for expressing simple
models through minimally-specified simula-
tions grounded in constraint patterns, helping
bridge the gap between question answering,
question explanation, and model simulation.
The solver and interpreter are released as open
source.1

1 Introduction

Performing inference for complex question answer-
ing typically requires combining multiple facts
from a knowledge base to arrive at a correct an-
swer, where this set of facts can then be used to
generate detailed human-readable explanations for
the reasoning behind those answers. Combining
multiple facts to perform natural language infer-
ence is extremely challenging, with contemporary
methods generally unable to reliably combine more
than two facts together. This is a significant limita-
tion, as even elementary science questions require
an average of six (and, as many as 16) atomic facts
to answer and explain (Jansen et al., 2018; Xie
et al., 2020) – particularly when those explanations
include detailed world knowledge. For example,

1Demo: https://youtu.be/t93Acsz7LyE

1 N
solid water is called ice

liquid water is called liquid water

melting changes from solid to liquid

melting requires heating

liquids have variable shape

water

water

water

nitrogen

is called

is called

is called

is called

solid

liquid

gaseous

liquid

melting

boiling

freezing

condensing

changes from

changes from

changes from

changes from

solid

liquid

liquid

gas

to

to

to

to

liquid

gas

solid

liquid

melting

boiling

freezing

condensing

requires

requires

requires

requires

heating

heating

cooling

cooling

solids

liquids

gasses

solids

have

have

have

have

de�nite

variable

variable

de�nite

shape

shape

shape

volume

inferencepattern ChangeOfState

 // Table Constraints

 row substanceFrom = [TABLE:”SUB_STATES”, STATE:<fromState>, SUBSTANCE:<substanceName>]

 row substanceTo = [TABLE:“SUB_STATES”, STATE:<toState>, SUBSTANCE:<substanceName>]

 row statechange = [TABLE:”CHANGES”, PROCESS:<pName>, FROM:<fromState>, TO:<toState>]

 row heatsource = [TABLE:”REQUIRES”, PROCESS:<pName>]

 row propToShape = [TABLE:”STATE_PROP”, STATE:<toState>, PROP:“shape”]

 // Imperative Code (run if pattern is executed in IML Interpreter)

 // ...

endinferencepattern

ice

liquid water

steam

liquid nitrogen

liquid water is called liquid water

gaseous water is called steam

boiling changes from liquid to gas

boiling requires heating

gasses have variable shape

Q: What might happen to an ice cube left in the sunlight? A: become liquid

melting

ice cube liquid water

sunlightSubstance
Form

Temperature
State

water
ice

- 4 C
solid

Substance
Form

Temperature
State

water
liquid water

+ 2 C
liquid

SUBSTANCESTATE STATE DEFVAR PROP

PROCESS FROM TO PROCESS HEATCOOL

SUB_STATES TABLE STATE_PROP TABLE

CHANGES TABLE REQUIRES TABLE

FORMNAME

Semi-Structured Knowledge Base of Tables

Table-Based Constraint Patterns

Solutions of Constraint Patterns

Micro-Simulations based on Executing Constraint Patterns

CO
SA

TA
 S

cr
ip

t
So

lv
er

 O
ut

pu
t

In
te

rp
re

te
r

Kn
ow

le
dg

e
Ba

se

Figure 1: An overview of the proposed system. A semi-
structured knowledge base of tables (top) serves as input to
the COSATA scripting language for expressing multi-hop in-
ference patterns as constraints over table rows. A stand-alone
constraint solver and full interpreter are provided.

explaining the common process of an ice cube melt-
ing in sunlight (see Figure 1) can require a large
number of facts, especially when those facts are
expressed at a fine level of granularity.

Compositional (or “multi-hop”) inference solv-
ing methods tend to exist on a formality continuum.
At one end of the continuum, logical or declara-
tive methods (e.g. Lenat et al., 1990; Forbus, 2019)
model a knowledge base as a set of assertions, and
inference as sets of axioms and combinatorial rules

70

acting on those assertions. While logical meth-
ods provide provably correct inference and detailed
explanations, these methods tend to be brittle in
practice (MacCartney and Manning, 2007). At
the other end of the formality continuum are infer-
ence methods that use unstructured text as knowl-
edge (modeled at the level of the word (Fried et al.,
2015), sentence (Valentino et al., 2020), or para-
graph (Yang et al., 2018)), which is typically com-
bined using connectivity (e.g. Jansen et al., 2017),
embedding (e.g. Tu et al., 2020), or other features.
Due to the difficulty of combining free text (Jansen,
2018), these methods typically reach peak perfor-
mance when combining only a small number of
facts together – typically two or three.

A middle-ground exists between these two ex-
tremes, where semi-structured knowledge bases of
text (such as tables) are used to support multi-hop
inference (e.g. Sun et al., 2016). This approach
offers many practical benefits, such as ease of
knowledge base creation (over logical decompo-
sition methods), and providing structure to help
infer when combining facts is appropriate (versus
free text methods). In spite of these benefits, it
is often still challenging to implement inference
models that compose (or “hop” between) facts ex-
pressed in tables of language data in practice, and
practitioners tend to resort to using complex models
(such as integer linear programming (e.g. TableILP;
Khashabi et al., 2016)) that significantly increase
development time and limit interpretability, main-
tainability, and reuse.

This work presents an easy-to-use scripting lan-
guage paired with an open source solver and inter-
preter designed to make compositional inference
over semi-structured knowledge bases of tables
easy, particularly when those tables express knowl-
edge as lightly structured sentences. The contribu-
tions of this work are:

1. The COSATA SOLVER, a stand-alone solver
for Constraint Satisfaction over Tables of text.
The COSATA language allows easily express-
ing large multi-hop “inference patterns” that
describe how facts typically connect across
tables in a knowledge base to express a larger
compositional solution. The optimized multi-
threaded solver supports advanced features for
dealing with text, including enumerative vari-
able span detection, and robustness to surface
form variations with patterns that can match
words, lemmas, or parts-of-speech.

2. The COSATA INTERPRETER, a hybrid imper-
ative/declarative interpreted language for mod-
eling simple inferences through minimally-
specified simulations grounded in constraint
patterns.

2 Language Description

The COSATA language includes declarative fea-
tures for performing constraint satisfaction over
tables, and imperative features for expressing and
executing models. The fundamental unit is the
pattern, analagous to a class in object oriented pro-
gramming, which (at a minimum) contains a declar-
ative constraint pattern of table rows. The declar-
ative features are sufficient for easily expressing
variablized compositional patterns over collections
of table rows, and the output of the stand-alone con-
straint satisfaction solver (e.g. solutions in JSON
format) can serve as input to further processing.

The language also supports a suite of imperative
features for expressing and executing models. In
this paradigm, each pattern is considered a process
that, if executed, imparts some change upon a small
model of the world (such as an object warming
from heat transfer) by executing a pattern code
block. Agents, physical objects, and environments
in the model are represented as objects, here sets
of property-value pairs. A control script imports a
library of patterns, initializes objects, and executes
a small subset of patterns in a particular order to
create a simulation. A state space keeps a log of
each object, it’s properties, the patterns executed,
and their resulting changes, to form a detailed and
human-readable record of a simulation performed
to arrive at a particular inference.

2.1 Declarative: Constraints over tables
Table Row Constraints: Each pattern contains
one or more table row constraints, which collect
interconnected sets of facts (table rows) from one
or more tables based on satisfying constraints on
the content of those facts. Each table row constraint
requires: (a) a name for the row, (b) a table where
rows are drawn from, and (c) a list of variabalized
constraint expressions that specific cells (columns)
in a given row must satisfy in order for the entire
constraint pattern to be valid. An example pattern
with 8 table row constraints surrounding Changes
of State of Matter is shown in Figure 2.

Constraint Expressions: Constraint expressions
for table cells can be expressed as mixtures of

71

// Constraint Pattern: Changing States of Matter
inferencepattern changeStateOfMatter

// Plain text description
description = "A substance changing its state of matter"

// Row definitions
// e.g. solid/liquid/gas is a kind of state of matter
row som1 = [TABLE:"KINDOF", HYPONYM:<SOM1>, HYPERNYM:"state of matter"]
row som2 = [TABLE:"KINDOF", HYPONYM:<SOM2>, HYPERNYM:"state of matter"]

// e.g. melting/boiling/freezing is a kind of change of state
row cos = [TABLE:"KINDOF", HYPONYM:<ChangeOfState>, HYPERNYM:"change of state"]

// e.g. state of matter is a property of a substance
row somprop = [TABLE:"PROP-GENERIC", PROPERTY:"state of matter", OBJECT:<obj>]

// e.g. a boiling point is a kind of phase transition point
row point = [TABLE:"KINDOF", HYPONYM:<PhaseTransitionPoint>, HYPERNYM:"phase transition point"]

// e.g. melting means (matter; a substance) changes from a solid to a liquid by increasing heat energy
row change = [TABLE:"CHANGE", PROCESSNAME:<ChangeOfState>, PROPERTY:"state of matter", OBJECT:<obj>, FROM:<SOM1>, INTO:<SOM2>,

BY_THROUGH_HOW:<incDec> + "heat energy"]

// e.g. melting occurs when the temperature of a substance is increased above the substance’s melting point, and below it’s
boiling point

row thresh = [TABLE:"CONDITION-VEC", EVENT:<ChangeOfState>, OBJECT:<obj>, INCREASE_DECREASE:<tempDir>, ABOVE_BELOW1:
<aboveBelow>, VALUE1:<PhaseTransitionPoint>, ABOVE_BELOW2:<*aboveBelow2>, VALUE2:<*PhaseTransitionPoint2>]

// e.g. heating means the (temperature; heat energy) of an (object; substance) is increased
row heatcool = [TABLE:"CHANGE-VEC-PROP", PROCESS_NAME:<heatingOrCooling>, PROPERTY:"heat energy", INCREASE_DECREASE:<incDec>]

endinferencepattern

(a) An example listing for a constraint satisfaction pattern that collects 8 facts surrounding Changes of State of Matter.

Row Name Table Row
som1 a <solid> is a kind of “state of matter”
som2 a <liquid> is a kind of “state of matter”
cos <melting> is a kind of “change of state”
somprop "state of matter" is a property of a <substance>
point a <melting point> is a kind of “phase transition point”
change <melting> means the “state of matter” of <substance> changes

from a <solid> into a <liquid> by <increasing> “heat energy”
thresh <melting> occurs when the temperature of a <substance> is

<increased> <above> the substance ’s <melting point>
heatcool <heating> means the “heat energy” of a substance is <increased>

(b) An example enumerated solution of the above constraint pattern.

Constraint Variable Name Value
<aboveBelow> above
<aboveBelow2> not populated
<ChangeOfState> melt
<heatingOrCooling> heat
<incDec> increase
<obj> substance
<PhaseTransitionPoint> melt point
<PhaseTransitionPoint2> not populated
<SOM1> solid
<SOM2> liquid
<tempDir> increase

(c) The variable values from this solution.

Figure 2: (Top) An example constraint satisfaction pattern expressed in the COSATA. (Bottom) One of several solutions
provided by the COSATA solver when evaluating this pattern with a semi-structured knowledge base of tables.

strings (words, lemmas, or part-of-speech tags) and
variables. Elements can be combined with simple
boolean operations, as well as advanced booleans
(e.g. optional elements, enumerative ANDs that
automatically determine variable spans). Example
constraint expressions are shown in Table 1.

Inheritance and Composite Patterns: Similar to
object oriented programming, patterns can con-
tain their own table row constraints, and/or inherit
their table row constraints from one or more other
patterns. This enables software engineering prac-
tices like problem decomposition into objects to
be applied to constraint patterns. For example, the
ChangeOfStateWithSubstanceFromTo pattern in Ta-
ble 4 inherits table row constraints from three other
patterns: one that describes the general concept of
changes of state, another that describes the idea
of a substance having a particular melting or boil-
ing point, and a final pattern describing the sub-
stance being in it’s changed state. Because of this

decomposition, these smaller generic patterns are
available for reuse in other patterns.

2.2 Imperative: Executable Micro-Models

Objects: Objects are expressed as lists of property-
value pairs that can be added, modified, or exe-
cuted against. For example, an object named ice
cube might have properties location:fridge and
temperature:-4C.

Pattern Code Block: Each pattern can contain
an imperative code block that, if executed, typi-
cally imparts changes to the objects or knowledge
base suggestive of a particular process having taken
place. For example, a heatTransfer pattern might
have rows that match on any two objects that are
touching, while its code block could decrease the
temperature of the warmer object, and increase the
temperature of the cooler object. Similarly, the
code block in Figure 4 changes the state of matter
of an object (for example from a solid to a liquid).

72

Example 1: Single variable assignment
Expression: ORGANISM: <organismName>
Cell Text: “large green plants”
Variables: <organismName> = “large green plants”

Example 2: Boolean AND with variables and strings
Expression: LOCATION: “in” + <northSouth> + “hemisphere”
Cell Text: “in the northern hemisphere”
Variables: <northSouth> = “northern”

Example 3: Matching part-of-speech tags
Expression: TIME: <month> + “POS:CD”
Cell Text: “June 21st”
Variables: <month> = “June”

Example 4: Enumerative AND (multiple adjacent variables)
Expression: BY_THROUGH: <incDec> + <energy>
Cell Text: “increasing heat energy”
Variables: Two possible enumerations provided for constraint satisfaction:
<incDec> = “increasing”, <energy> = “heat energy”, or
<incDec> = “increasing heat”, <energy> = “energy”

Example 5: Optional elements
Expression: DURATION: <dur1> + *“to” + <*dur2> + “hour”
Cell Text: “two to four hours”
Variables: Two possible enumerations provided for constraint satisfaction:
<dur1> = “two”, <dur2> = “four”, or
<dur1> = “two to four”, <dur2> = <unpopulated opt>

Table 1: Example constraint expressions for a given table
cell, evaluated against example cell text.

Requirements Specification: Code typically re-
quires certain preconditions to be satisfied for exe-
cution to be valid, such as heatTransfer requiring
two objects that have non-empty temperature prop-
erties. Patterns have specific functions for verifying
that preconditions are met, as well as levels of pre-
conditions (required, or recommended).

Model Control Script: Models take the form of
small, easily-composed control scripts that import
a library of patterns, initialize the objects required
for a model, then sequentially execute a series of
patterns that impart changes on those objects. For
example, the control script in Figure 3 initializes
three objects: an ice cube, freezer, and outside
environment. The ice cube begins in the freezer,
and is then moved to the outside environment. Heat
transfer happens between the ice cube and outside
environment until the ice cube meets the conditions
for a Change of State. The Change of State then
happens, in this case melting, changing the ice
cube’s state of matter property from solid to liquid.

3 Solver and Interpreter

Both the constraint satisfaction solver and inter-
preter are implemented in Scala, with Stanford
CoreNLP (Manning et al., 2014) used to provide
tokenization, lemmatization, and part-of-speech
tags for the knowledge base of tables. The solver
pipeline first creates shortlists of rows that may po-
tentially satisfy individual table row constraints for

1

2

3

4

5

6

7

8

9

Q: What might happen to an ice cube left outside a freezer? A: become liquid

execPat(giveCommonProperties, iceCube1, “ice cube”)

execPat(giveCommonProperties, outside1, “outside”)

execPat(giveCommonProperties, freezer1, “freezer”)

execPat(moveObjectEnvironment, obj->iceCube1, fromEnv->freezer1, toEnv->outside1)

while(not meetsRequirements(ChangeOfStateSubstanceFromTo, substance->iceCube1))
 execPat(heatTransferEnvironmentObject, obj->iceCube1, env->outside1)
endwhile

execPat(ChangeOfStateSubstanceFromTo, substance-> iceCube1)

execPat(setInitialEnvironment, obj->iceCube1, env->freezer1)

ice cube freezeroutside
environment

Substance
Location

Temperature
State

water
—

 - 1 C
solid

Name
Location

Temperature

freezer
kitchen

—

Name
Location

Temperature

outside
outside

—

Substance
Location

Temperature
State

water
—

- 1 C
solid

Name
Location

Temperature

freezer
kitchen

—

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

- 4 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

- 1 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

1 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
—

- 1 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
freezer

- 4 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

- 2 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

1 C
liquid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

State
#

O
bj

ec
t I

ni
tia

liz
at

io
n

M
ov

in
g

H
ea

tin
g

Ch
an

ge

Figure 3: An example micro-model control script (numbered
states and instructions) with three objects (ice cube, outside
environment, freezer), and the resulting state space changes
(red highlights). This control script simulates the result of
leaving an ice cube outside of a freezer. The full script and
COSATA interpreter output is provided in the distribution.

each pattern, then implements a backtrack search
(e.g. Davis et al., 1962) to exhaustively find all com-
binations of table rows that meet the constraints
for a given pattern (each unique collection of ta-
ble rows that satisfies a given pattern is termed a
solution of that pattern).2 While some powerful
declarative features (such as enumerative ANDs
with automatic variable span detection) are expen-
sive to evaluate, nearly all stages of evaluation are
multi-threaded for speed, and rely heavily on pre-
computed look-up tables for evaluating constraint
expressions. In practice, the patterns presented in
Section 4 below are typically evaluated in between
several seconds to a few minutes each.

2Constraint satisfaction solvers are typically formulated to
efficiently find a single solution that satisfies the constraints.
In contrast, the solver presented in this work finds all possible
solutions that can then be used for downstream processing.

73

inferencepattern ChangeOfStateWithSubstanceFromTo
patterndescription = "Change the state of a substance from " + COS.<SOM1> + " to " + COS.<SOM2>

// Requirements: This pattern acts on a single object (sub1), that is a kind of substance, and should have a state of matter.
require instance sub1 = [KINDOF:"substance"]
shouldhave (sub1."state of matter" != "")

// Composite requirements: This pattern inherits rows from 3 other patterns
infpat COS = changeStateOfMatter // Change of state (fundamentals, requirements, etc.)
infpat fromSOM = substanceInSOMWithPhaseTransitionPoint // A substance, and its melting/boiling/freezing point
infpat toSOM = substanceInSOM // A substance, in a particular state of matter
rowequiv COS.som1 = fromSOM.subSOM.som // To be valid, COS.som1 and fromSOM.subSOM.som should be the same fact.
rowequiv COS.som2 = toSOM.som // To be valid, COS.som2 and toSOM.som should be the same fact.

instmap sub1 = COS.substance1 // The substance in this pattern refers to the same substance in the
instmap sub1 = fromSOM.substance // changeStateOfMatter (COS), substanceInSOMWithPhaseTransitionPoint (fromSOM),
instmap sub1 = toSOM.substance // and substanceInSom (toSOM) patterns.

// Additional constraints
// Combined patterns must be talking about the same (melting/boiling/freezing) point, and same material, to be valid.
musthaveoromit(COS.<PhaseTransitionPoint> == fromSOM.<PhaseTransitionPoint>)
musthaveoromit(fromSOM.<materialName> == toSOM.<materialName>)
// The substance object (sub1) should be in state of matter <SOM1>, and have changed temperature above/below <pointTemp>.
musthave(sub1."state of matter" == COS.<SOM1>)
musthave(sub1."temperature" CHANGE [direction:COS.<tempDir> threshold:fromSOM.<pointTemp>])

// Row definitions: All rows in this pattern are inherited from COS, fromSOM, and toSOM.

// Code: Run the imperative code below if a given enumeration of this pattern is executed.
// If the object (sub1) recently changed temperature above/below <pointTemp>, and is in state of matter <SOM1>
if ((sub1."temperature" CHANGE [direction:COS.<tempDir> threshold:fromSOM.<pointTemp>]) && (sub1."state of matter" == COS.

<SOM1>)) then
// Set the object (sub1)’s new state of matter to be <SOM2>
sub1."state of matter" = COS.<SOM2>
// Add a human-readable explanation to the state space describing what this inference pattern did.
addExplanationText("Substance (" + sub1."name" + ") made of (" + sub1."material" + ") is within the temperature range to

change from a (" + COS.<SOM1> + ") to a (" + COS.<SOM2> + ").")
endif

endinferencepattern

Inference Pattern: ChangeOfStateWithSubstanceFromTo

Inherited Pattern 1: COS:changeStateOfMatter
Row Name Table Row
som1 a <solid> is a kind of “state of matter”
som2 a <liquid> is a kind of “state of matter”
cos <melting> is a kind of “change of state”
somprop “state of matter” is a property of a <substance>
point a <melting point> is a kind of “phase transition point”
change <melting> means the “state of matter” of <substance> changes from a <solid> into a <liquid> by <increasing> “heat energy”
thresh <melting> occurs when the temperature of a <substance> is <increased> <above> the substance ’s <melting point>
heatcool <heating> means the “heat energy” of a substance is <increased>

Inherited Pattern 2: fromSOM:substanceInSOMWithPhaseTransitionPoint
Row Name Table Row
somHasPoint a <solid> has a <melting point>
point1 the <melting point> of <water> is <0.0> <C>

fromSOM.subSOM:substanceInSOM (nested)
Row Name Table Row
som a <solid> is a kind of “state of matter”
propSomTemp the <water> is in the <solid> state, called <ice>, for temperatures below 0.0 C

Inherited Pattern 3: toSOM:substanceInSOM
Row Name Table Row
som a <liquid> is a kind of “state of matter”
propSomTemp the <water> is in the <liquid> state, called <water>, for temperatures between 0.0 C and 100.0 C

Figure 4: (Top) An example composite pattern that (i) inherits row constraints from three other simpler patterns, and (ii)
includes imperative code that effects the change described by the constraint satisfaction pattern. (Bottom) One example solution
of this pattern, melting ice into liquid water. All other combinations of state changes (e.g. freezing, boiling) for all substances
described in the knowledge base of semi-structured tables are also enumerated, but not shown here for space.

4 Example Solutions

Here the feasibility of generating constraint pat-
terns (for downstream processing) or executable
patterns (for modeling) is empirically demonstrated
in the context of generating detailed multi-hop ex-
planations to standardized elementary and middle
school science exam questions drawn from the AI2
Aristo Reasoning Challenge (Clark et al., 2018).

4.1 Explanation Regeneration

The explanation regeneration task (Jansen and
Ustalov, 2019) requires models to reconstruct large
multi-fact gold explanations by selecting a set of
interconnected facts from a knowledge base that
match gold explanations provided in an explana-
tion corpus. The task is very challenging, and cur-
rent state-of-the-art models (e.g. Das et al., 2019)
achieve nearly all of their performance by evaluat-

74

Solutions Avg. Ceiling Avg. Extra
Combined Accuracy Facts @ Ceiling
Automatically Converted Patterns Only (N=353)

1 56.0% 7.8
2 67.5% 11.2
3 70.8% 12.6

Automatic and Manually Curated Patterns (N=385)
1 58.3% 5.9
2 72.3% 7.7
3 78.0% 8.5

Table 2: Ceiling performance of the converted explana-
tory patterns from the WorldTree V2 corpus evaluated using
COSATA on the explanation regeneration task.

ing facts independently rather than jointly.
The Worldtree V2 corpus (Xie et al., 2020) in-

cludes detailed multi-fact explanations for 4,400
standardized science exam questions grounded
in a knowledge base of 63 tables and approxi-
mately 10k table rows, as well as a set of 353
semi-automatically authored collections of facts
surrounding specific subtopics, such as changes
of state, inherited characteristics, or seasonal
changes in daylight. Here, those 353 inference pat-
terns were converted to the COSATA constraint lan-
guage using a prototype automatic converter, and
all solutions to each pattern were enumerated with
the COSATA solver. 42 of the automatically con-
verted patterns were selected based on frequency
of use for manual curation, where they were further
abstracted, decomposed, and debugged. Ceiling
performance on the explanation regeneration task
was calculated for a shortlist of ranked solutions, in
terms of both single solutions, and combinations of
up to 3 solutions, with results shown in Table 2. Per-
formance is evaluated in terms of accuracy (propor-
tion of gold rows included in the explanation) and
the average number of “extra” facts included in the
solutions but not included in the gold explanation.
The results show that the pattern solutions enu-
merated by COSATA have a ceiling performance
of regenerating up to 58% of gold explanations
when using a single solution, and up to 78% when
combining up to three solutions. This empirically
demonstrates the potential utility of using COSATA

patterns as input to downstream inference models
that are able to accurately select which patterns to
combine to generate an explanation. The inference
patterns in this experiment and their solutions are
included as examples in the distribution.

4.2 Micro-models and Interpreter

Constructing micro-models from scratch requires
(i) authoring a knowledge base of semi-structured

Figure 5: Screenshots of the prototype IDE. (Top) The de-
bugger/editor for micro-model control scripts. (Bottom) The
visual taxonomy editor, a component of the table editor.

tables, (ii) authoring patterns that reference those
tables (such as those in Figures 2 and 4), and (iii)
constructing micro-model control scripts (such as
the example in Figure 3) that describe, in a short
series of steps, how processes interact with objects
and agents to reach a given outcome.

To demonstrate this workflow, a series of 23 pat-
terns including imperative code were authored for
topics in heat transfer and changes of state, as well
as a supporting semi-structured knowledge base
containing several hundred facts across 21 tables in-
cluding taxonomic relations, locations of common
objects, processes causing discrete changes, and
physical properties of substances. To support this
effort, a prototype IDE called Procession (shown in
Figure 5) was implemented using ELECTRON that
integrates a table-editor (including D3-based visual
taxonomy editor), MONACO-based code editor, and
side-to-side debugger/editor for micro-model con-
trol scripts that enables fast debug cycles. These
example imperative patterns and the resulting inter-
preter output of the control scripts are included as
examples in the distribution.

5 Conclusion

COSATA is an open-source constraint satisfaction
solver for easily expressing and evaluating multi-
fact compositional patterns in semi-structured ta-
bles of text, paired with an interpreted language
that allows expressing micro-models. The tool,
source, examples, and documentation are available
at http://www.github.com/clulab/cosata/ .

75

Acknowledgments

Thanks to Sebastian Thiem, who assisted in con-
ducting the ceiling test of the WorldTree V2 pat-
terns, and to Peter Clark for thoughtful discussions.
The prototype IDE was developed in part under
contract by Soft Design SRL. This work supported
in part by the National Science Foundation (NSF
Award #1815948, “Explainable Natural Language
Inference”, to PJ).

References
Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,

Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Rajarshi Das, Ameya Godbole, Manzil Zaheer, She-
hzaad Dhuliawala, and Andrew McCallum. 2019.
Chains-of-reasoning at textgraphs 2019 shared task:
Reasoning over chains of facts for explainable multi-
hop inference. In Proceedings of the Thirteenth
Workshop on Graph-Based Methods for Natural
Language Processing (TextGraphs-13), pages 101–
117.

Martin Davis, George Logemann, and Donald Love-
land. 1962. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–
397.

Kenneth D Forbus. 2019. Qualitative representations:
How people reason and learn about the continuous
world.

Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mi-
hai Surdeanu, and Peter Clark. 2015. Higher-
order lexical semantic models for non-factoid an-
swer reranking. Transactions of the Association for
Computational Linguistics, 3:197–210.

Peter Jansen. 2018. Multi-hop inference for sentence-
level textgraphs: How challenging is meaningfully
combining information for science question answer-
ing? In Proceedings of the Twelfth Workshop on
Graph-Based Methods for Natural Language Pro-
cessing (TextGraphs-12), pages 12–17.

Peter Jansen, Rebecca Sharp, Mihai Surdeanu, and Pe-
ter Clark. 2017. Framing QA as building and rank-
ing intersentence answer justifications. Computa-
tional Linguistics, 43(2):407–449.

Peter Jansen and Dmitry Ustalov. 2019. Textgraphs
2019 shared task on multi-hop inference for expla-
nation regeneration. In Proceedings of the Thir-
teenth Workshop on Graph-Based Methods for Nat-
ural Language Processing (TextGraphs-13), pages
63–77.

Peter Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton Morrison. 2018. WorldTree:
A corpus of explanation graphs for elementary
science questions supporting multi-hop inference.
In Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation
(LREC-2018), Miyazaki, Japan. European Lan-
guages Resources Association (ELRA).

Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Pe-
ter Clark, Oren Etzioni, and Dan Roth. 2016. Ques-
tion answering via integer programming over semi-
structured knowledge. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial In-
telligence, pages 1145–1152.

Douglas B Lenat, Ramanathan V. Guha, Karen Pittman,
Dexter Pratt, and Mary Shepherd. 1990. Cyc: to-
ward programs with common sense. Communica-
tions of the ACM, 33(8):30–49.

Bill MacCartney and Christopher D Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pages 193–200.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su,
and Xifeng Yan. 2016. Table cell search for question
answering. In Proceedings of the 25th International
Conference on World Wide Web, pages 771–782.

Ming Tu, Kevin Huang, and Guangtao Wang. 2020.
Select, answer and explain: Interpretable multi-hop
reading comprehension over multiple documents. In
Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence.

Marco Valentino, Mokanarangan Thayaparan, and An-
dré Freitas. 2020. Unification-based reconstruction
of explanations for science questions. arXiv preprint
arXiv:2004.00061.

Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Eliz-
abeth Wainwright, Steven Marmorstein, and Peter
Jansen. 2020. Worldtree v2: A corpus of science-
domain structured explanations and inference pat-
terns supporting multi-hop inference. In Proceed-
ings of The 12th Language Resources and Evalua-
tion Conference, pages 5456–5473.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

76

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 77–84
November 16-20, 2020. c©2020 Association for Computational Linguistics

InVeRo: Making Semantic Role Labeling Accessible
with Intelligible Verbs and Roles

Simone Conia1, Fabrizio Brignone2, Davide Zanfardino2, and Roberto Navigli1

1Sapienza NLP Group, Department of Computer Science, Sapienza University of Rome
2Babelscape, Italy

lastname@di.uniroma1.it, lastname@babelscape.com

Abstract

Semantic Role Labeling (SRL) is deeply de-
pendent on complex linguistic resources and
sophisticated neural models, which makes the
task difficult to approach for non-experts. To
address this issue we present a new platform
named Intelligible Verbs and Roles (InVeRo).
This platform provides access to a new verb
resource, VerbAtlas, and a state-of-the-art pre-
trained implementation of a neural, span-based
architecture for SRL. Both the resource and
the system provide human-readable verb sense
and semantic role information, with an easy to
use Web interface and RESTful APIs available
at http://nlp.uniroma1.it/invero.

1 Introduction

Since its introduction (Gildea and Jurafsky, 2002),
Semantic Role Labeling (SRL) has been recog-
nized as a key task to enable Natural Language Un-
derstanding in that it aims at explicitly answering
the "Who did What to Whom, When and Where?"
question by identifying and labeling the predicate-
argument structure of a sentence, namely, the actors
that take part in the scenario outlined by a predicate.
In fact, SRL has already proven to be useful in a
wide range of downstream tasks, including Ques-
tion Answering (Shen and Lapata, 2007; He et al.,
2015), Information Extraction (Christensen et al.,
2011), Situation Recognition (Yatskar et al., 2016),
Machine Translation (Marcheggiani et al., 2018),
and Opinion Role Labeling (Zhang et al., 2019).

Unfortunately, the integration of SRL knowl-
edge into downstream applications has often been
hampered and slowed down by the intrinsic com-
plexity of the task itself (Navigli, 2018). Indeed,
SRL is strongly intertwined with elaborate linguis-
tic theories, as identifying and labeling predicate-
argument relations requires well-defined predicate
sense and semantic role inventories such as the
popular PropBank (Palmer et al., 2005), VerbNet

(Kipper-Schuler, 2005), or FrameNet (Baker et al.,
1998). The linguistic intricacies of such resources
may, however, dishearten and turn away new prac-
titioners. Regardless of which linguistic resource is
used in the task, to further complicate the situation
SRL has been usually divided into four subtasks
– predicate identification, predicate sense disam-
biguation, argument identification and argument
classification – but, to the best of our knowledge,
recent state-of-the-art systems do not address all
these four subtasks simultaneously without relying
on external systems (Swayamdipta et al., 2017; He
et al., 2018; Strubell et al., 2018; He et al., 2019).
Therefore, obtaining predicate sense and semantic
role annotations necessitates the tedious orchestra-
tion of multiple automatic systems, which in its
turn further complicates the use of SRL in prac-
tice and in semantics-first approaches to NLP more
generally.

In this paper, we present InVeRo (Intelligibile
Verbs and Roles), an online platform designed to
tackle the aforementioned issues and make Seman-
tic Role Labeling accessible to a broad audience.
InVeRo brings together resources and tools to per-
form human-readable SRL, and it accomplishes
this by using the intelligible verb senses and se-
mantic roles of a recently proposed resource named
VerbAtlas (Di Fabio et al., 2019) and exploiting
them to annotate sentences with high performance.
In more detail, the InVeRo platform includes:

• a Resource API to obtain linguistic informa-
tion about the verb senses and semantic roles
in VerbAtlas.

• a Model API to effortlessly annotate sentences
using a state-of-the-art end-to-end pretrained
model for span-based SRL.

• a Web interface where users can easily query
linguistic information and automatically an-

77

notate sentences on-the-go without having to
write a single line of code.

Notably, InVeRo also takes advantage of PropBank
to get the best of both worlds, and provides an-
notations according to both resources, enabling
comparability and fostering integration.

2 The InVeRo Platform

The InVeRo platform aims at making SRL more
approachable to a wider audience, not only in or-
der to promote advances in the area of SRL itself,
but also to encourage the integration of semantics
into other fields of NLP. The two main barriers to
this objective are the complexity of i) the linguistic
resources used in SRL which are, however, indis-
pensable for the definition of the task itself, and ii)
the complexity of the recently proposed techniques.

Section 2.1 explains how InVeRo takes advan-
tage of the intelligible verb senses and semantic
roles of VerbAtlas to gently introduce non-expert
users to SRL, while Section 2.2 details how the
InVeRo model for SRL can make semantic role
annotations accessible to everyone.

2.1 Intelligible Verb Senses and Roles
One of the most contentious points of discussion in
SRL is how to formalize predicate-argument struc-
tures, that is, the semantic roles that actors can
play in a scenario defined by a predicate. Prop-
Bank (Palmer et al., 2005), one of the most popular
predicate-argument structure inventories, uses an
enumerative approach where each predicate sense
has a possibly different roleset, e.g., for the predi-
cate make, the sense make.01 (as in “making a prod-
uct”) bears the semantic roles ARG0 (creator), ARG1

(creation), ARG2 (created from) and ARG3 (benefi-
ciary), whereas make.02 (as in “cause to be”) bears
only ARG0 (impeller) and ARG1 (impelled). This
exhaustive approach, however, requires an expert
linguist to tell which roles share similar seman-
tics across senses (e.g., ARG0 is an agent in both
make.01 and make.02) and which do not (e.g., ARG1

is a product in make.01 but a result in make.02).
On the other hand, VerbAtlas (Di Fabio et al.,

2019), a recently proposed predicate-argument
structure inventory, in contrast to the enumerative
approach of PropBank and the thousands of frame-
specific roles of FrameNet, adopts a small set of ex-
plicit and intelligible semantic roles (AGENT, PROD-

UCT, RESULT, DESTINATION, . . . , THEME) inspired by
VerbNet (Kipper-Schuler, 2005). As a result, in

VerbAtlas, whenever two predicate senses can bear
the same semantic role, the semantics of this role
is coherent across the two predicate senses by defi-
nition, resulting in readable labels for non-expert
users. VerbAtlas also clusters predicate senses into
so-called frames (COOK, DRINK, HIT, etc.) inspired
by FrameNet (Baker et al., 1998), with the idea
that senses sharing similar semantic behavior lie in
the same frame. For non-expert users, this organi-
zation has the added advantage of explicitly link-
ing predicate senses that are otherwise unrelated,
like make.01 and create.01 in PropBank which, in-
stead, are part of the same frame MOUNT-ASSEMBLE-

PRODUCE in VerbAtlas and, therefore, also share the
same semantic roles. In a bid to make SRL more
accessible, the InVeRo platform adopts the intelli-
gible verb senses and semantic roles of VerbAtlas.

2.2 An All-in-One Solution for SRL

As already mentioned in Section 1, the traditional
SRL pipeline consists of four main steps: predicate
identification, predicate sense disambiguation, ar-
gument identification and argument classification.
While some of the above steps are considered easier
than others, each of them features distinct peculiar-
ities, which has driven recent works to focus on
improving only specific aspects of the entire SRL
pipeline. Instead, little attention has been paid to
systems that can tackle all the above-mentioned
steps at the same time. As a result, anyone wishing
to take advantage of SRL annotations in another
NLP task has to choose, mix and match multiple
automatic systems in order to obtain sentences fully
annotated with predicate sense and semantic role
labels. Understandably, this has been a major de-
terrent for the integration of semantics into down-
stream applications.

As part of the InVeRo platform, not only do
we introduce an all-in-one model that addresses
the complete SRL pipeline with a single forward
pass, but we also make this model available through
a Web interface to let everyone label sentences
with SRL annotations without the need to install
any software. In other words, a user only has to
provide a raw text sentence; the InVeRo all-in-one
model for SRL takes care of the rest, making the
predicate sense and role labeling process accessible
and effortless.

Model Design. The InVeRo all-in-one system for
SRL is based on the ideas put forward by He et al.
(2018) in that, unlike other works that used word-

78

level BIO tagging schemes to label arguments (He
et al., 2017; Strubell et al., 2018; Tan et al., 2018),
it directly models span-level features. In particular,
we follow He et al. (2018) by letting the neural
model learn span-level representations from the
word-level representations of the span start and
span end words, while also adding a span-length
specific trainable embedding. More formally, the
span representation sij from word i to word j is
obtained as follows:

sij = Ws(ewi ⊕ ewj ⊕ elj−i) + bs

where ewi and ewj are the word representations of
start and end of the span, elj−i is the span length
embedding, and ⊕ is the concatenation operation.

However, our approach features a few key dif-
ferences that set the InVeRo model apart from the
aforementioned works. First, it creates contextu-
alized word representations from the inner states
of BERT (bert-base-cased), a recent language
model trained on massive amounts of textual data
(Devlin et al., 2018). Differently from the recent
work of Shi and Lin (2019), our model takes ad-
vantage of the topmost four layers of BERT and
directly builds a word representation from its sub-
word representations, similarly to Bevilacqua and
Navigli (2020). More formally, given the BERT
representations hk

ij at layer k of the mi subwords
wij in word wi, with 1 ≤ j ≤ mi:

cij = h−1ij ⊕ h−2ij ⊕ h−3ij ⊕ h−4ij

c′ij = ReLU(Wccij + bc)

ewi =
1

mi

∑

j

c′ij

Second, in contrast to other span-based SRL sys-
tems, our model integrates predicate disambigua-
tion as an additional objective in a multitask fash-
ion (Caruana, 1997). Third, our model is trained to
jointly learn to label sentences with both VerbAtlas
and PropBank so as to exploit the complementary
knowledge of the two resources, and, at the same
time, provide a means to directly compare the pred-
icate sense and semantic role labels of two different
inventories for the same input sentences.1

Comparison with previous systems. Over the
years, several SRL systems have been developed

1We used the PropBank-to-VerbAtlas mappings avail-
able at http://verbatlas.org/download to remap
CoNLL-2012.

and made available as prepackaged downloads, e.g.
SENNA2, or as online demos, e.g., AllenNLP’s
SRL demo3. However, recent BERT-based online
systems, such as AllenNLP’s SRL demo, do not
perform predicate sense disambiguation (in addi-
tion to predicate identification, argument identi-
fication and argument classification), which is a
crucial step in SRL, especially when considering
that the PropBank roles ARG0, ARG1, through ARG5

become meaningful only if they are associated with
a PropBank predicate sense (see Section 2.1).

Results. Thanks to the use of contextualized
word representations from BERT, the joint exploita-
tion of two complementary linguistic resources for
SRL, and the introduction of a predicate sense dis-
ambiguation layer, our model achieves 84.0% in
F1 score in the standard argument identification
and classification test split of the CoNLL-2012
dataset (Pradhan et al., 2012), significantly outper-
forming the previous state of the art among end-
to-end models, currently represented by Strubell
et al. (2018) with a 0.6% absolute improvement
in F1 score4 (84.0% against 83.4%). We note that
this measure does not take into account the perfor-
mance on predicate sense disambiguation, where
our system achieves 86.1% in F1 score, which is
a significant absolute improvement (+5.7%) over
the most-frequent-sense strategy (86.1% against
80.4%).

3 The InVeRo APIs

To foster the integration of semantics into a wider
range of applications, the InVeRo platform intro-
duces a set of RESTful APIs5 that offer i) easy-to-
use abstractions to query resource-specific informa-
tion in VerbAtlas (Section 3.1), and ii) out-of-the-
box predicate and semantic role annotations from
a state-of-the-art pretrained model (Section 3.2).

3.1 Resource API

The Resource API provides a RESTful interface to
easily link predicate-level information, e.g., predi-
cate lemmas and/or predicate senses, to VerbAtlas-
specific features, e.g., frames and semantic roles.
In particular:

2https://ronan.collobert.com/senna
3https://demo.allennlp.org/

semantic-role-labeling
4Score computed with the official CoNLL-2005 script.
5http://nlp.uniroma1.it/invero/

api-documentation

79

• the /predicate endpoint exposes functionali-
ties to obtain frame-level information start-
ing from a predicate lemma or a synset
from WordNet 3.0 (Fellbaum et al., 1998) or
BabelNet 4.0 (Navigli and Ponzetto, 2012);

• the /frame endpoint exposes functionalities
to retrieve, for a given frame, its Predicate Ar-
gument Structure, and the WordNet/BabelNet
synsets belonging to this frame.

Also included is a manually-curated PropBank-to-
VerbAtlas alignment to remap existing corpora like
the CoNLL-2009 and CoNLL-2012 datasets. In
particular:

• the /align/sense endpoint returns, for a
given PropBank predicate sense, its corre-
sponding VerbAtlas frame, i.e., the VerbAt-
las frame that generalizes the given PropBank
predicate sense;

• the /align/roles endpoint returns, for a
given PropBank predicate sense, e.g., aim.01,
the alignment of each role in the PropBank ar-
gument structure of the given predicate sense
to a VerbAtlas role, e.g., ARG0→ AGENT, ARG1

→ THEME, and so on.

The online documentation provides an overview of
the accepted parameters at the endpoints available
in the Resource API.

3.2 Model API
To encourage the integration of SRL into down-
stream applications, the Model API offers a simple
solution for out-of-the-box role labeling by provid-
ing an interface to a full end-to-end state-of-the-art
pretrained model. Unlike most currently available
models which focus on specific aspects of the entire
SRL task, our solution jointly addresses in a single
forward pass the whole traditional SRL pipeline,
namely, i) predicate identification, ii) predicate
sense disambiguation, iii) argument identification,
and iv) argument classification. Furthermore, our
model is fully self-contained as it does not require
any of the additional linguistic information, from
lemmatization to part-of-speech tags and syntac-
tic parse trees, that are usually exploited by many
systems. Our Model API is:

• Easy to use: an end user avoids the struggle
of mixing and matching a set of automatic
systems where each system independently ad-
dresses a different part of the SRL pipeline;

• Fully self-contained: the only input to the
underlying model is a raw text sentence, drop-
ping any dependency on external preprocess-
ing tools;

• State-of-the-Art: the underlying model car-
ries out SRL with high performances on the
standard CoNLL-2012 benchmark dataset.

Usage. The Model API exposes a single endpoint
named /model/ which accepts GET requests with a
single parameter named sentence containing the
raw text sentence to label with semantic role annota-
tions. The Model API returns a JSON response that
contains, for each predicate it identifies in the sen-
tence, the semantic role that each argument plays
with respect to the identified predicate. For exam-
ple, the response for the sentence “Eliminating the
income tax will benefit peasants" contains:

[{

"tokenIndex": 0,

...

}, {

"tokenIndex": 5,

"verbatlas": {

"frameName": "HELP_HEAL_CARE_CURE",

"roles": [

{"role": "agent", "score": 0.89, "span": [0, 4]},

{"role": "beneficiary", "score": 1., "span": [6, 7]}

]

},

"propbank": {

"frameName": "benefit.01",

"roles": [

{"role": "ARG0", "score": 0.97, "span": [0, 4]},

{"role": "ARG1", "score": 1.00, "span": [6, 7]}

]

},

}]

Our Model API also supports the more popular
PropBank predicate sense and semantic role labels
so as to provide a direct comparison with VerbAtlas
and promote synergistic approaches that exploit
both inventories to advance SRL.

4 The InVeRo User Interface

Like many other linguistic resources in SRL, Ver-
bAtlas may be daunting for inexperienced practi-
tioners who may still face difficulties in finding
their way with the formalisms defined in a linguis-
tic resource for SRL. On top of the previously de-
scribed APIs (Section 3) and in an effort to make
VerbAtlas easier to interact with, the InVeRo plat-
form includes a public-facing Web interface that
provides a user-friendly environment to explore not
only the functionalities offered by the resource, but

80

Figure 1: A look at the online interface when a user searches for resource-specific information about VerbAtlas.
The user can a) search for a frame name, as in the Figure, or an individual predicate. The interface displays
b) all the predicates belonging to the same frame, with each predicate c) directly linked to BabelNet. The right
side displays the d) selected predicate with e) its WordNet gloss, f) the semantic roles of its predicate-argument
structure, and g) the selectional preferences of each role.

Figure 2: A look at the online interface when a user inserts a sentence in the search bar. The system uses a
pretrained model to display all the information of all the steps of a traditional SRL pipeline: predicate identification,
predicate sense disambiguation, argument identification and argument classification.

Figure 3: The interface can seamlessly switch between VerbAtlas and PropBank labels with a single click (the
switch button at the top-right). Here we show the same sentence as in Figure 2 but labeled with PropBank predicates
and roles, which enables comparison across the two annotation styles.

81

also to understand visually how an SRL system an-
notates a sentence in a live interactive demo. The
Web interface mirrors the functionalities of both the
Resource API and the Model API in a minimal uni-
fied view, letting users perform resource-specific
queries or annotate sentences wherever they are
without writing a single line of code.

Resource interface. Figure 1 shows the Web in-
terface when a user inserts the name of a VerbAtlas
frame in the search bar. Notice that, since the inter-
face makes use of the Resource API, a user can also
search for other resource-specific information such
as individual predicates. Particular attention has
been given to the visualization of a VerbAtlas frame
(Figure 1, left side) which displays all the predi-
cate senses that share similar semantic behavior.
Each predicate sense is also conveniently linked to
BabelNet 4.0 (Navigli and Ponzetto, 2012), a multi-
lingual knowledge graph where users can find more
information such as hypernyms, hyponyms, and se-
mantically related concepts. Equally important is
the visualization of a VerbAtlas predicate-argument
structure (Figure 1, right side) which displays all
the semantic roles that the currently selected predi-
cate/frame can bear in a sentence.

Model interface. Figure 2 shows, instead, the
online model interface when a user inserts a sen-
tence with its corresponding predicate sense and
semantic role labels from VerbAtlas. Notice how
the user can quickly switch between the VerbAtlas
and the PropBank predicate sense and semantic
role annotations with just a single click, so that the
two annotation styles can easily be compared one
with the other (Figures 2 and 3). To the best of
our knowledge, this is the first online demo where
a neural model helps users visualize all the four
steps of the traditional SRL pipeline for two dif-
ferent linguistic resources for SRL, VerbAtlas and
PropBank, at the same time.

5 Conclusion and Future Work

Semantic Role Labeling is deeply dependent on
complex linguistic resources and elaborate neural
models: the combination of these two factors has
made Semantic Role Labeling (SRL) difficult to
approach for experts from other fields who are inter-
ested in exploring its integration into downstream
applications. In this paper, we aim at ameliorat-
ing both of the issues by presenting the InVeRo
platform. InVeRo features easy-to-use RESTful

APIs to effortlessy query VerbAtlas, a recently in-
troduced linguistic resource for SRL, and to trans-
parently use a pretrained state-of-the-art end-to-end
system for the recent VerbAtlas-style and the more
traditional PropBank-style approaches to SRL. No-
tably, the InVeRo system is fully self-contained
as it tackles all the steps of the traditional SRL
pipeline – predicate identification, predicate sense
disambiguation, argument identification, and argu-
ment classification – and it does not require ex-
ternal tools such as lemmatizers, part-of-speech
taggers or syntactic tree parsers: users just have to
provide a raw text sentence to obtain its correspond-
ing predicate and argument labels. Moreover, the
InVeRo platform includes an online Web interface
which repackages the APIs in a user-friendly envi-
ronment. Thanks to this interface, users can eas-
ily obtain human-readable linguistic information
about VerbAtlas, but also annotate entire sentences
on-the-go without the need to install any software.

InVeRo is a growing platform: in the future, we
plan to enhance our Model API by adding, along-
side the already available state-of-the-art span-
based model, the state-of-the-art dependency-based
model of Conia and Navigli (2020a), so that users
can easily switch between the two approaches and
choose the one that best suits their needs. Thanks to
BabelNet and recent advances in cross-lingual tech-
niques for tasks where semantics is crucial (Barba
et al., 2020; Blloshmi et al., 2020; Conia and Nav-
igli, 2020b; Pasini, 2020; Scarlini et al., 2020), we
also plan to provide support for multiple languages
to enable SRL integration into multilingual and
cross-lingual settings. We believe that the InVeRo
platform can make SRL more accessible to the
research community, and we look forward to the
development of semantics-first approaches in an
ever wider range of NLP applications.

Acknowledgments

The authors gratefully acknowledge
the support of the ERC Consolidator
Grant MOUSSE No. 726487 under
the European Union’s Horizon 2020
research and innovation programme.

This work was supported in part by the MIUR
under grant “Dipartimenti di eccellenza 2018-
2022” of the Department of Computer Science of
Sapienza University.

82

References
Collin F. Baker, Charles J. Fillmore, and John B. Lowe.

1998. The Berkeley FrameNet Project. In 36th An-
nual Meeting of the Association for Computational
Linguistics and 17th International Conference on
Computational Linguistics, COLING-ACL ’98, Au-
gust 10-14, 1998, Université de Montréal, Montréal,
Quebec, Canada. Proceedings of the Conference,
pages 86–90.

Edoardo Barba, Luigi Procopio, Niccolò Campol-
ungo, Tommaso Pasini, and Roberto Navigli. 2020.
MuLaN: Multilingual Label propagatioN for word
sense disambiguation. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial In-
telligence, IJCAI 2020, pages 3837–3844.

Michele Bevilacqua and Roberto Navigli. 2020. Break-
ing through the 80% glass ceiling: Raising the state
of the art in Word Sense Disambiguation by in-
corporating knowledge graph information. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2854–
2864, Online.

Rexhina Blloshmi, Rocco Tripodi, and Roberto Nav-
igli. 2020. XL-AMR: Enabling Cross-Lingual AMR
parsing with transfer learning techniques. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2020.

Rich Caruana. 1997. Multitask learning. Mach. Learn.,
28(1):41–75.

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2011. An analysis of open infor-
mation extraction based on semantic role labeling.
In Proceedings of the 6th International Conference
on Knowledge Capture (K-CAP 2011), June 26-29,
2011, Banff, Alberta, Canada, pages 113–120.

Simone Conia and Roberto Navigli. 2020a. Bridg-
ing the gap in multilingual Semantic Role Labeling:
A language agnostic approach. In Proceedings of
the 28th International Conference on Computational
Linguistics, COLING 2020.

Simone Conia and Roberto Navigli. 2020b. Con-
ception: Multilingually-enhanced, human-readable
concept vector representations. In Proceedings of
the 28th International Conference on Computational
Linguistics, COLING 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Andrea Di Fabio, Simone Conia, and Roberto Navigli.
2019. VerbAtlas: A novel large-scale verbal seman-
tic resource and its application to Semantic Role La-
beling. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,

Hong Kong, China, November 3-7, 2019, pages 627–
637.

Christiane Fellbaum et al. 1998. WordNet: An elec-
tronic database. MIT Press, Cambridge, MA.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Comput. Linguistics,
28(3):245–288.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and ar-
guments in neural semantic role labeling. In Pro-
ceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 2:
Short Papers, pages 364–369.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 1: Long Papers, pages
473–483.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2015, Lisbon, Portugal, September 17-21, 2015,
pages 643–653.

Shexia He, Zuchao Li, and Hai Zhao. 2019. Syntax-
aware multilingual semantic role labeling. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong,
China, November 3-7, 2019, pages 5349–5358.

Karin Kipper-Schuler. 2005. VerbNet: A broad-
coverage, comprehensive verb lexicon. University
of Pensylvania.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine
translation with graph convolutional networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT, New Orleans, Louisiana, USA, June 1-
6, 2018, Volume 2 (Short Papers), pages 486–492.

Roberto Navigli. 2018. Natural Language Understand-
ing: Instructions for (present and future) use. In
Proc. of IJCAI 2018, pages 5697–5702.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
Babelnet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artif. Intell., 193:217–250.

83

Martha Palmer, Paul R. Kingsbury, and Daniel Gildea.
2005. The Proposition Bank: An annotated corpus
of semantic roles. Comput. Linguistics, 31(1):71–
106.

Tommaso Pasini. 2020. The knowledge acquisition
bottleneck problem in multilingual Word Sense Dis-
ambiguation. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2020, pages 4936–4942.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling Multilingual Unre-
stricted Coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, CoNLL
2012, pages 1–40, Stroudsburg, PA, USA.

Bianca Scarlini, Tommaso Pasini, and Roberto Nav-
igli. 2020. With more contexts comes better per-
formance: Contextualized sense embeddings for all-
round Word Sense Disambiguation. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In EMNLP-
CoNLL 2007, Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, June 28-30, 2007, Prague, Czech Repub-
lic, pages 12–21.

Peng Shi and Jimmy Lin. 2019. Simple BERT mod-
els for relation extraction and semantic role labeling.
arXiv preprint arXiv:1904.05255, abs/1904.05255.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for seman-
tic role labeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October
31 - November 4, 2018, pages 5027–5038.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A. Smith. 2017. Frame-semantic parsing
with softmax-margin segmental RNNs and a syn-
tactic scaffold. arXiv preprint arXiv:1706.09528,
abs/1706.09528.

Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen,
and Xiaodong Shi. 2018. Deep semantic role label-
ing with self-attention. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 4929–4936.

Mark Yatskar, Luke S. Zettlemoyer, and Ali Farhadi.
2016. Situation recognition: Visual semantic role
labeling for image understanding. In 2016 IEEE

Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pages 5534–5542.

Meishan Zhang, Peili Liang, and Guohong Fu. 2019.
Enhancing opinion role labeling with semantic-
aware word representations from semantic role la-
beling. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 641–646.

84

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 85–91
November 16-20, 2020. c©2020 Association for Computational Linguistics

Youling: an AI-Assisted Lyrics Creation System

Rongsheng Zhang1∗, Xiaoxi Mao1†∗, Le Li1, Lin Jiang1,
Lin Chen1, Zhiwei Hu1, Yadong Xi1, Changjie Fan1, Minlie Huang2

1 Fuxi AI Lab, NetEase Inc., Hangzhou, China
2 Department of Computer Science and Technology, Institute for Artifical Intelligence, State Key

Lab of Intelligent Technology and Systems, Beijing National Research Center for
Information Science and Technology, Tsinghua University, Beijing, China.

{zhangrongsheng, maoxiaoxi, lile, jianglin02}@corp.netease.com,
aihuang@tsinghua.edu.cn

Abstract

Recently, a variety of neural models have
been proposed for lyrics generation. How-
ever, most previous work completes the gen-
eration process in a single pass with little
human intervention. We believe that lyrics
creation is a creative process with human in-
telligence centered. AI should play a role
as an assistant in the lyrics creation process,
where human interactions are crucial for high-
quality creation. This paper demonstrates
Youling, an AI-assisted lyrics creation sys-
tem, designed to collaborate with music cre-
ators. In the lyrics generation process, Youl-
ing supports traditional one pass full-text gen-
eration mode as well as an interactive gener-
ation mode, which allows users to select the
satisfactory sentences from generated candi-
dates conditioned on preceding context. The
system also provides a revision module which
enables users to revise undesired sentences or
words of lyrics repeatedly. Besides, Youling al-
lows users to use multifaceted attributes to con-
trol the content and format of generated lyrics.
The demo video of the system is available at
https://youtu.be/DFeNpHk0pm4.

1 Introduction

Lyrics Generation has been a prevalent task in Nat-
ural Language Generation (NLG), due to the easy
availability of training data and the value of the
application. However, despite the popularity of
lyrics generation, there still lacks a comprehensive
lyrics creation assistant system for music creators.
Previous researches (Castro and Attarian, 2018;
Saeed et al., 2019; Lu et al., 2019; Manjavacas
et al., 2019; Watanabe et al., 2018; Potash et al.,
2018; Fan et al., 2019; Li et al., 2020) and sys-
tems (Potash et al., 2015; Lee et al., 2019; Shen
et al., 2019), are mostly model-oriented, utilizing

∗ Equal contribution
† Corresponding Author

neural networks including GAN, RNN-based or
Transformer-based (Vaswani et al., 2017) sequence
to sequence (Seq2Seq) models for sentence-wise
lyrics generation. They complete the lyrics genera-
tion process in a single pass with specific keywords
or content controlling attributes as input, involv-
ing little human intervention. However, we believe
the lyrics creation process should be human intel-
ligence centered, and AI systems shall serve as
assistants, providing inspiration and embellishing
the wording of lyrics.

Therefore, we demonstrate Youling, an AI-
assisted lyrics creation system, which is designed
to collaborate with music creators, help them effi-
ciently create and polish draft lyrics. To fulfill the
goal, Youling supports interactive lyrics generation,
in addition to the traditional one pass full-text gen-
eration. Interactive lyrics generation allows users
to carefully choose desirable sentences from gener-
ated candidates conditioned on preceding context
line by line. Preceding context can be either pre-
generated, written by users, or a mix. Youling also
has a revision module, which supports users to re-
vise any unsatisfied sentences or words of draft
lyrics repeatedly.

To ensure the controllability of generated lyrics,
Youling supports multifaceted controlling attributes
to guide the model to generate lyrics. These control-
ling attributes can be divided into two categories,
content controlling attributes and format control-
ling attributes. Content controlling attributes in-
clude the lyrics’ text style, the emotion or senti-
ment expressed in the lyrics, the theme described
in the lyrics, and the keywords expected to appear
in the lyrics. Format controlling attributes include
the acrostic characters(letters), the rhymes of the
lyrics, the number of sentences, and the number of
words per sentence.

To ensure the quality and relevance of generated
lyrics with controlling attributes, we implement

85

Sentence polishing

Generation module Revision module

Word polishing

想和你一起漫步校园
(Want to wander with you on

campus)

你那青春的笑脸
(The smile of your youth)

User Input

多年前的那个夏天
(That summer many

years ago)
我还是幼稚的少年
(I was still a naive

teenager)
再回忆起当初的画面
(Remembering the first

images again)
见到你的第一眼

(The first time I saw you)
到现在都还怀念

(I still miss)
你那青春的容颜

(The face of your youth)

Full-text generation

多年前的那个夏天(ian)
(That summer many years

ago)
想和你一起漫步校园(uan)

(Want to wander with you on
campus)

再回忆起当初的画面(ian)
(Remembering the first

images again)
见到你的第一眼(an)

(The first time I saw you)
到现在都还怀念(ian)

(I still miss)
你那青春的笑脸(ian)

(The smile of your youth)

多年前的那个夏天(ian)
(That summer many years

ago)
想和你一起漫步校园(uan)

(Want to wander with you on
campus)

再回忆起当初的画面(ian)
(Remembering the first

images again)

Interactive generation

见到你的第一眼(an)
(The first time I saw you)
到现在都还怀念(ian)

(I still miss)
你那青春的笑脸(ian)

(The smile of your youth)

Format controlling
attributes

Content controlling
attributes

Style: 流行(Pop)
Emotion: 积极 (Positive)
Theme: 校园 (Campus)
Expected Keywords: 青春

(Youth)

Acrostic: 多想再见到你
(I want to meet you again)

Rhyme: 言前辙 (YanQian)
Line count: 6
Word count: 8, 9, 9, 7, 7, 7

Figure 1: Architecture of Youling. The system supports multifaceted controlling attributes in user input to control
the content and format of lyrics. The generation module provides two modes for draft lyrics creation: full-text
generation and interactive generation. The former generates a full lyrics while the latter generates following
sentences conditioned on the preceding context. Besides, a revision module is introduced to polish undesirable
sentences or words.

Youling basing on a GPT-2 (Radford et al., 2019)
based language model with 210M parameters, pre-
trained on around 30 gigabytes of Chinese books
corpus. We further finetune Youling on a corpus of
300K lyrics collected online.

The contributions of the Youling system are sum-
marized as follows:

1. Youling provides multiple modes to assist
users in lyrics creation. It supports both the
traditional one pass full-text generation and
the interactive lyrics generation. It also pro-
vides a revision module for users to revise
undesirable sentences or words of draft lyrics
repeatedly.

2. To the best of our knowledge, Youling sup-
ports the largest variety of content controlling
attributes and format controlling attributes to
date.

3. Youling is implemented on top of GPT-2
model to ensure the quality and relevance of
generated lyrics with controlling attributes.

We believe that Youling 1 can assist music cre-
ators in lyrics creation and inspire other developers
to make practical solutions for real-world problems.
The 2-minute demonstration video can be available
at https://youtu.be/DFeNpHk0pm4.

1Our system is available at https://yl.fuxi.netease.com/, vis-
itors can log in with the public account (youlingtest@163.com)
and password (youling666).

2 Architecture

The framework of Youling is shown in Figure 1.
The system mainly contains three parts: user input,
generation module and revision module. We will
describe them in detail in the following subsections.

2.1 User Input

The input includes a wide variety of controlling
attributes provided by users. They can be divided
into two categories: content controlling attributes
and format controlling attributes. Content con-
trolling attributes consist of the lyrics’ text style,
the emotion expressed in the lyrics, the theme de-
scribed in the lyrics, and the keywords expected
to appear in the lyrics. Our system supports four
kinds of text styles, including Pop, Hip-hop, Chi-
nese Neo-traditional and Folk; three kinds of emo-
tion (positive, negative, and neutral); 14 kinds of
themes such as college life, unrequited love, remi-
niscence, friendship, and so on. Format controlling
attributes consist of the acrostic characters (letters),
the rhymes of the lyrics, the number of lines of
lyrics, and the number of words per line. Users can
choose rhyme from 13 Chinese traditional rhyming
groups (十三辙).

2.2 Generation Module

Once users have prepared the controlling attributes,
the generation module can generate lyrics in full-
text generation mode or interactive generation
mode. Below we will explain in detail how we

86

implement the lyrics generation conditioned on so
many controlling attributes.

2.2.1 Full-Text Generation
Model and Pre-training: We use a Transformer-
based sequence to sequence model for the genera-
tion of lyrics. To ensure the performance, we use
a pre-trained language model based on GPT-2 to
initialize the weights of the Transformer encoder
and decoder. Our encoder uses a unidirectional self-
attention similar to GPT-2; in addition, GPT-2 has
only one self-attention block per layer, so the two
self-attention blocks in each decoder layer share
the same weights. For saving memory, the encoder
and decoder share the same weights (Zheng et al.,
2020). Our pre-trained language model has 16
layers, 1,024 hidden dimensions, 16 self-attention
heads, and 210 million parameters. It is pre-trained
on around 30 gigabytes of Chinese Internet novels
collected online, which is tokenized with Chinese
character. The vocabulary size is 11,400 and the
context size is 512.

Training: Here we describe how we train the
sequence to sequence model. We collected 300K
lyrics from the Internet as training data, including
60M tokens in total. To achieve controllable gener-
ation, we need to annotate the style and mood tags
corresponding to each song’s lyrics and extract the
keywords in the lyrics. The style tags correspond-
ing to the lyrics were also obtained as we crawled
the lyrics, so no additional processing is required.
To get emotion labels, we used a ternary emotion
classifier to classify emotion for each song’s lyrics.
The emotion classifier was trained on 20k labeled
data and achieved 80% accuracy on the validation
set. To get the keywords contained in each song’s
lyrics, we extracted all the nouns, verbs, and adjec-
tives in the lyrics.

After the pre-processing described above, we
have the style tags, emotion tags, and keyword lists
corresponding to each song’s lyrics and can start
building the training data. The encoder input is
a concatenation of the style tag, emotion tag and
keywords corresponding to the song lyrics with the
[SEP] special character. Since there are too many
keywords extracted from a song’s lyrics, we aug-
ment training examples by sampling different num-
bers of keywords multiple times. This approach is
to allow the model to better generalize to the num-
ber of keywords. To construct the decoder output,
we use a special token [SEP] to concatenate every
line in a song lyrics, where the last character of

Style Emotion

Theme

Theme
expansion

Combined
Keywords

Pretrained GPT-2 encoder

Pretrained GPT-2 decoder

Style [SEP] Emotion [SEP] Combined keywords

Acrostic Rhyme

Line
count

Word
count

Input construction

Generation model

Keyword hit score

Style relevance score Diversity score

Duplicate checking

Re-rank

Re-ranked lyrics

Expected
keywords

Theme-related
keywords

Figure 2: The inference process of full-text generation.

each line is placed at the beginning for rhyming
control. Finally, we append a special token [EOS]
to the end of the decoder output. Kindly note that
the constraints on format attributes, as well as the
theme tag, are imposed during inference, so they
will not be included in the training phase.

Inference: Here we introduce the inference pro-
cess, as shown in Figure 2. Under full-text gen-
eration mode, the source sequence is a concatena-
tion of the user-entered style tag, emotion tag, and
keywords. The keywords include the expected key-
words, as well as keywords related to the theme
selected by the user. The keywords related to dif-
ferent themes are obtained through offline com-
putation. We calculated PMI (Pointwise Mutual
Information) for all word pairs in the lyrics corpus
after removing low-frequency words. The PMI of
word pair wi, wj is calculated as

PMI(wi, wj) = log
p(wi, wj)

p(wi) ∗ p(wj)
, (1)

where p(wi) and p(wi, wj) are the word frequency
and co-occurrence frequency. We keep all word
pairs with PMI above a specific threshold, which
gives us the lists of keywords corresponding to spe-
cific themes. At inference time, we randomly sam-
ple the keywords list corresponding to the theme se-
lected by the user to get the input keywords, which
are then concatenated with user-entered keywords,

87

style tag, and emotion tag to form the final source
sequence.

Format control in decoding: We describe the
details of format control in decoding. To keep the
number of lines and words per line in accordance
to the user’s requirements, we record the number
of lines and words of the generated lyrics at ev-
ery decoding step and adjust the logits of [SEP]
and [EOS] in the decoder output accordingly. To
achieve rhyming control, we always generate the
last character of a line first and then generate the
rest from left to right. We adjust the training exam-
ples accordingly, as mentioned before. To achieve
the acrostic control, we simply amplify the cor-
responding logit in the decoder output to a very
large value when generating the acrostic character
of each line of lyrics.

Re-rank: We adopt the top-k sampling method
at decoding to generate candidate results. Then we
re-rank the candidates according to four rules. (1)
Duplicate checking: Due to the strong copy abil-
ity of Transformer (Lioutas and Drozdyuk, 2019),
the generated lyrics may contain original pieces
of text in the training corpus, which will introduce
copyright issues. To avoid that, we remove any can-
didate result containing three or more lines over-
lapping with the training corpus. (2) Keyword hit
(kh) score: For each candidate, we compute the
keyword hit score as Skh = n/nmax, where n is
the number of keywords appearing in the current
candidate, nmax is the number of of keywords in
the one with the most hits in all candidates. (3)
Style relevance (sr) score: This score measures
how well each candidate matches its target style
stylet. To compute the score, we train a style clas-
sifier g on the collected lyrics corpus, and take
the classification probability of the target style of
the generated lyrics as Ssm = g(stylet|lyric). (4)
Diversity (div) score: As mentioned before, the
Transformer model is likely to copy original lyrics
in the training data. Besides, repetition is also com-
mon in lyrics; thus, the learned model may con-
stantly generate repeated pieces of text. Sometimes
repetition is good, but too much repetition needs to
be avoided. We count the number of repeated sen-
tences in each candidate and calculate the diversity
score as Sdiv = 1–nrep/ntot, where nrep and ntot
denotes the number of repeated sentences and all
sentences respectively. The final ranking score of
each candidate is computed as

Srank = λ1Skh + λ2Ssm + λ3Sdiv, (2)

where λ1, λ2, λ3 are weights and default to 1.0.

2.2.2 Interactive Generation
For the interactive generation, we use the same
model used for full-text generation. The differ-
ences exist at decoding. The first difference is that
under the interactive generation mode, generation
is conditioned on both the encoder input and the
preceding context. In other words, the interactive
generation can be formulated as

si+1, ..., si+k = Model(X, s0, s1, ..., si), (3)

where the si means the i-th line of the lyrics text
Y , and k is the number of lines to be generated. In
comparison the full-text generation is just formu-
lated as Y = Model(X). The second difference is
that the interactive generation mode generates only
a few lines si+1, .., si+k rather than the full lyrics
Y . Hence, under the interactive generation mode,
the preceding context must be provided, which can
either be pre-generated by Youling, written by the
user, or a mix of them.

For the example of interactive generation in Fig-
ure 1, the system generates the following three lines
“The first time I saw you [SEP] I still miss [SEP]
The smile of your youth” based on the user input
and the preceding context “That summer many
years ago [SEP] Want to wander with you on cam-
pus [SEP] Remembering the first images again”.

2.3 Revision Module

The revision module provides useful features al-
lowing users to further polish draft lyrics at the
sentence or word level. The framework of the revi-
sion module is shown in Figure 3.

The model of revision module follows the same
sequence to sequence framework used in the full-
text generation model, initialized with weights of
the same pre-trained language model.

To build training examples for the model, we
simply randomly replace a sentence or a word of
lyrics in the training corpus with a special token
[MASK]. The result is concatenated with the cor-
responding style tag as the final source sequence,
with the form ”Style [SEP] Masked Lyrics.” The
sentence or word replaced becomes the target se-
quence. We use an example to illustrate this idea,
given the lyrics “The snow glows white on the
mountain tonight [SEP] Not a footprint to be seen
[SEP] A kingdom of isolation [SEP] And it looks
like I’m the queen ...”, we replace the sentence “Not

88

Masked
lyrics Style

Style [SEP] Masked lyrics
E.g.1 “Pop [SEP]The snow glows white on the mountain

tonight [SEP] [mask] [SEP] A kingdom of isolation [SEP]
And it looks like I'm the queen …”

E.g.2 “Pop [SEP]The snow glows white on the mountain
tonight [SEP] Not a [mask] to be seen [SEP] A kingdom of

isolation [SEP] And it looks like I'm the queen …”

Word
countRhyme

Pretrained GPT-2 encoder

Pretrained GPT-2 decoder

Masked sentence or word
E.g.1 Not a footprint to be seen

E.g.2 footprint

Input construction

Revision model

Figure 3: The process of the revision module polishing
lyrics.

a footprint to be seen” or the word “footprint” with
the masking token [MASK], and take the masked
contents as the target sequence, as shown in Fig-
ure 3. Note that we don’t treat word-level and
sentence-level replacement differently, so the revi-
sion is executed with the same model.

3 Demonstration

In this section, we demonstrate how Youling assists
music creators to create lyrics conveniently.

First, we show how to generate draft lyrics based
on multifaceted controlling attributes. Users are
asked to specify the controlling attributes, as shown
in Figure 4. After the controlling attributes have
been prepared, we use the full-text generation mode
to generate the draft lyrics, as shown in Figure 5(a).

After the draft lyrics are generated, we use the
interactive generation mode to generate the follow-
ing lines. Note that in real cases, users can directly
write lyrics or modify pre-generated lyrics in the
input box and generate the following lines with
interactive generation mode. Here we use the un-
changed generated draft lyrics for convenience of
demonstration.

After completing the draft lyrics by carefully
choosing the final line from generated candidates,
we can further polish the undesired parts of the
generated lyrics. Here we replace a flawed sen-
tence with the best suggestion made by the revision
module under sentence level, as seen in Figure 6(a).

(Style: pop)

(Theme: campus)

(Emotion: negative)

(Expected keywords: classroom)

(Rhyme: YanQian)

(Acrostic:)

(Paragraph)
(Line count: 6)

(Line count: 4)

(Add paragraph)

(Generate)

Figure 4: A case of the input page. Users can set con-
tent and format controlling attributes.

However, we are still not completely satisfied with
the last word in the previous suggested sentence.
We switch to word level and replace the last word
with an appropriate word suggested by the revision
model, as shown in Figure 6(b).

As described above, users can repeatedly revise
the lyrics until desirable results are obtained. To
facilitate the process, Youling provides version con-
trol so that users can create lyrics with peace of
mind.

4 Conclusion

In this paper, we demonstrate Youling, an AI-
assisted lyrics creation system. Youling can ac-
cept multifaceted controlling attributes to control
the content and format of generated lyrics. In the
lyrics generation process, Youling supports tradi-
tional one pass full-text generation mode as well
as an interactive generation mode. Besides, the
system also provides a revision module which en-
ables users to revise the undesirable sentences or
words of lyrics repeatedly. We hope our system can
assist music creators in lyrics creation and inspire
other developers to make better solutions for NLG
applications.

89

(The three years of high school)

(It seems like yesterday)

(I'm in Class five)

(It's Line two)

(I'm walking by the lake on campus)

(Do you remember that day?)

(Think of the first time we met)

(Why are the tears blurring eyes?)

(In the year of graduation)

(A moment in class)

(We met on the beautiful campus)

(A familiar smile appeared in my mind)

(I'm walking by the lake on campus)

(Do you remember that day?)

(Think of the first time we met)

(Why are the tears blurring eyes?)

(I'm sitting in this classroom)

(You and them learn to act)

(We slowly found out until the end)

(There is no end to youth)

(And we don't care anymore)

(Just believe that missing will last forever)

(Apply)

(a) Full-text generation

(Do you remember that day?)

(I'm walking by the lake on campus)

(Think of the first time we met)

(Why are the tears blurring eyes?)

(I'm sitting in this classroom)

(You and them learn to act)

(We slowly found out until the end)

(There is no end to youth)

(And we don't care anymore)

(Just believe that missing will last forever)

(Even a breakup is worth remembering)

(Kite of love broke its string)

(Fly farther between us)

(Apply)

(b) Interactive generation

Figure 5: Examples of the two generation modes. (a) Full-text generation: this mode will generates three full-
text candidates for users to choose. (b) Interactive generation: the mode generates following three sentences
conditioned on the preceding context.

(Do you remember that day?)

(Think of the first time we met)

(Why are the tears blurring eyes?)

(I'm sitting in this classroom)

(You and them learn to act)

(Word count: 9)

(Rhyme: YanQian)

(Generate)

(Back to our dream again)

(I've been thinking about you)

(Gaze into the warm light)

(Apply)

(Do you remember that day?)

(Think of the first time we met)

(Why are the tears blurring eyes?)

(I'm sitting in this classroom)

(Back to our dream again)

(a) Sentence polishing

(Think of the first time we met)

(Why are the tears blurring eyes?)

(I'm sitting in this classroom)

(Back to our dream again)

(Starting) (Season) (Between) (Beginning)

(Apply)

(Think of the first time we met)

(Why are the tears blurring eyes?)

(I'm sitting in this classroom)

(Back to the beginning of our dream again)

(b) Word polishing

Figure 6: Examples of revision module polishing sentences and words in lyrics. Users can select undesirable
sentences or words, then ask the system to generate candidates for selected contents conditioned on the context.

90

References
Pablo Samuel Castro and Maria Attarian. 2018. Com-

bining learned lyrical structures and vocabulary
for improved lyric generation. arXiv preprint
arXiv:1811.04651.

Haoshen Fan, Jie Wang, Bojin Zhuang, Shaojun Wang,
and Jing Xiao. 2019. A hierarchical attention based
seq2seq model for chinese lyrics generation. In Pa-
cific Rim International Conference on Artificial In-
telligence, pages 279–288. Springer.

Hsin-Pei Lee, Jhih-Sheng Fang, and Wei-Yun Ma.
2019. iComposer: An automatic songwriting sys-
tem for Chinese popular music. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 84–88, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Piji Li, Haisong Zhang, Xiaojiang Liu, and Shuming
Shi. 2020. Rigid formats controlled text generation.
arXiv preprint arXiv:2004.08022.

Vasileios Lioutas and Andriy Drozdyuk. 2019. Copy
this sentence. arXiv preprint arXiv:1905.09856.

Xu Lu, Jie Wang, Bojin Zhuang, Shaojun Wang, and
Jing Xiao. 2019. A syllable-structured, contextually-
based conditionally generation of chinese lyrics.
arXiv preprint arXiv:1906.09322.

Enrique Manjavacas, Mike Kestemont, and Folgert
Karsdorp. 2019. Generation of hip-hop lyrics with
hierarchical modeling and conditional templates. In
Proceedings of the 12th International Conference on
Natural Language Generation, pages 301–310.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2015. GhostWriter: Using an LSTM for automatic
rap lyric generation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1919–1924, Lisbon, Portu-
gal. Association for Computational Linguistics.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2018. Evaluating creative language generation: The
case of rap lyric ghostwriting. pages 29–38.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. Improving language understanding
by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Asir Saeed, Suzana Ilić, and Eva Zangerle. 2019.
Creative gans for generating poems, lyrics, and
metaphors. arXiv preprint arXiv:1909.09534.

Liang-Hsin Shen, Pei-Lun Tai, Chao-Chung Wu,
and Shou-De Lin. 2019. Controlling sequence-
to-sequence models - a demonstration on neural-
based acrostic generator. In Proceedings of the

2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
43–48, Hong Kong, China. Association for Compu-
tational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Kento Watanabe, Yuichiroh Matsubayashi, Satoru
Fukayama, Masataka Goto, Kentaro Inui, and To-
moyasu Nakano. 2018. A melody-conditioned
lyrics language model. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 163–172, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Yinhe Zheng, Rongsheng Zhang, Xiaoxi Mao, and
Minlie Huang. 2020. A pre-training based personal-
ized dialogue generation model with persona-sparse
data. In Proceedings of AAAI.

91

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 92–99
November 16-20, 2020. c©2020 Association for Computational Linguistics

A Technical Question Answering System with Transfer Learning

Wenhao Yu†, Lingfei Wu‡, Yu Deng‡, Ruchi Mahindru‡,
Qingkai Zeng†, Sinem Guven‡, Meng Jiang†

†University of Notre Dame, Notre Dame, IN, USA
‡IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

†{wyu1, qzeng, mjiang2}@nd.edu
‡{wuli, dengy, rmahindr, sguven}@us.ibm.com

Abstract

In recent years, the need for community tech-
nical question-answering sites has increased
significantly. However, it is often expensive
for human experts to provide timely and help-
ful responses on those forums. We develop
TransTQA, which is a novel system that of-
fers automatic responses by retrieving proper
answers based on correctly answered similar
questions in the past. TransTQA is built upon
a siamese ALBERT network, which enables
it to respond quickly and accurately. Further-
more, TransTQA adopts a standard deep trans-
fer learning strategy to improve its capability
of supporting multiple technical domains.

1 Introduction

Technical community (e.g., StackOverflow) is the
most active and compelling open forum community
for question answering (CQA) that has played an
important role for technicians sharing and spread-
ing professional knowledge (Srba and Bielikova,
2016). Recently, many technology companies have
been developing and actively maintaining their own
technical support forums (e.g., IBM Developer-
Works) where users/consumers can post technical
issues to seek advice and solutions from peers and
experts. Technology companies are investing in
training their employees with professional com-
munication skills and technical knowledge to ef-
fectively respond to users’ questions. However, it
is often expensive to provide timely and helpful
responses on these forums. Statistics show that
at least 30% questions do not hold an accepted
answer on StackOverflow and AskUbuntu. First,
the users/peers often have limited domain-specific
knowledge to describe their issues or accurately
answer complex questions in appropriate techni-
cal terminology. Second, it is common for such
forum threads to become multi-turn asynchronous

interactions, such that the users/peers give addi-
tional information, forming a series of discussions,
which is time-consuming for experts to track such
ongoing interactions. Therefore, building an in-
telligent system to automatically respond to new
questions with useful information or a solution is
in high demand. In scenarios where the automatic
response does not address a user’s technical issue,
human experts can further intervene such discus-
sions. A straightforward approach is to properly
match potential candidate answers to the new ques-
tion, since many questions have recurred, allowing
for new questions to be answered using the histori-
cally accepted answers.

The Information Retrieval (IR) and Natural Lan-
guage Processing (NLP) communities have wit-
nessed the growing dominance of retrieval ap-
proaches based on neural networks over the last
decade (Abbasiyantaeb and Momtazi, 2020). Re-
cent advances of pre-training language models
(e.g., BERT) achieved superior performance on the
retrieval Question Answering (QA) task (Reimers
and Gurevych, 2019; Chang et al., 2020). Sev-
eral BERT based QA systems in the general do-
main have been deployed for real-world applica-
tions (Yang et al., 2019; Yilmaz et al., 2019). In
these approaches, BERT first concatenates a QA
pair as [CLS, Q, SEP, A, SEP], then passes the
concatenation to the transformer network (Devlin
et al., 2019). This setup is time-consuming and
resource intensive for retrieval task because of too
many possible combinations. Finding the pair of
the highest similarity in a collection of 10,000 sen-
tences requires 49,995,000 inference computations
in BERT. On a modern V100 GPU, it requires
around 60 hours. Furthermore, while different tech-
nical communities have different focuses, there is
still substantial overlap in the abilities of intelli-
gent systems required to answer questions across
multiple technical domains. To the best of our

92

knowledge, there is no existing system that uses
transfer learning to address technical QA tasks.

We develop a novel system called TransTQA (in
short for “transfer learning for technical question
answering”). Our system leverages accepted ques-
tions and answers (tagged by human users) for an-
swering similar technical questions. The system
consists of two modes: evaluation mode and us-
age mode. The evaluation mode demonstrates re-
trieved answers by four different transfer learning
strategies. The usage mode displays three highest
ranked answers retrieved from the database of an-
swer candidates. We employ the latest algorithm
ALBERT (Lan et al., 2020) with a siamese network,
to make our system efficient and accurate. First,
an ALBERT has 18x fewer parameters than BERT-
large with the same configuration. A siamese net-
work has two separate ALBERT encoders to gener-
ate question and answer embeddings, and applies a
similarity measure at the top layer. The similarity
measuring process can perform efficiently on mod-
ern hardware, allowing our system to be used for
real-time usage. Second, our system demonstrates
superior accuracy compared to traditional LSTM
based QA systems (Rücklé and Gurevych, 2017;
Loginova and Neumann, 2018). Third, we adopt a
standard deep transfer learning technique, so our
system is able to work on different technical do-
mains. Experiments show our proposed system is
both time efficient and memory efficient.

We have provide the following links for readers
to easily access our (1) demo video and (2) source
code (3) website for research purpose.
(1) Video: https://vimeo.com/431118548
(2) Code: https://github.com/wyu97/TTQA
(The website URL may change, please go to the
above github page to view real-time updates.)

2 Related Work

Question Answering Question answering is a
long-standing challenge in NLP. Several QA bench-
marks have been introduced over the past decade,
such as answer selection (Yang et al., 2015) and
reading comprehension (Rajpurkar et al., 2016).
As an increasing number of researchers are focus-
ing on the above tasks, the role of retrieval has
been gradually overlooked. In real-world scenarios,
however, it is less practical to assume people are
given a small set of candidate answers or a golden
passage. The large database of answers to previous
questions should be properly utilized for answering

new questions. So we focus on retrieval QA in the
task formulation and model architecture.

Retrieval Question Answering Retrieval Ques-
tion Answering (a.k.a Answer Retrieval) finds the
most similar answer between multiple candidate
answers for a given question (Abbasiyantaeb and
Momtazi, 2020). Recently, several researchers
have proposed different deep neural models in
text-based QA that compare two segments of texts
and produces a similarity score. Both document-
level (Chen et al., 2017; Seo et al., 2018, 2019;
Wu et al., 2018) and sentence-level (Ahmad et al.,
2019; Yu et al., 2020) retrieval has been studied on
many public datasets such as SQuAD (Rajpurkar
et al., 2016) and NQ (Kwiatkowski et al., 2019).

Transfer Learning for QA Transfer learning
studies how to transfer knowledge from a source
domain to a target domain (Pan and Yang, 2009;
Jiang et al., 2016). Recent advances of deep trans-
fer learning technologies have achieved great suc-
cess in various NLP tasks (Ruder et al., 2019). Sev-
eral research work in this domain greatly enrich
the application and technology of transfer learn-
ing on question answering from different perspec-
tives (Min et al., 2017; Golub et al., 2017; Deng
et al., 2018; Wang et al., 2019; Castelli et al., 2020).
Although transfer learning has been successfully
applied to various QA applications, its applicability
to technical QA has yet to be investigated.

Question Answering System Early neural
based QA systems (Kato et al., 2017; Loginova
and Neumann, 2018; Chen et al., 2019) are
often based on QALSTM models (Tan et al.,
2016) with self-attention mechanism (Lin et al.,
2017) in order to visualize and illuminate the
inner workings of a specific LSTM. As recent
advances of Transformer (Vaswani et al., 2017) and
BERT (Devlin et al., 2019) achieved superior per-
formance on many NLP tasks in general domains,
Transformer-based QA systems (Ma et al., 2019)
and fine-tuned BERT QA systems (Yang et al.,
2019; Yilmaz et al., 2019) have been deployed to
better retrieve answers.

3 Proposed System

3.1 System Configuration

Our system is configured with ALBERT model ac-
cording to the specified arguments that defines the
model architecture. The backbone of the ALBERT

93

ALBERT 𝜭+++

Source Corpus data
(Technotes, etc.)

Source QA data
(AskUbuntu, etc.)

Target QA data
(TechQA, etc.)

ALBERT 𝜭++
Question

ALBERT 𝜭++
Answer

ALBERT 𝜭+
Text

Masked
LM

QA
Matching

Deployment data

Q A Tech Q Tech A Q A Candidate

ALBERT 𝜭+++
Tech Question

Tech Answer

ALBERT 𝜭+++
Tech Question

ALBERT 𝜭+++
Answer Cand.

agg.

QA
Matching

agg.

Answer
Retrieval

agg.

Step 1: Source Corpus
Fine-Tuning

Step 2: Source QA
Fine-Tuning

Step 3: Target QA
Fine-Tuning Step 4: Deployment

trans
fer transfer

Data:

Model:

Task:

ALBERT 𝜭
Pre-trained

transfer

Figure 1: High level architecture of our proposed TransTQA system. First, the pre-trained ALBERT model is fine
tuned with unstructured source technical corpus with masked language model (MLM) task, i.e., θ → θ+. Second,
a siamese ALBERT takes fine tuned ALBERT and fine tunes with source technical QA, i.e., θ+ → θ++. Third, the
siamese ALBERT further fine tunes with target QA, i.e., θ++ → θ+++. Our deployed system takes θ+++. Given
a query, our system first calculates similarity scores between the query and each candidate answer, then ranks all
scores from highest to lowest. Finally, the system returns top-3 ranked answers.

architecture is similar to BERT in that it also uses a
Transformer encoder. In order to allow reproduca-
bility, we integrate Huggingface Transformer (Wolf
et al., 2019) into the system construction. Hug-
gingface is an open-source toolkit containing more
than 10 popular pre-training language model im-
plementations (e.g., BERT, XLNet). Therefore,
when reproducing the system with other data, only
the model name would need to be adjusted (e.g.,
BERT-Large, XLNet-Base) according to the train-
ing resources without manually adjust the speci-
fied model configurations. Different pre-training
language models can be found at HuggingFace1.
For instance, the configurations of our siamese-
ALBERT are automatically taken as default set-
tings inclduing vocabulary, embedding size etc.

3.2 Siamese ALBERT

The central challenge of retrieving a proper answer
lies in the complex and versatile semantic relations
observed between questions and responses. Un-
like several factoid QA scenarios (Rajpurkar et al.,
2016; Kwiatkowski et al., 2019), linguistic similar-
ities between such non-factoid QA might be non-
indicative. Since ALBERT makes use of Trans-
former network (Vaswani et al., 2017), it benefits
from multi-head attention mechanism, allowing the
model to jointly attend to information from differ-
ent representation subspaces at different positions.

1https://huggingface.co/models

3.2.1 Siamese Encoder
First, the ALBERT tokenizer split original words
into smaller subwords and characters. After tok-
enization, two special tokens (i.e. [CLS] and [SEP])
are added to the tokenized sequence. Besides, the
tokenizer also generates “Mask IDs”, which is used
to indicate which elements in the sequence are to-
kens and which are padding elements.

Second, Two ALBERT encoders generate con-
textualized representations of each tokenized ele-
ment in an input questionQ and a candidate answer
A, which are denoted by ALBERTΘ(Q)[X] ∈ Rd

and ALBERTΘ(A)[X] ∈ Rd, where d is the di-
mension of word embedding. In order to produce
a single vector of question embedding hQ and an-
swer embedding hA from the input question and
answer. We apply mean pooling to the representa-
tions of all tokens:

hQ = MEAN({ALBERTΘ(Q)[X]|X ∈ Q}), (1)

hA = MEAN({ALBERTΘ(A)[X]|X ∈ A}). (2)

3.2.2 Matching Layer
The scoring function F is factorized as an inner
product between question embedding hQ and an-
swer embedding hA. This is similar to using feed
forward networks to project queries and responses
into a common space where the relevance is com-
puted by cosine distance (Huang et al., 2013).

F (hQ,hA) =
hQ

||hQ||2
· hA

||hA||2
. (3)

94

A Technical Question Answering System with Transfer Learning
Please input your query here:
For example: Why I am not able to login to StoredIQ Dataserver and Getway using ssh?

If you want to use an existing question on, please choose from the drop-down box:

Submit Query

No Transfer Learning
(e.g. only train on TechQA)

#1: when using compressed
references ? I am using a
64bit JVM and I clearly have
plenty of memory left . How
can I resolve this problem ?
'' CAUSE *In this note , …

Evaluation Mode Usage Mode

Transfer from other QA
(e.g. AskUbuntu pre-training)

#1: when using compressed
references ? I am using a
64bit JVM and I clearly have
plenty of memory left . How
can I resolve this problem ?
'' CAUSE *In this note , …

Transfer from Corpus
(e.g. TechNotes pre-training)

#1: (Truth) Wpcollector is a
command line tool that auto-
mates collection of portal
logs and configuration files .
#2: Mozilla Firefox could
allow a remote attacker ...

Transfer from Both
(e.g. AskUbuntu & TechNotes)

#1: (Truth) Wpcollector is a
command line tool that auto-
mates collection of portal
logs and configuration files .
#2: when using compressed
references ? I am using ...

Figure 2: A screenshot of our system. User can either submit their query or choose a query from a pre-defined set.
Our system will return top-3 recommended answers retrieved from the existing database.

3.2.3 Optimization
The goal of response selection is to model P (A|Q),
which is used to rank possible responses A given
an input question Q. This probability distribution
can be written as:

P (A|Q) =
P (Q,A)∑
k P (Q,Ak)

(4)

For efficiency and simplicity, we adopt multi-
ple negatives ranking loss in the training, which
takes the responses of other examples in a training
batch of stochastic gradient descent as negative re-
sponses (Henderson et al., 2017). Specifically, for
a batch of size K, there will be K input questions
Qbatch = (X1, · · · , XK) and their corresponding
responses Abatch = (A1, · · · , AK). Every reply
Aj is effectively treated as a negative candidate for
Qi if i 6= j. The K − 1 negative examples for each
Q are different at each pass through the data due
to shuffling in stochastic gradient descent. So, the
goal of training is to minimize the approximated
mean negative log probability of the data. Formally,

L(Qbatch,Abatch,Θ) = − 1
K

∑K
i=1 logP (Ai|Qi)

= − 1
K

∑K
i=1

[
F (hQi ,hAi)− log

∑K
k=1 e

F (hQi
,hAk

)
]

(5)

3.3 Transfer: Three-step Fine Tuning

The transfer learning strategy used in our system
consists of a three-step fine tuning process. First,
the pre-trained ALBERT model is fine tuned with
unstructured source technical corpus with masked
language model (MLM) task, i.e., θ → θ+. Second,
a siamese ALBERT takes fine tuned ALBERT and
fine tunes with source technical QA, i.e., θ+ →
θ++. Third, the siamese ALBERT further fine
tunes with target QA, i.e., θ++ → θ+++.

3.3.1 Fine Tuning on Source Corpus

Though ALBERT has demonstrated state-of-the-art
performances in many NLP tasks, directly applying
ALBERT to technical domain tasks suffers from
certain limitations. Since ALBERT is pre-trained
on datasets only containing general domain cor-
pora (e.g., Wikipedia, BookCorpus), many tech-
nical terminology are not well represented in the
model. In order to make ALBERT equipped with
technical domain knowledge, we first fine tune the
pre-trained ALBERT on technical corpus (e.g., so-
lution documents, user manuals and forum posts
etc). We adopt the classic masked language model
(MLM) pre-training task that learns to predict ran-
domly masked tokens in the input sequence. MLM

95

Table 1: Performance on TechQA and StackUnix. Transferring knowledge from both source QA (e.g., AskUbuntu)
and technical corpora (e.g., IBM Technotes) demonstrates the best performance.

Methods
Source Source TechQA StackUnix

QA Corpus MRR R@1 R@5 R@10 MRR R@1 R@5 R@10

SASE
(LSTM)

M1 - - 23.45 14.65 33.12 36.31 31.22 24.37 38.71 45.88
M2 4 - 26.19 17.20 35.03 42.68 34.03 27.24 40.01 45.16
M3 - 4 30.85 20.38 40.13 52.23 35.26 25.45 43.73 53.05
M4 4 4 36.31 25.48 48.41 56.05 38.69 29.30 46.24 55.20

ALBERT

M1 - - 36.52 25.00 50.63 56.25 40.55 31.89 50.18 56.99
M2 4 - 45.11 34.38 56.88 64.38 42.61 34.05 50.89 55.56
M3 - 4 41.61 29.38 55.00 63.13 46.27 35.12 58.06 67.03
M4 4 4 44.13 31.88 60.00 70.63 50.04 38.35 63.08 71.32

is the primary pre-training task used in BERT and
ALBERT (Devlin et al., 2019; Lan et al., 2020).

3.3.2 Fine Tuning on Source QA
Compared to evolved technical communities (e.g.,
StackOverflow, AskUbuntu), many emerging tech-
nical forums have limited size of existing QA pairs.
To address the lack of knowledge caused by data
shortage, we further fine tuned the ALBERT using
source technical QA data to facilitate the ALBERT
to better represent questions and responses in the
latent space. For instance, since Ubuntu is a op-
erating system built upon the Unix/Linux, many
questions on AskUbuntu and StackUnix are related
and share common technical knowledge.

3.3.3 Fine Tuning on Target QA
After fine tuning on unstructured technical corpora
and source technical QA, a straightforward way to
transfer these knowledge is to keep the same model
architecture and directly initialize the weights of
the target model with the weights of the models
fine tuned on the source technical QA, and then we
train on the target model with the target technical
QA dataset (e.g., TECHQA, StackUnix).

4 Front End and User Interface

Our system consists of two different modes: evalu-
ation mode and usage mode. First, the usage mode
allows users to select an existing question from
the drop-down box or ask a question themselves.
Then, the system returns three retrieved responses
with highest probabilities from the database to the
user. Second, the evaluation mode retrieves re-
sponses through different transfer learning settings,
which can be used to compare different model per-
formance. Overall, the QA front end service was

Table 2: Comparison with existing retrieval QA system
on number of parameters and average inference time.
The siamese-ALBERT in our TransTQA system has
the least parameters and fastest inference time.

Methods #Parameters Inference time

BERT-Rerank
(Nogueira et al., 2019)

170M 62.67s

BERT-Serini
(Yang et al., 2019)

170M 0.55s

Siamese-ALBERT
(Ours TransTQA)

10M 0.13s

implemented in Python with Flask web framework.
It is fully configurable and allows multiple candi-
date ranking services to be used at the same time.

4.1 Usage Mode

To begin with, the system receives a question from
the user via a text field input. The question is
filtered by length: too long (>512) or empty ques-
tions are discarded. Then, the question is tok-
enized, padded and concatenated with special to-
kens. Given the tokenized query, the response re-
trieval reduces to encoding a new question in a
encoding step to the question embedding, and then
ranks all candidate answers based on the inner prod-
uct with the query embedding. Since embeddings
of candidate answers can be pre-computed, the us-
age mode is able to make quick response.

4.2 Evaluation Mode

In evaluation mode, when the system receives a
query, the system retrieves responses from four
different settings: (1) M1: no transfer learning;
(2) M2: transfer knowledge from source corpus

96

Table 3: Case study of real user queries.

Case Study of Evaluation Mode
User Query: Hi All, Can we operate Datacap thin clients on citrixs ?
Ground Truth Answer: Remote users that access Datacap over a WAN can use Taskmaster Web-based thin clients , or
FastDoc Capture operating in offline mode .

M1-Rank1: The upgrade must be initiated by using the attached script , which gives the non-root user (who originally
installed this Jazz for Service Management instance) the correct permissions for the upgrade process .
M2-Rank1: WAS recently renamed WAS for Developers (WAS4D) to WAS ILAN . In response to this change , RAD
9.6 now packages WAS ILAN available in the RAD WS 9.6 WASTE 9.0.zip file . It has the same capabilities and updates
that RAD users expect .
M3-Rank1: You must install the 5.0.0.8 or later fix pack to upgrade to 6.0.0.0 or later . The 5.0.0.8 fix pack contains a
required fix to allow the larger sized firmware image to fit .
M4-Rank1: Remote users that access Datacap over a WAN can use Taskmaster Web-based thin clients , or FastDoc
Capture operating in offline mode .

Case Study of Usage Mode
User Query: Where do you download the Support ’s guide to the MTTrapd SNMP probe ?
Ground Truth Answer: The attached Support ’s guide to the SNMP probe provides details on how best to configure the
probe , troubleshoot issues and how to use third party products to test the probes behaviour .

M4-Rank1: The attached Support ’s guide to the SNMP probe provides details on how best to configure the probe ,
troubleshoot issues and how to use third party products to test the probes behaviour .
M4-Rank2: Supported methods are GUI and silent configuration . Also , silent configuration fully works both on UNIX
and Windows platforms only at level 7.1.1.0.4 . Before this maintenance level there were issues and limitations with
Managing Server and Transaction Tracking integration . Support Command Line configuration for J2EE DC will possibly
be added in some future patch via Request For Enhancement .
M4-Rank3: This probe is written to support Nokia Network Functions Manager for Packet release 17.3 .

(e.g., Technotes); (3) M3: transfer knowledge from
source QA (e.g., AskUbuntu); (4) M4: transfer
learning from both (2) and (3). The retrieved re-
sponses are presented in four blocks corresponding
with four different settings. In case the question
was present in the dataset, because we know which
one is the correct answer, we mark its text with
a “Truth” tag and highlight in blue for a quicker
performance assessment by the user.

5 System Evaluation

5.1 Experimental Settings

We conduct experiments on three technical datasets:
TechQA (Castelli et al., 2020), StackUnix and an
IBM internal dataset. Details about datasets are
in Appendix ??. We compare retrieval perfor-
mance with SASE (Lin et al., 2017), which is a
LSTM-based method adopted in previous QA sys-
tems (Loginova and Neumann, 2018; Rücklé and
Gurevych, 2017). Implementation details can be
found in Appendix ??. We also compare inference
time and memory consumption with two BERT-
based QA systems: BERT-Rerank (Nogueira et al.,
2019) and BERT-Serini (Yang et al., 2019).

5.2 Experimental Results

Comparisons with traditional QA systems As
shown in Table 1, our TransTQA outperforms tradi-
tional QA system built upon LSTM-based models.

Effectiveness of knowledge transfer As shown in
Table 1, knowledge transfer from source corpus and
source QA are crucial for our task. We observe that
fine tuning on both source corpus (e.g., Technotes)
and source QA (e.g., AskUbuntu) makes superior
performance than only fine tuning on either source
domain corpus or source QA.

Time and memory efficiency As shown in Table
2, the siamese ALBERT is much faster than BERT-
Rerank and BERT-Serini during the inference time.
This is because all the answer embeddings stored in
the database are pre-computed. So, given an unseen
query, we only need to rank the answer based on
its inner product with the query embedding.

5.3 Case Study

We show two real use cases in Table 3. Evaluation
Mode returns top ranked answer retrieved by dif-
ferent transfer learning settings (M1 to M4). Usage
Mode returns top ranked answer retrieved by M4.
M4-Rank1 gives the correct answer.

97

6 Conclusions

We developed TransTQA, which is a novel sys-
tem that offers automatic response by retrieving
proper answers based on correctly answered simi-
lar questions. TransTQA was built upon a siamese
ALBERT network, which enables it to respond
to questions quickly and accurately. Furthermore,
TransTQA adopted transfer learning to improve its
performance on multiple tech domain QA.

Acknowledgements

This work is supported by National Science Foun-
dation IIS-1849816.

References
Zahra Abbasiyantaeb and Saeedeh Momtazi. 2020.

Text-based question answering from information re-
trieval and deep neural network perspectives: A sur-
vey. arXiv preprint arXiv:2002.06612.

Amin Ahmad, Noah Constant, Yinfei Yang, and Daniel
Cer. 2019. Reqa: An evaluation for end-to-end an-
swer retrieval models. In Proceedings of Workshop
on Machine Reading for Question Answering.

Vittorio Castelli, Rishav Chakravarti, Saswati Dana,
Anthony Ferritto, Radu Florian, Martin Franz, Di-
nesh Garg, Dinesh Khandelwal, Scott McCarley,
Mike McCawley, et al. 2020. The techqa dataset.
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Wei-Cheng Chang, Felix X Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training
tasks for embedding-based large-scale retrieval. In
Proceedings of 8th International Conference for
Learning Representation (ICLR).

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Yu Chen, Lingfei Wu, and Mohammed J Zaki. 2019.
Bidirectional attentive memory networks for ques-
tion answering over knowledge bases. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers, pages 2913–2923.

Yang Deng, Ying Shen, Min Yang, Yaliang Li, Nan Du,
Wei Fan, and Kai Lei. 2018. Knowledge as a bridge:
Improving cross-domain answer selection with ex-
ternal knowledge. In Proceedings of the 27th in-
ternational conference on computational linguistics,
pages 3295–3305.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers).

David Golub, Po-Sen Huang, Xiaodong He, and
Li Deng. 2017. Two-stage synthesis networks for
transfer learning in machine comprehension. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333–2338.

Meng Jiang, Peng Cui, Nicholas Jing Yuan, Xing Xie,
and Shiqiang Yang. 2016. Little is much: Bridg-
ing cross-platform behaviors through overlapped
crowds. In AAAI, pages 13–19. Citeseer.

Sosuke Kato, Riku Togashi, Hideyuki Maeda, Sumio
Fujita, and Tetsuya Sakai. 2017. Lstm vs. bm25 for
open-domain qa: A hands-on comparison of effec-
tiveness and efficiency. In Proceedings of the 40th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
1309–1312.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, et al. 2019. Natural questions: a bench-
mark for question answering research. Transactions
of the Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations. International Con-
ference for Learning Representation (ICLR).

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In Proceedings of 5th International
Conference for Learning Representation (ICLR).

Ekaterina Loginova and Günter Neumann. 2018. An
interactive web-interface for visualizing the inner
workings of the question answering lstm. In Pro-
ceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 30–35.

98

Xiaofei Ma, Peng Xu, Zhiguo Wang, Ramesh Nallap-
ati, and Bing Xiang. 2019. Universal text represen-
tation from bert: An empirical study. arXiv preprint
arXiv:1910.07973.

Sewon Min, Minjoon Seo, and Hannaneh Hajishirzi.
2017. Question answering through transfer learn-
ing from large fine-grained supervision data. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 510–517.

Rodrigo Nogueira, , and Kyunghyun Cho. 2019.
Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP).

Andreas Rücklé and Iryna Gurevych. 2017. End-to-
end non-factoid question answering with an interac-
tive visualization of neural attention weights. In Pro-
ceedings of ACL 2017, System Demonstrations.

Sebastian Ruder, Matthew E Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Trans-
fer learning in natural language processing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Tutorials, pages 15–18.

Minjoon Seo, Tom Kwiatkowski, Ankur Parikh, Ali
Farhadi, and Hannaneh Hajishirzi. 2018. Phrase-
indexed question answering: A new challenge for
scalable document comprehension. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics.

Ivan Srba and Maria Bielikova. 2016. A comprehen-
sive survey and classification of approaches for com-
munity question answering. ACM Transactions on
the Web (TWEB), 10(3):1–63.

Ming Tan, Cicero Dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Improved representation learning for
question answer matching. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
464–473.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems (NeurIPS).

Huazheng Wang, Zhe Gan, Xiaodong Liu, Jingjing Liu,
Jianfeng Gao, and Hongning Wang. 2019. Adversar-
ial domain adaptation for machine reading compre-
hension. In Proceedings of Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Transformers: State-of-the-
art natural language processing. arXiv preprint
arXiv:1910.03771.

Lingfei Wu, Ian EH Yen, Kun Xu, Fangli Xu, Avinash
Balakrishnan, Pin-Yu Chen, Pradeep Ravikumar,
and Michael J Witbrock. 2018. Word mover’s em-
bedding: From word2vec to document embedding.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics (Demonstrations).

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 confer-
ence on empirical methods in natural language pro-
cessing, pages 2013–2018.

Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei
Yang, Haotian Zhang, and Jimmy Lin. 2019. Ap-
plying bert to document retrieval with birch. In Pro-
ceedings of Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP): System Demonstrations.

Wenhao Yu, Lingfei Wu, Qingkai Zeng, Yu Deng, Shu
Tao, and Meng Jiang. 2020. Crossing variational au-
toencoders for answer retrieval. Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics (ACL).

99

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 100–106
November 16-20, 2020. c©2020 Association for Computational Linguistics

ENTYFI: A System for Fine-grained Entity Typing in Fictional Texts

Cuong Xuan Chu Simon Razniewski
Max Planck Institute for Informatics

Saarbrücken, Germany
{cxchu, srazniew, weikum}@mpi-inf.mpg.de

Gerhard Weikum

Abstract
Fiction and fantasy are archetypes of long-tail
domains that lack suitable NLP methodologies
and tools. We present ENTYFI, a web-based
system for fine-grained typing of entity men-
tions in fictional texts. It builds on 205 au-
tomatically induced high-quality type systems
for popular fictional domains, and provides
recommendations towards reference type sys-
tems for given input texts. Users can ex-
ploit the richness and diversity of these ref-
erence type systems for fine-grained super-
vised typing, in addition, they can choose
among and combine four other typing mod-
ules: pre-trained real-world models, unsuper-
vised dependency-based typing, knowledge
base lookups, and constraint-based candidate
consolidation. The demonstrator is avail-
able at https://d5demos.mpi-inf.mpg.

de/entyfi.

1 Introduction

Motivation and Problem. Entity types are a
core building block of current knowledge bases
(KBs) and valuable for many natural language
processing tasks, such as coreference resolution,
relation extraction and question answering (Lee
et al., 2006; Carlson et al., 2010; Recasens et al.,
2013). Context-based entity typing, the task of
assigning semantic types for mentions of entities
in textual contexts (e.g., musician, politician,
location or battle) therefore has become an im-
portant NLP task. While traditional methods of-
ten use coarse-grained classes, such as person,

location, organization and misc, as targets,
recent methods try to classify entities into finer-
grained types, from hundreds to thousands of them,
yet all limited to variants of the real world, like
from Wikipedia or news (Lee et al., 2006; Ling and
Weld, 2012; Corro et al., 2015; Choi et al., 2018).

Entity type information plays an even more im-
portant role in literary texts from fictional domains.

Fiction and fantasy are core parts of human cul-
ture, spanning from traditional folks and myths
into books, movies, TV series and games. People
have created sophisticated fictional universes such
as the Marvel Universe, DC Comics, Middle Earth
or Harry Potter. These universes include entities,
social structures, and events that are completely
different from the real world. Appropriate entity
typing for these universes is a prerequisite for sev-
eral end-user applications. For example, a Game
of Thrones fan may want to query for House Stark
members who are Faceless Men or which charac-
ter is both a Warg and a Greenseer. On the other
hand, an analyst may want to compare social struc-
tures between different mythologies or formations
of different civilizations.

State-of-the-art methods for entity typing mostly
use supervised models trained on Wikipedia con-
tent, and only focus on news and similar real-world
texts. Due to low coverage of Wikipedia on fic-
tional domains, these methods are thus not suffi-
cient for literary texts. For example, for the follow-
ing sentence from Lord of the Rings:

“After Melkor’s defeat in the First Age, Sauron
became the second Dark Lord and strove to con-
quer Arda by creating the Rings”

state-of-the-art entity typing methods only return
few coarse types for entities, such as person for
SAURON and MELKOR or location for FIRST

AGE and ARDA. Moreover, existing methods typi-
cally produce predictions for each individual men-
tion, so that different mentions of the same entity
may be assigned incompatible types, e.g., ARDA

may be predicted as person and location in dif-
ferent contexts.

Contribution. The prototype system presented
in this demo paper, ENTYFI (fine-grained ENtity
TYping on FIctional texts, see Chu et al. (2020)
for full details) overcomes the outlined limitations.

100

ENTYFI supports long input texts from any kind of
literature, as well as texts from standard domains
(e.g., news). With the sample text above, ENTYFI
is able to predict more specific and meaningful
types for entity mentions:

MELKOR: Ainur, Villain FIRST AGE: Eras, Time
SAURON: Maiar, Villain DARK LORD:Ainur, Title
RINGS: Jewelry, Magic Things ARDA: Location

To address the lack of reference types, ENTYFI
leverages the content of fan communities on
Wikia.com, from which 205 reference type systems
are induced. Given an input text, ENTYFI then re-
trieves the most relevant reference type systems
and uses them as typing targets. By combining su-
pervised typing method with unsupervised pattern
extraction and knowledge base lookups, suitable
type candidates are identified. To resolve incon-
sistencies among candidates, ENTYFI utilizes an
integer linear programming (ILP) based consolida-
tion stage.

Outline. The following section describes the
architecture of ENTYFI with the approach un-
derlying its main components. The demonstra-
tion is illustrated afterwards through its graph-
ical user interface. Our demonstration system
is available at: https://d5demos.mpi-inf.mpg.

de/entyfi. We also provide a screencast video
demonstrating our system, at: https://youtu.

be/g_ESaONagFQ.

2 System Overview

ENTYFI comprises five steps: type system con-
struction, reference universe ranking, mention de-
tection, mention typing and type consolidation. Fig-
ure 1 shows an overview of the ENTYFI architec-
ture.

2.1 Type System Construction

To counter the low coverage of entities and rele-
vant types in Wikipedia for fictional domains, we
make use of an alternative semi-structured resource,
Wikia1.

Wikia. Wikia is a large fiction community portal,
includes over 385,000 individual universes. It cov-
ers a wide range of universes in fiction and fantasy,
from old folks and myths like Greek Mythology,
Egyptian Mythology to recent stories like Harry
Potter, The Lord of the Rings. It also contains pop-
ular movies, TV series (e.g. Game of Thrones,

1https://wikia.com

[1] Type System Construction
Taxonomy Induction u1, u2, ..., un

Input

[3] Mention Detection

Mention: e, Context: cl, cr

[4] Mention Typing
[4.2] Unsupervised

e, cl, cr

Patterns

Dependency

[4.1] Supervised

[4.1.1]
Fictional Typing

e, cl, cr

[4.3] KB Lookup
e

e: t1, t2,...

KB1
KB2

..

LSTM

Decoding

[5] Type Consolidation e: t1, t2, t3,..., tn ILP Model

Output
e1: t1, t2, ...
e2: t3, t5, ...

[2] Reference
Universe Ranking

U1: r1
U2: r2

..

{T1, KB1}
{T2, KB2}

..

[4.1.2]
Real-world Typing

Figure 1: Overview of the architecture of ENTYFI
(Chu et al., 2020).

Breaking Bad) and video games (e.g. League of
Legends, Pokemon).

Each universe in Wikia is organized similarly
to Wikipedia, such that they contain entities and
categories that can be used to distill reference type
systems. We adopt techniques from the TiFi sys-
tem (Chu et al., 2019) to clean and structure Wikia
categories. We remove noisy categories (e.g. meta-
categories) by using a dictionary-based method. To
ensure connectedness of taxonomies, we integrate
the category networks with WordNet (WN) by link-
ing the categories to the most similar WN synsets.
The similarity is computed between the context
of the category (e.g., description, super/sub cate-
gories) and the gloss of the WN synset (Chu et al.,
2019). Resulting type systems typically contain
between 700 to 10,000 types per universe.

2.2 Reference Universe Ranking

Given an input text, the goal of this step is to find
the most relevant universes among the reference
universes. Each reference universe is represented
by its entities and entity type system. We compute
the cosine similarity between the TF-IDF vectors
of the input and each universe. The top-ranked
reference universes and their type systems are then
used for mention typing (section 2.4).

2.3 Mention Detection

To detect entity mentions in the input text, we rely
on a BIOES tagging scheme. Inspired by He et al.
(2017) from the field of semantic role labeling, we
design a BiLSTM network with embeddings and
POS tags as input, highway connections between
layers to avoid vanishing gradients (Zhang et al.,
2016), and recurrent dropout to avoid over-fitting
(Gal and Ghahramani, 2016). The output is then put
into a decoding step by using dynamic program-
ming to select the tag sequence with maximum
score that satisfies the BIOES constraints. The de-

101

coding step does not add more complexity to the
training.

2.4 Mention Typing

We produce type candidates for mentions by us-
ing a combination of supervised, unsupervised and
lookup approaches.

Supervised Fiction Types. Given an entity men-
tion and its textual context, we approach typing
as multiclass classification problem. The mention
representation is the average of all embeddings of
tokens in the mention. The context representation
is a combination of left and right context around the
mention. The contexts are encoded by using BiL-
STM models (Graves, 2012) and then put into at-
tention layer to learn the weight factors (Shimaoka
et al., 2017). Mention and context representations
are concatenated and passed to the final logistic
regression layer with cross entropy loss function to
predict the type candidates.

Target Classes. There are two kinds of target
classes: (i) general types - 7 disjunct high-level
WordNet types that we manually chose, mirroring
existing coarse typing systems: living thing,

location, organization, object, time,

event, substance, (ii) top-performing types -
types from reference type systems. Due to a large
number of types as well as insufficient training
data, predicting all types in the type systems is not
effective. Therefore, for each reference universe,
we predict those types for which, on withheld test
data, at least 0.8 F1-score was achieved. This
results in an average of 75 types per reference
universe.

Supervised Real-world Types. Although fic-
tional universes contain fantasy contents, many of
them reflect our real-world, for instance, House of
Cards, a satire of American politics. Even fictional
stories like Game of Thrones or Lord of the Rings
contain types presented in real world, such as King
or Battle. To leverage this overlap, we incorpo-
rate the Wikipedia- and news-trained typing model
from Choi et al. (2018), which is able to predict up
to 10,331 real-world types.

Unsupervised Typing. Along with supervised
technique, we use a pattern-based method to ex-
tract type candidates which appear explicitly in
contexts for mentions. We use 36 manually crafted
Hearst-style patterns for type extraction (Seitner
et al., 2016). Moreover, from dependency parsing,

a noun phrase can be considered as a type can-
didate if there exists a noun compound modifier
(nn) between the noun phrase and the given men-
tion. In the case of candidate types appearing in
the mention itself, we extract the head word of the
mention and consider it as a candidate if it appears
as a noun in WordNet. For example, given the text
Queen Cersei was the twentieth ruler of the Seven
Kingdoms, queen and kingdom are type candidates
for the mentions CERSEI and SEVEN KINGDOMS,
respectively.

KB Lookup. Using top-ranked universes from
section 2.2 as basis for the lookup, we map en-
tity mentions to entities in reference universes by
using lexical matching. The types of entities in
corresponding type systems then become type can-
didates for the given mentions.

2.5 Type Consolidation
Using multiple universes as reference and typing in
long texts may produce incompatibilities in predic-
tions. For example, SARUMAN, a wizard in Lord of
the Rings can be predicted as a white walker using
the model learnt from Game of Thrones. To resolve
possible inconsistencies, we rely on a consolidation
step that uses an integer linear programming (ILP)
model. The model captures several constraints, in-
cluding disjointness, hierarchical coherence, cardi-
nality limit and soft correlations (Chu et al., 2020).

ILP Model. Given an entity mention e with a list
of type candidates with corresponding weights, a
decision variable Ti is defined for each type candi-
date ti. Ti = 1 if e belongs to ti, otherwise, Ti = 0.
With the constraints mentioned above, the objective
function is:

maximize

α
∑

i

Ti ∗ wi + (1− α)
∑

i,j

Ti ∗ Tj ∗ vij

subject to
Ti + Tj ≤ 1 ∀(ti, tj) ∈ D
Ti − Tj ≤ 0 ∀(ti, tj) ∈ H∑

i

Ti ≤ δ

where wi is the weight of the type candidate ti, α
is a hyper parameter, vij is Pearson correlation co-
efficient between a type pair (ti, tj), D is the set of
disjoint type pairs, H is the set of (transitive) hy-
ponym pairs (ti, tj) - ti is the (transitive) hyponym
of tj , and δ is the threshold for the cardinality limit.

102

Input Text

Typing Modules

people, westerosi, exiles, valyrians, living_beings, crownlanders, qeens
Predicted Types

1.55 1.67

Aggregate Scores

Type Limit

Figure 2: ENTYFI Web interface.

3 Web Interface

The ENTYFI system is deployed online at https:
//d5demos.mpi-inf.mpg.de/entyfi. A screen-
cast video, which demonstrates ENTYFI, is also
uploaded at https://youtu.be/g_ESaONagFQ.

Input. The web interface allows users to enter
a text as input. To give a better experience, we
provide various sample texts from three different
sources: Wikia, books and fan fiction2. With each
source, users can try with either texts from Lord of
the Rings and Game of Thrones or random texts,
as well as some cross-overs between different uni-
verses written by fans.

Output. Given an input text, users can choose
different typing modules to run. The output is the
input text marked by entity mentions and their pre-
dicted types. The system also shows the predicted
types with their aggregate scores and the typing
modules from which the types are extracted. Fig-
ure 2 shows an example input and output of the
ENTYFI system.

Typing module selector. ENTYFI includes sev-
eral typing modules, among which users can
choose. If only the real-world typing module is
chosen, the system runs typing on the text imme-
diately, using one of the existing typing models
which are able to predict up to 112 real-world types

2https://www.fanfiction.net/

(Shimaoka et al., 2017) or 10,331 types (Choi et al.,
2018). Note: If the later model is selected to run the
real-world typing, it requires more time to load the
pre-trained embeddings (Pennington et al., 2014).

On the other hand, if supervised fiction typing or
KB lookup typing are chosen, the system computes
the similarity between the given text and reference
universes from the database. With the default op-
tion, the type system of the most related universe is
being used as targets for typing, while with the al-
ternative case, users can choose different universes
and use their type systems as targets. Users are
also able to decide whether the consolidation step
is executed or not.

Exploration of reference universes. ENTYFI
builds on 205 automatically induced high-quality
type systems for popular fictional domains. Along
with top 5 most relevant universes showing up with
similarity scores, users can also choose other uni-
verses in the database. For a better overview, with
each universe, we provide a short description about
the universe and a hyperlink to its Wikia source.
Figure 3 show an example of reference universes
presented in the demonstration.

Logs. To help users understand how the system
works inside, we provide a log box that shows
which step is running at the backend, step by step,
along with timing information (Figure 4).

103

A	Song	of	Ice	and	Fire	is	a	series	of	epic	fantasy	novels	written	by	American	
novelist	and	screenwriter	George	R.R.	Martin.	The	story	of	A	Song	of	Ice	and	Fire	

takes	place	in	a	fictional	world,	primarily	upon	a	continent	called	Westeros	but	also	
on	a	large	landmass	to	the	east,	known	as	Essos.	Most	of	the	characters	are	

human	but	as	the	series	progresses	other	races	are	introduced,	such	as	the	cold	
and	menacing	Others	from	the	far	North	and	fire-breathing	dragons	from	the	East,	
both	races	thought	to	be	extinct.	There	are	three	principal	storylines	in	the	series...

Universe's Description

Link to Wikia

Adding More Universes

Figure 3: ENTYFI Reference Universes.

4 Demonstration Experience

A common use of entity typing is as building block
of more comprehensive NLP pipelines that perform
tasks such as entity linking, relation extraction or
question answering. We envision that ENTYFI
could strengthen such pipelines considerably (see
also extrinsic evaluation in (Chu et al., 2020)). Yet
to illustrate its workings in isolation, in the follow-
ing, we present a direct expert end-user application
of entity typing in fictional texts.

Suppose a literature analyst is doing research on
a collection of unfamiliar short stories from fan-
fiction.net. Their goal is to understand the setting
of each story, to answer questions such as what
the stories are about (e.g. politics or supernatural),
what types of characters the authors create, finding
all instances of a type or a combination of types
(e.g. female elves) or to do further analysis like if
female elves are more frequent than male elves and
if there are patterns regarding where female villains
appear mostly. Due to time constraints, the analyst
cannot read all of stories manually. Instead of that,
they can run ENTYFI on each story to extract the
entity type system automatically. For instance, to
analyze the story Time Can’t Heal Wounds Like
These3, the analyst would paste the introduction of
the story into the web interface of ENTYFI.

“Elladan and Elrohir are captured along with
their mother, and in the pits below the unforgiving
Redhorn one twin finds his final resting place. In a
series of devastating events Imladris loose one of
its princes and its lady. But everything is not over
yet, and those left behind must lean to cope and
fight on.”

3https://www.fanfiction.net/s/13484688/1/Time-Can-t-
Heal-Wounds-Like-These

Figure 4: ENTYFI Logs.

Since they have no prior knowledge on the
setting, they could let ENTYFI propose related
universes for typing. After computing the
similarity between the input and the reference
universes from the database, ENTYFI would then
propose The Lord of the Rings, Vampires Diaries,
Kid Icarus, Twin Peaks and Crossfire as top 5
reference universes, respectively. The analyst
may consider The Lord of the Rings and Vampires
Diaries, top 2 in ranking, of particular interest,
and in addition, select the universe Forgotten
Realms, because that is influential in their literary
domain. The analyst would then run ENTYFI
with default settings, and get a list of entities with
their predicted types as results. They could then
see that ELLADAN and ELROHIR are recognized
as living thing, elves, hybrid people

and characters, while REDHORN as living

thing, villains, servants of morgoth, and
IMLADRIS as location, kingdoms, landforms

and elven cities.
They could then decide to rerun the analysis

with reference universes The Lord of the Rings and
Vampires Diaries but without running type con-
solidation. By ignoring this module, the number
of predicted types for each entity increases. Es-
pecially, ELLADAN & EHROHIR now are classi-
fied as living thing, elves, characters, but
also location and organization. Similarly,
REDHORN belongs to both living thing and
places, while IMLADRIS is both a kingdom and
a devastating event. Apparently, these incom-
patibilities in predictions appear when the system
does not run type consolidation.

The analyst may wonder how the system per-
forms when no reference universe is being used.
By only selecting the real-world typing module
(Choi et al., 2018), the predicted types for EL-

104

Mention
Settings

Default (Ref. universes + all modules) Default without type consolidation Only real-world typing

Elladan & Elrohir
men, hybrid peoples, elves of rivendell,
real world, elves, characters, living thing,
antagonists, supernatural, species, etc.

organization, men, the silmarillion characters,
hybrid peoples, elves of rivendell, elves,
characters, living thing, location, antagonists,
vampire diaries characters, supernatural, etc.

athlete, god, character,
body part, arm, person, goddess,
companion, brother, child

Redhorn
creatures, villains, servants of morgoth, real world,
minions of angmar, servants of sauron, species,
living thing, characters, witches, supernatural, one

creatures, villains, evil, death, deaths in battle,
servants of morgoth, minions of angmar,
servants of sauron, characters, witches, places,
arda, races, living thing, organization, etc.

city, god, tribe, county, holiday,
body part, society, product,
mountain, act

Imladris
kingdoms, location, realms, landforms, places,
elven cities, eriador, elven realms, mordor, etc.

kingdoms, location, realms, arda, landforms,
places, continents, organization, elven cities, etc.

city, writing, setting, castle, clan,
location, character, eleven, etc.

Table 1: Results of ENTYFI on different settings.

LADAN & ELROHIR would change to athlete,

god, body part, arm, etc. REDHORN now
becomes a city, god, tribe and even an act,
while IMLADRIS is a city, writing, setting

and castle. The results show not only incompat-
ible predictions, but also that the existing typing
model in the real world domain lacks coverage on
fictional domains. By using a database of fictional
universes as reference, ENTYFI is able to fill these
gaps, predict fictional types in a fine-grained level
and remove incompatibilities in the final results.
From this interaction, the literature analyst could
conclude that the story is much related to The Lord
of the Rings, which might help them to draw paral-
lels and direct further manual investigations. Table
1 shows the result of this demonstration experience
in details.

5 Related Work

Earliest approaches for entity typing are based on
manually designed patterns (e.g., Hearst patterns
(Hearst, 1992)) to extract explicit type candidates
in given texts. These pattern-based approaches can
achieve good precision, but their recall is low, and
they are difficult to scale up.

Traditional named-entity recognition methods
used both rule-based and supervised techniques
to recognize and assign entity mentions into
few coarse classes like person, location and
organization (Sang and De Meulder, 2003;
Finkel et al., 2005; Collobert et al., 2011; Lam-
ple et al., 2016). Recently, fine-grained named-
entity recognition and typing are getting more at-
tention (Ling and Weld, 2012; Corro et al., 2015;
Shimaoka et al., 2017; Choi et al., 2018). Ling
and Weld (2012) use a classic linear classifier to
classify the mentions into a set of 112 types. At
much larger scale, FINET (Corro et al., 2015) uses
16k types from the WordNet taxonomy as the tar-
gets for entity typing. FINET is a combination of
pattern-based, mention-based and verb-based ex-
tractors to extract both explicit and implicit type

candidates for the mentions from the contexts.
With the development of deep learning, many

neural methods have been proposed (Dong et al.,
2015; Shimaoka et al., 2017; Choi et al., 2018; Xu
et al., 2018). Shimaoka et al. (2017) propose a neu-
ral network with LSTM and attention mechanisms
to encode representations of a mention’s contexts.
Recently, Choi et al. (2018) use distant supervision
to collect a training dataset which includes over 10k
types. The model is trained with a multi-task objec-
tive function that aims to classify entity mentions
into three levels: general (9 types), fine-grained
(112 types) and ultra-fine (10201 types).

While most existing methods focus on entity
mentions with single contexts (e.g. a sentence),
ENTYFI attempts to work on long texts (e.g., a
chapter of a book). By proposing a combination
of supervised and unsupervised approaches, with
a following consolidation step, ENTYFI is able to
predict types for entity mentions based on different
contexts, without producing incompatibilities in
predictions.

Many web demo systems for entity typing have
been built, such as Stanford NER4, displaCy NER5

and AllenNLP6. However, these systems all predict
only a few coarse and real world types (4-16 types).
ENTYFI is the first attempt to entity typing at a
fine-grained level for fictional texts. In a related
problem, the richness of Wikia has been utilized
for entity linking and question answering (Gao and
Cucerzan, 2017; Maqsud et al., 2014).

6 Conclusion

We have presented ENTYFI, an illustrative demon-
stration system for domain-specific and long-tail
typing. We hope ENTYFI will prove useful both
to language and cultural research, and to NLP
researchers interested in understanding the chal-
lenges and opportunities in long-tail typing.

4http://nlp.stanford.edu:8080/ner/
5https://explosion.ai/demos/displacy-ent
6https://demo.allennlp.org/named-entity-recognition

105

References
Andrew Carlson, Justin Betteridge, Richard C Wang,

Estevam R Hruschka Jr, and Tom M Mitchell. 2010.
Coupled semi-supervised learning for information
extraction. In WSDM.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In ACL.

Cuong Xuan Chu, Simon Razniewski, and Gerhard
Weikum. 2019. TiFi: Taxonomy induction for fic-
tional domains. In The Web Conference.

Cuong Xuan Chu, Simon Razniewski, and Gerhard
Weikum. 2020. ENTYFI: Entity typing in fictional
texts. In WSDM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
In JMLR.

Luciano del Corro, Abdalghani Abujabal, Rainer
Gemulla, and Gerhard Weikum. 2015. Finet:
Context-aware fine-grained named entity typing. In
ACL.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015. A hybrid neural model for type classification
of entity mentions. In IJCAI.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In ACL.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In NIPS.

Ning Gao and Silviu Cucerzan. 2017. Entity linking to
one thousand knowledge bases. In ECIR.

Alex Graves. 2012. Supervised sequence labelling. In
Supervised sequence labelling with recurrent neural
networks.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In ACL.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL HLT.

Changki Lee, Yi-Gyu Hwang, Hyo-Jung Oh, Soojong
Lim, Jeong Heo, Chung-Hee Lee, Hyeon-Jin Kim,
Ji-Hyun Wang, and Myung-Gil Jang. 2006. Fine-
grained named entity recognition using conditional
random fields for question answering. In Asia Infor-
mation Retrieval Symposium.

Xiao Ling and Daniel S Weld. 2012. Fine-grained en-
tity recognition. In AAAI.

Umar Maqsud, Sebastian Arnold, Michael Hülfenhaus,
and Alan Akbik. 2014. Nerdle: Topic-specific ques-
tion answering using wikia seeds. In COLING.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.

Marta Recasens, Marie-Catherine de Marneffe, and
Christopher Potts. 2013. The life and death of dis-
course entities: Identifying singleton mentions. In
NAACL.

Erik F Sang and Fien De Meulder. 2003. Introduc-
tion to the CoNLL-2003 shared task: Language-
independent named entity recognition. arXiv.

Julian Seitner, Christian Bizer, Kai Eckert, Stefano
Faralli, Robert Meusel, Heiko Paulheim, and Si-
mone Paolo Ponzetto. 2016. A large database of hy-
pernymy relations extracted from the web. In LREC.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2017. Neural architectures for
fine-grained entity type classification. In EACL.

Bo Xu, Zheng Luo, Luyang Huang, Bin Liang,
Yanghua Xiao, Deqing Yang, and Wei Wang. 2018.
Metic: Multi-instance entity typing from corpus. In
CIKM.

Yu Zhang, Guoguo Chen, Dong Yu, Kaisheng Yaco,
Sanjeev Khudanpur, and James Glass. 2016. High-
way long short-term memory rnns for distant speech
recognition. In ICASSP.

106

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 107–118
November 16-20, 2020. c©2020 Association for Computational Linguistics

The Language Interpretability Tool:
Extensible, Interactive Visualizations and Analysis for NLP Models

Ian Tenney,∗James Wexler,∗Jasmijn Bastings, Tolga Bolukbasi,
Andy Coenen, Sebastian Gehrmann, Ellen Jiang, Mahima Pushkarna,

Carey Radebaugh, Emily Reif, Ann Yuan
Google Research

{iftenney,jwexler}@google.com

Abstract

We present the Language Interpretability Tool
(LIT), an open-source platform for visualiza-
tion and understanding of NLP models. We
focus on core questions about model behav-
ior: Why did my model make this predic-
tion? When does it perform poorly? What
happens under a controlled change in the in-
put? LIT integrates local explanations, ag-
gregate analysis, and counterfactual genera-
tion into a streamlined, browser-based inter-
face to enable rapid exploration and error anal-
ysis. We include case studies for a diverse set
of workflows, including exploring counterfac-
tuals for sentiment analysis, measuring gen-
der bias in coreference systems, and explor-
ing local behavior in text generation. LIT sup-
ports a wide range of models—including clas-
sification, seq2seq, and structured prediction—
and is highly extensible through a declara-
tive, framework-agnostic API. LIT is under ac-
tive development, with code and full documen-
tation available at https://github.com/

pair-code/lit.1

1 Introduction

Advances in modeling have brought unprecedented
performance on many NLP tasks (e.g. Wang et al.,
2019), but many questions remain about the be-
havior of these models under domain shift (Blitzer
and Pereira, 2007) and adversarial settings (Jia and
Liang, 2017), and for their tendencies to behave
according to social biases (Bolukbasi et al., 2016;
Caliskan et al., 2017) or shallow heuristics (e.g.
McCoy et al., 2019; Poliak et al., 2018). For any
new model, one might want to know: What kind
of examples does my model perform poorly on?
Why did my model make this prediction? And
critically, does my model behave consistently if

∗ Equal contribution.
1A video walkthrough is available at https://youtu.

be/j0OfBWFUqIE.

I change things like textual style, verb tense, or
pronoun gender? Despite the recent explosion of
work on model understanding and evaluation (e.g.
Belinkov et al., 2020; Linzen et al., 2019; Ribeiro
et al., 2020), there is no “silver bullet” for analy-
sis. Practitioners must often experiment with many
techniques, looking at local explanations, aggregate
metrics, and counterfactual variations of the input
to build a full understanding of model behavior.

Existing tools can assist with this process, but
many come with limitations: offline tools such as
TFMA (Mewald, 2019) can provide only aggre-
gate metrics, interactive frontends (e.g. Wallace
et al., 2019) may focus on single-datapoint expla-
nation, and more integrated tools (e.g. Wexler et al.,
2020; Mothilal et al., 2020; Strobelt et al., 2018)
often work with only a narrow range of models.
Switching between tools or adapting a new method
from research code can take days of work, distract-
ing from the real task of error analysis. An ideal
workflow would be seamless and interactive: users
should see the data, what the model does with it,
and why, so they can quickly test hypotheses and
build understanding.

With this in mind, we introduce the Language
Interpretability Tool (LIT), a toolkit and browser-
based user interface (UI) for NLP model un-
derstanding. LIT supports local explanations—
including salience maps, attention, and rich vi-
sualizations of model predictions—as well as ag-
gregate analysis—including metrics, embedding
spaces, and flexible slicing—and allows users to
seamlessly hop between them to test local hypothe-
ses and validate them over a dataset. LIT provides
first-class support for counterfactual generation:
new datapoints can be added on the fly, and their
effect on the model visualized immediately. Side-
by-side comparison allows for two models, or two
datapoints, to be visualized simultaneously.

We recognize that research workflows are con-

107

Figure 1: The LIT UI, showing a fine-tuned BERT (Devlin et al., 2019) model on the Stanford Sentiment Treebank
(Socher et al., 2013) development set. The top half shows a selection toolbar, and, left-to-right: the embedding
projector, the data table, and the datapoint editor. Tabs present different modules in the bottom half; the view above
shows classifier predictions, an attention visualization, and a confusion matrix.

stantly evolving, and designed LIT along the fol-
lowing principles:

• Flexible: Support a wide range of NLP tasks,
including classification, seq2seq, language mod-
eling, and structured prediction.

• Extensible: Designed for experimentation, and
can be reconfigured and extended for novel work-
flows.

• Modular: Components are self-contained,
portable, and simple to implement.

• Framework agnostic: Works with any model
that can run from Python —including Tensor-
Flow (Abadi et al., 2015), PyTorch (Paszke et al.,
2019), or remote models on a server.

• Easy to use: Low barrier to entry, with only a
small amount of code needed to add models and
data (Section 4.3), and an easy path to access
sophisticated functionality.

2 User Interface and Functionality

LIT has a browser-based UI comprised of modules
(Figure 1) which contain controls and visualiza-
tions for specific tasks (Table 1). At the most basic
level, LIT works as a simple demo server: one can
enter text, press a button, and see the model’s pre-
dictions. But by loading an evaluation set, allowing

dynamic datapoint generation, and an array of in-
teractive visualizations, metrics, and modules that
respond to user input, LIT supports a much richer
set of user journeys:

J1 - Explore the dataset. Users can interactively
explore datasets using different criteria across mod-
ules like the data table and the embeddings module
(similar to Smilkov et al. (2016)), in which a PCA
or UMAP (McInnes et al., 2018) projection can be
rotated, zoomed, and panned to explore clusters
and global structures (Figure 1-top left).

J2 - Find interesting datapoints. Users can
identify interesting datapoints for analysis, cycle
through them, and save selections for future use.
For example, users can select off-diagonal groups
from a confusion matrix, examine outlying clusters
in embedding space, or select a range based on
scalar values (Figure 4 (a)).

J3 - Explain local behavior. Users can deep-
dive into model behavior on selected individual
datapoints using a variety of modules depending
on the model task and type. For instance, users
can compare explanations from salience maps, in-
cluding local gradients (Li et al., 2016) and LIME
(Ribeiro et al., 2016), or look for patterns in atten-
tion heads (Figure 1-bottom).

108

Module Description

Attention Displays an attention visualization for each layer and head.

Confusion Matrix A customizable confusion matrix for single model or multi-model comparison.

Counterfactual Generator Creates counterfactuals for selected datapoint(s) using a variety of techniques.

Data Table A tabular view of the data, with sorting, searching, and filtering support.

Datapoint Editor Editable details of a selected datapoint.

Embeddings Visualizes dataset by layer-wise embeddings, projected down to 3 dimensions.

Metrics Table Displays metrics such as accuracy or BLEU score, on the whole dataset and slices.

Predictions Displays model predictions, including classification, text generation, language model
probabilities, and a graph visualization for structured prediction tasks.

Salience Maps Shows heatmaps for token-based feature attribution for a selected datapoint using tech-
niques like local gradients and LIME.

Scalar Plot Displays a jitter plot organizing datapoints by model output scores, metrics or other
scalar values.

Table 1: Built-in modules in the Language Interpretability Tool.

J4 - Generate new datapoints. Users can create
new datapoints based on datapoints of interest ei-
ther manually through edits, or with a range of auto-
matic counterfactual generators, such as backtrans-
lation (Bannard and Callison-Burch, 2005), nearest-
neighbor retrieval (Andoni and Indyk, 2006), word
substitutions (“great → terrible”), or adversarial
attacks like HotFlip (Ebrahimi et al., 2018) (Fig-
ure A.1). Datapoint provenance is tracked to facili-
tate easy comparison.

J5 - Compare side-by-side. Users can interac-
tively compare two or more models on the same
data, or a single model on two datapoints simul-
taneously. Visualizations automatically “replicate”
for a side-by-side view.

J6 - Compute metrics. LIT calculates and dis-
plays metrics for the whole dataset, the current
selection, as well as on manual or automatically-
generated slices (Figure 3 (c)) to easily find patterns
in model performance.

LIT’s interface allows these user journeys to
be explored interactively. Selecting a dataset and
model(s) will automatically show compatible mod-
ules in a multi-pane layout (Figure 1). A tabbed
bottom panel groups modules by workflow and
functionality, while the top panel shows persistent
modules for dataset exploration.

These modules respond dynamically to user in-
teractions. If a selection is made in the embedding
projector, for example, the metrics table will re-
spond automatically and compute scores on the se-
lected datapoints. Global controls make it easy to

page through examples, enter a comparison mode,
or save the selection as a named “slice”. In this way,
the user can quickly explore multiple workflows
using different combinations of modules.

A brief video demonstration of the LIT UI is
available at https://youtu.be/j0OfBWFUqIE.

3 Case Studies

Sentiment analysis. How well does a sentiment
classifier handle negation? We load the develop-
ment set of the Stanford Sentiment Treebank (SST;
Socher et al., 2013), and use the search function
in LIT’s data table (J1, J2) to find the 56 data-
points containing the word “not”. Looking at the
Metrics Table (J6), we find that surprisingly, our
BERT model (Devlin et al., 2019) gets 100% of
these correct! But we might want to know if this
is truly robust. With LIT, we can select individ-
ual datapoints and look for explanations (J3). For
example, take the negative review, “It’s not the ulti-
mate depression-era gangster movie.”. As shown
in Figure 2, salience maps suggest that “not” and
“ultimate” are important to the prediction.

We can verify this by creating modified inputs,
using LIT’s datapoint editor (J4). Removing “not”
gets a strongly positive prediction from “It’s the
ultimate depression-era gangster movie.”, while
replacing “ultimate” to get “It’s not the worst
depression-era gangster movie.” elicits a mildly
positive score from our model.

Gender bias in coreference. Does a system en-
code gendered associations, which might lead to
incorrect predictions? We load a coreference model

109

Figure 2: Salience maps on “It’s not the ultimate
depression-era gangster movie.”, suggesting that “not”
and “ultimate” are important to the model’s prediction.

Figure 3: Exploring a coreference model on the Wino-
gender dataset.

trained on OntoNotes (Hovy et al., 2006), and load
the Winogender (Rudinger et al., 2018) dataset into
LIT for evaluation. Each Winogender example has
a pronoun and two candidate referents, one a occu-
pation term like (“technician”) and one an “other
participant” (like “customer”). Our model predicts
coreference probabilities for each candidate. We
can explore the model’s sensitivity to pronouns by
comparing two examples side-by-side (see Figure 3
(a).) We can see how commonly the model makes
similar errors by paging through the dataset (J1), or
by selecting specific slices of interest. For example,
we can use the scalar plot module (J2) (Figure 3
(b)) to select datapoints where the occupation term
is associated with a high proportion of male or
female workers, according to the U.S. Bureau of

Figure 4: Investigating a local generation error, from
selection of an interesting example to finding relevant
training datapoints that led to an error.

Labor Statistics (BLS; Caliskan et al., 2017).
In the Metrics Table (J6), we can slice this se-

lection by pronoun type and by the true referent.
On the set of male-dominated occupations (< 25%
female by BLS), we see the model performs well
when the ground-truth agrees with the stereotype -
e.g. when the answer is the occupation term, male
pronouns are correctly resolved 83% of the time,
compared to female pronouns only 37.5% of the
time (Figure 3 (c)).

Debugging text generation. Does the training
data explain a particular error in text generation?
We analyze a T5 (Raffel et al., 2019) model on
the CNN-DM summarization task (Hermann et al.,
2015), and loosely follow the steps of Strobelt et al.
(2018). LIT’s scalar plot module (J2) allows us to
look at per-example ROUGE scores, and quickly
select an example with middling performance (Fig-
ure 4 (a)). We find the generated text (Figure 4
(b)) contains an erroneous constituent: “alastair
cook was replaced as captain by former captain
...”. We can dig deeper, using LIT’s language mod-
eling module (Figure 4 (c)) to see that the token
“by” is predicted with high probability (28.7%).

To find out how T5 arrived at this prediction, we
utilize the “similarity searcher” component through
the counterfactual generator tab (Figure 4 (d)).
This performs a fast approximate nearest-neighbor
lookup (Andoni and Indyk, 2006) from a pre-built

110

index over the training corpus, using embeddings
from the T5 decoder. With one click, we can re-
trieve 25 nearest neighbors and add them to the LIT
UI for inspection (as in Figure A.1). We see that
the words “captain” and “former” appear 34 and 16
times in these examples–along with 3 occurrences
of “replaced by” (Figure 4 (e))–suggesting a strong
prior toward our erroneous phrase.

4 System design and components

The LIT UI is written in TypeScript, and commu-
nicates with a Python backend that hosts models,
datasets, counterfactual generators, and other inter-
pretation components. LIT is agnostic to model-
ing frameworks; data is exchanged using NumPy
arrays and JSON, and components are integrated
through a declarative “spec” system (Section 4.4)
that minimizes cross-dependencies and encourages
modularity. A more detailed design schematic is
given in the Appendix, Figure A.2.

4.1 Frontend
The browser-based UI is a single-page web app,
built with lit-element2 and MobX3. A shared frame-
work of “service” objects tracks interaction state,
such as the active model, dataset, and selection, and
coordinates a set of otherwise-independent mod-
ules which provide controls and visualizations.

4.2 Backend
The Python backend serves models, data, and in-
terpretation components. The server is stateless,
but includes a caching layer for model predictions,
which frees components from needing to store inter-
mediate results and allows interactive use of large
models like BERT (Devlin et al., 2019) and GPT-2
(Radford et al., 2019). Component types include:

• Models which implement a predict() func-
tion, input spec(), and output spec().

• Datasets which load data from any source and
expose an .examples field and a spec().

• Interpreters are called on a model and a set of
datapoints, and return output—such as a salience
map—that may also depend on the model’s pre-
dictions.

• Generators are interpreters that return new input
datapoints from source datapoints.

2https://lit-element.polymer-project.
org/. Naming is coincidental; the Language Interpretability
Tool is not related to the lit-html or lit-element projects.

3https://mobx.js.org/

• Metrics are interpreters which return aggregate
scores for a list of inputs.

These components are designed to be self-
contained and interact through minimalist APIs,
with most exposing only one or two methods plus
spec information. They communicate through stan-
dard Python and NumPy types, making LIT com-
patible with most common modeling frameworks,
including TensorFlow (Abadi et al., 2015) and Py-
Torch (Paszke et al., 2019). Components are also
portable, and can easily be used in a notebook or
standalone script. For example:

dataset = SSTData(...)
model = SentimentModel(...)
lime = lime_explainer.LIME()
lime.run([dataset.examples[0]],

model, dataset)

will run the LIME (Ribeiro et al., 2016) component
and return a list of tokens and their importance to
the model prediction.

4.3 Running with your own model
LIT is built as a Python library, and its typical use is
to create a short demo.py script that loads models
and data and passes them to the lit.Server
class:

models = {'foo': FooModel(...),
'bar': BarModel(...)}

datasets = {'baz': BazDataset(...)}
server = lit.Server(models, datasets)
server.serve()

A full example script is included in the Appendix
(Figure A.3). The same server can host several
models and datasets for side-by-side comparison,
and can also interact with remotely-hosted models.

4.4 Extensibility: the spec() system
NLP models come in many shapes, with inputs
that may involve multiple text segments, additional
categorical features, scalars, and more, and output
modalities that include classification, regression,
text generation, and span labeling. Models may
have multiple heads of different types, and may
also return additional values like gradients, embed-
dings, or attention maps. Rather than enumerate all
variations, LIT describes each model and dataset
with an extensible system of semantic types.

For example, a dataset class for textual entail-
ment (Dagan et al., 2006; Bowman et al., 2015)
might have spec(), describing available fields:

111

• premise: TextSegment()
• hypothesis: TextSegment()
• label: MulticlassLabel(vocab=...)

A model for the same task would have an
input spec() to describe required inputs:

• premise: TextSegment()
• hypothesis: TextSegment()

As well as an output spec() to describe its
predictions:

• probas: MulticlassPreds(
vocab=..., parent="label")

Other LIT components can read this spec, and
infer how to operate on the data. For example, the
MulticlassMetrics component searches for
MulticlassPreds fields (which contain prob-
abilities), uses the vocab annotation to decode to
string labels, and evaluates these against the input
field described by parent. Frontend modules can
detect these fields, and automatically display: for
example, the embedding projector will appear if
Embeddings are available.

New types can be easily defined: a
SpanLabels class might represent the out-
put of a named entity recognition model, and
custom components can be added to interpret it.

5 Related Work

A number of tools exist for interactive analysis of
trained ML models. Many are general-purpose,
such as the What-If Tool (Wexler et al., 2020), Cap-
tum (Kokhlikyan et al., 2019), Manifold (Zhang
et al., 2018), or InterpretML (Nori et al., 2019),
while others focus on specific applications like fair-
ness, including FairVis (Cabrera et al., 2019) and
FairSight (Ahn and Lin, 2019). And some pro-
vide rich support for counterfactual analysis, either
within-dataset (What-If Tool) or dynamically gen-
erated as in DiCE (Mothilal et al., 2020).

For NLP, a number of tools exist for specific
model classes, such as RNNs (Strobelt et al., 2017),
Transformers (Hoover et al., 2020; Vig and Be-
linkov, 2019), or text generation (Strobelt et al.,
2018). More generally, AllenNLP Interpret (Wal-
lace et al., 2019) introduces a modular framework
for interpretability components, focused on single-
datapoint explanations and integrated tightly with
the AllenNLP (Gardner et al., 2017) framework.

While many components exist in other tools,
LIT aims to integrate local explanations, aggre-
gate analysis, and counterfactual generation into a
single tool. In this, it is most similar to Errudite
(Wu et al., 2019), which provides an integrated UI
for NLP error analysis, including a custom DSL
for text transformations and the ability to evaluate
over a corpus. However, LIT is explicitly designed
for flexibility: we support a broad range of work-
flows and provide a modular design for extension
with new tasks, visualizations, and generation tech-
niques.

Limitations LIT is an evaluation tool, and as
such is not directly useful for training-time mon-
itoring. As LIT is built to be interactive, it does
not scale to large datasets as well as offline tools
such as TFMA (Mewald, 2019). (Currently, the
LIT UI can handle about 10,000 examples at once.)
Because LIT is framework-agnostic, it does not
have the deep model integration of tools such as
AllenNLP Interpret (Wallace et al., 2019) or Cap-
tum (Kokhlikyan et al., 2019). This makes many
things simpler and more portable, but also requires
more code for techniques like integrated gradients
(Sundararajan et al., 2017) that need to directly
manipulate parts of the model.

6 Conclusion and Roadmap

LIT provides an integrated UI and a suite of com-
ponents for visualizing and exploring the behav-
ior of NLP models. It enables interactive analysis
both at the single-datapoint level and over a whole
dataset, with first-class support for counterfactual
generation and evaluation. LIT supports a diverse
range of workflows, from explaining individual pre-
dictions to disaggregated analysis to probing for
bias through counterfactuals. LIT also supports a
range of model types and techniques out of the box,
and is designed for extensibility through simple,
framework-agnostic APIs.

LIT is under active development by a small team.
Planned upcoming additions include new counter-
factual generation plug-ins, additional metrics and
visualizations for sequence and structured output
types, and a greater ability to customize the UI for
different applications.

LIT is open-source under an Apache 2.0 license,
and we welcome contributions from the community
at https://github.com/pair-code/lit.

112

Acknowledgments

We thank Slav Petrov, Martin Wattenberg, Fer-
nanda Viegas, Kellie Webster, Emily Pitler, Dipan-
jan Das, Leslie Lai, Kristen Olson, and other mem-
bers of PAIR and the Language team at Google
Research for many productive discussions during
development. We also thank our anonymous re-
viewers for their helpful feedback, and Pere Lluis,
Luke Gessler, and Kevin Robinson for their contri-
butions to the open-source code.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Yongsu Ahn and Yu-Ru Lin. 2019. Fairsight: Visual
analytics for fairness in decision making. IEEE
Transactions on Visualization and Computer Graph-
ics, page 1–1.

Alexandr Andoni and Piotr Indyk. 2006. Near-optimal
hashing algorithms for approximate nearest neigh-
bor in high dimensions. In 2006 47th annual
IEEE symposium on foundations of computer sci-
ence (FOCS’06), pages 459–468. IEEE.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 597–
604, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Yonatan Belinkov, Sebastian Gehrmann, and Ellie
Pavlick. 2020. Interpretability and analysis in neural
NLP. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: Tu-
torial Abstracts, pages 1–5, Online. Association for
Computational Linguistics.

John Blitzer and Fernando Pereira. 2007. Domain
adaptation of natural language processing systems.
University of Pennsylvania, pages 1–106.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016.
Man is to computer programmer as woman is to

homemaker? debiasing word embeddings. In Ad-
vances in Neural Information Processing Systems
29, pages 4349–4357.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Ángel Alexander Cabrera, Will Epperson, Fred
Hohman, Minsuk Kahng, Jamie Morgenstern, and
Duen Horng Chau. 2019. Fairvis: Visual analytics
for discovering intersectional bias in machine learn-
ing. In 2019 IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 46–56. IEEE.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Machine Learning Challenges. Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication, and Recognising Tectual Entailment, pages
177–190, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31–36, Melbourne, Australia. Association for Com-
putational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. AllenNLP: A deep semantic natural language
processing platform.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems 28, pages 1693–1701.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A visual analysis tool to
explore learned representations in Transformer mod-
els. In Proceedings of the 58th Annual Meeting of

113

the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 187–196, Online. Asso-
ciation for Computational Linguistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, NAACL-Short
’06, pages 57–60, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Narine Kokhlikyan, Vivek Miglani, Miguel Mar-
tin, Edward Wang, Jonathan Reynolds, Alexan-
der Melnikov, Natalia Lunova, and Orion Reblitz-
Richardson. 2019. Pytorch captum. https://
github.com/pytorch/captum.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 681–691, San Diego, California. As-
sociation for Computational Linguistics.

Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and
Dieuwke Hupkes, editors. 2019. Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP. Association
for Computational Linguistics, Florence, Italy.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Leland McInnes, John Healy, and James Melville.
2018. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint
arXiv:1802.03426.

Clemens Mewald. 2019. Introducing tensorflow model
analysis: Scaleable, sliced, and full-pass metrics.
https://blog.tensorflow.org/2018/03/
introducing-tensorflow-model-analysis.
html.

Ramaravind K Mothilal, Amit Sharma, and Chenhao
Tan. 2020. Explaining machine learning classifiers
through diverse counterfactual explanations. In Pro-
ceedings of the 2020 Conference on Fairness, Ac-
countability, and Transparency, pages 607–617.

Harsha Nori, Samuel Jenkins, Paul Koch, and Rich
Caruana. 2019. InterpretML: A unified framework
for machine learning interpretability. arXiv preprint
arXiv:1909.09223.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multi-
task learners. https://blog.openai.com/
better-language-models.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “why should I trust you?”: Explaining the pre-
dictions of any classifier. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 97–101, San Diego, California. As-
sociation for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14, New Orleans, Louisiana. Association
for Computational Linguistics.

Daniel Smilkov, Nikhil Thorat, Charles Nicholson,
Emily Reif, Fernanda B Viégas, and Martin Watten-
berg. 2016. Embedding projector: Interactive visu-
alization and interpretation of embeddings. In NIPS

114

2016 Workshop on Interpretable Machine Learning
in Complex Systems.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. 2018. Seq2seq-vis: A visual
debugging tool for sequence-to-sequence models.
IEEE transactions on visualization and computer
graphics, 25(1):353–363.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfis-
ter, and Alexander M Rush. 2017. LSTMvis: A tool
for visual analysis of hidden state dynamics in recur-
rent neural networks. IEEE transactions on visual-
ization and computer graphics, 24(1):667–676.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70, pages 3319–3328.
PMLR.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Compu-
tational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg,
F. Viégas, and J. Wilson. 2020. The what-if tool: In-
teractive probing of machine learning models. IEEE
Transactions on Visualization and Computer Graph-
ics, 26(1):56–65.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 747–763, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and
David Ebert. 2018. Manifold: A model-agnostic
framework for interpretation and diagnosis of ma-
chine learning models. IEEE Transactions on Visu-
alization and Computer Graphics, PP:1–1.

115

A Appendices

Figure A.1: The counterfactual generator module, showing a set of generated datapoints in the staging area. The
labels can be maually edited before adding these to the dataset. In this example, the counterfactuals were created
using the word replacer, replacing the word “great” with “terrible” in each passage.

Figure A.2: Overview of LIT system architecture. The backend manages models, datasets, metrics, generators,
and interpretation components, as well as a caching layer to speed up interactive use. The frontend is a TypeScript
single-page app consisting of independent modules (webcomponents built with lit-element) which interact with
shared “services” that manage interaction state. The backend can be extended by passing components to the
lit.Server class in the demo script (Section 4.3 and Figure A.3), while the frontend can be extended by
importing new components in a single file, layout.ts, which both lists available modules and specifies their
position in the UI (Figure 1).

116

NLI_LABELS = ['entailment', 'neutral', 'contradiction']

class MultiNLIData(lit.Dataset):
"""Loader for MultiNLI dataset."""

def __init__(self, path):
Read the eval set from a .tsv file
df = pandas.read_csv(path, sep='\t')
Store as a list of dicts, conforming to self.spec()
self._examples = [{

'premise': row['sentence1'],
'hypothesis': row['sentence2'],
'label': row['gold_label'],
'genre': row['genre'],

} for _, row in df.iterrows()]

def spec(self):
return {

'premise': lit_types.TextSegment(),
'hypothesis': lit_types.TextSegment(),
'label': lit_types.Label(vocab=NLI_LABELS),
We can include additional fields, which don't have to be used by the model.
'genre': lit_types.Label(),

}

class MyNLIModel(lit.Model):
"""Wrapper for a Natural Language Inference model."""

def __init__(self, model_path, **kw):
Load the model into memory so we're ready for interactive use.
self._model = _load_my_model(model_path, **kw)

##
LIT API implementations
def predict(self, inputs: List[Input]) -> Iterable[Preds]:

"""Predict on a single minibatch of examples."""
examples = [self._model.convert_dict_input(d) for d in inputs] # any custom preprocessing
return self._model.predict_examples(examples) # returns a dict for each input

def input_spec(self):
"""Describe the inputs to the model."""
return {

'premise': lit_types.TextSegment(),
'hypothesis': lit_types.TextSegment(),

}

def output_spec(self):
"""Describe the model outputs."""
return {

The 'parent' keyword tells LIT where to look for gold labels when computing metrics.
'probas': lit_types.MulticlassPreds(vocab=NLI_LABELS, parent='label'),
This model returns two different embeddings, but you can easily add more.
'output_embs': lit_types.Embeddings(),
'mean_word_embs': lit_types.Embeddings(),
In LIT, we treat tokens as another model output. There can be more than one,
and the 'align' field describes which input segment they correspond to.
'premise_tokens': lit_types.Tokens(align='premise'),
'hypothesis_tokens': lit_types.Tokens(align='hypothesis'),
Gradients are also returned by the model; 'align' here references a Tokens field.
'premise_grad': lit_types.TokenGradients(align='premise_tokens'),
'hypothesis_grad': lit_types.TokenGradients(align='hypothesis_tokens'),
Similarly, attention references a token field, but here we want the model's full "internal"
tokenization, which might be something like: [START] foo bar baz [SEP] spam eggs [END]
'tokens': lit_types.Tokens(),
'attention_layer0': lit_types.AttentionHeads(align=['tokens', 'tokens']),
'attention_layer1': lit_types.AttentionHeads(align=['tokens', 'tokens']),
'attention_layer2': lit_types.AttentionHeads(align=['tokens', 'tokens']),
...and so on. Since the spec is just a dictionary of dataclasses, you can populate it
in a loop if you have many similar fields.

}

def main(_):
datasets = {

'mnli_matched': MultiNLIData('/path/to/dev_matched.tsv'),
'mnli_mismatched': MultiNLIData('/path/to/dev_mismatched.tsv'),

}

models = {
'model_foo': MyNLIModel('/path/to/model/foo/files'),
'model_bar': MyNLIModel('/path/to/model/bar/files'),

}

lit_demo = lit.Server(models, datasets, port=4321)
lit_demo.serve()

if __name__ == '__main__':
main()

Figure A.3: Example demo script to run LIT with two NLI models and the MultiNLI (Williams et al., 2018)
development sets. The actual model can be implemented in TensorFlow, PyTorch, C++, a REST API, or anything
that can be wrapped in a Python class: to work with LIT, users needs only to define the spec fields and implement
a predict() function which returns a dict of NumPy arrays for each input datapoint. The dataset loader is even
simpler; a complete implementation is given above to read from a TSV file, but libraries like TensorFlow Datasets
can also be used.

117

Figure A.4: Full UI screenshot, showing a BERT (Devlin et al., 2019) model on a sample from the “matched”
split of the MultiNLI (Williams et al., 2018) development set. The embedding projector (top left) shows three
clusters, corresponding to the output layer of the model, and colored by the true label. On the bottom, the metrics
table shows accuracy scores faceted by genre, and a confusion matrix shows the model predictions against the gold
labels.

(a)

(b)

Figure A.5: Confusion matrix (a) and side-by-side comparison of predictions and salience maps (b) on two sen-
timent classifiers. In model comparison mode, the confusion matrix can compare two models, and clicking an
off-diagonal cell with select examples where the two models make different predictions. In (b) we see one such
example, where the model in the second row (“sst 1”) predicts incorrectly, even though gradient-based salience
show both models focusing on the same tokens.

118

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 119–126
November 16-20, 2020. c©2020 Association for Computational Linguistics

TextAttack: A Framework for Adversarial Attacks, Data
Augmentation, and Adversarial Training in NLP

John X. Morris1, Eli Lifland1, Jin Yong Yoo1, Jake Grigsby1, Di Jin2, Yanjun Qi1

1 Department of Computer Science, University of Virginia
2 Computer Science and Artificial Intelligence Laboratory, MIT

{jm8wx, yq2h}@virginia.edu

Abstract

While there has been substantial research us-
ing adversarial attacks to analyze NLP mod-
els, each attack is implemented in its own
code repository. It remains challenging to de-
velop NLP attacks and utilize them to improve
model performance. This paper introduces
TextAttack, a Python framework for adver-
sarial attacks, data augmentation, and adversar-
ial training in NLP. TextAttack builds at-
tacks from four components: a goal function,
a set of constraints, a transformation, and a
search method. TextAttack’s modular de-
sign enables researchers to easily construct at-
tacks from combinations of novel and exist-
ing components. TextAttack provides im-
plementations of 16 adversarial attacks from
the literature and supports a variety of models
and datasets, including BERT and other trans-
formers, and all GLUE tasks. TextAttack
also includes data augmentation and adver-
sarial training modules for using components
of adversarial attacks to improve model ac-
curacy and robustness. TextAttack is de-
mocratizing NLP: anyone can try data aug-
mentation and adversarial training on any
model or dataset, with just a few lines of
code. Code and tutorials are available at
https://github.com/QData/TextAttack.

1 Introduction
Over the last few years, there has been growing

interest in investigating the adversarial robustness
of NLP models, including new methods for gener-
ating adversarial examples and better approaches
to defending against these adversaries (Alzantot
et al., 2018; Jin et al., 2019; Kuleshov et al., 2018;
Li et al., 2019; Gao et al., 2018; Wang et al., 2019;
Ebrahimi et al., 2017; Zang et al., 2020; Pruthi
et al., 2019). It is difficult to compare these attacks
directly and fairly, since they are often evaluated
on different data samples and victim models. Re-

¬OULJLQaO
¬PeUIecW SeUfRUmaQce b\ Whe acWRU¬¬ → PRVLWLYe (99%)

¬AdYeUVaULaO
¬SSRWOeVV SeUfRUmaQce b\ Whe acWRU → NeJaWLYe (100%)

Figure 1: Adversarial example generated using Jin et al.
(2019)’s TextFooler for a BERT-based sentiment classifier.
Swapping out ”perfect” with synonym ”spotless” completely
changes the model’s prediction, even though the underlying
meaning of the text has not changed.

implementing previous work as a baseline is often
time-consuming and error-prone due to a lack of
source code, and precisely replicating results is
complicated by small details left out of the publica-
tion. These barriers make benchmark comparisons
hard to trust and severely hinder the development
of this field.

To encourage the development of the adversar-
ial robustness field, we introduce TextAttack,
a Python framework for adversarial attacks, data
augmentation, and adversarial training in NLP.

To unify adversarial attack methods into one
system, we decompose NLP attacks into four com-
ponents: a goal function, a set of constraints, a
transformation, and a search method. The attack at-
tempts to perturb an input text such that the model
output fulfills the goal function (i.e., indicating
whether the attack is successful) and the perturba-
tion adheres to the set of constraints (e.g., gram-
mar constraint, semantic similarity constraint). A
search method is used to find a sequence of trans-
formations that produce a successful adversarial
example.

This modular design enables us to easily
assemble attacks from the literature while re-
using components that are shared across attacks.
TextAttack provides clean, readable implemen-
tations of 16 adversarial attacks from the literature.
For the first time, these attacks can be benchmarked,
compared, and analyzed in a standardized setting.

119

DeYeORSiQg
AWWackV

CUeaWiQg
NeZ AWWacNV

DaWa
AXgPeQWaWiRQ

BeQchPaUNiQg
AWWacNV

AdYeUVaUiaO
TUaiQiQg

¬
CreaWe neZ aWWackV
aV a combinaWion of

noYel and pre-e[iVWing
componenWV

Te[WAWWack's 82+
PUeWUaiQed MRdeOV

EYalXaWe neZ
aWWackV againVW

VWandardi]ed modelV

EYalXaWe aWWackV
from liWeraWXre againVW
VWandardi]ed modelVUVe aWWack recipeV

inVWead of
reimplemenWing

AWWack
MRdXOe

ReimplemenWaWion of
aWWackV from liWeraWXre
CoYerV 16 paperV

Goal FXncWion
ConVWrainWV
TranVformaWion
Search MeWhod

GeneraWe adYerVarial
e[ampleV

AdYerVarial
E[ampleV

UVeU MRdeO

RepeaW in Wraining loop

Train

Train

TextAttack�Training�Pipeline

UWiOi]iQg
AWWackV

AWWack�ReciSeV

FoXU ComponenWV
of NLP AWWack

¬

AXgPeQWeU
MRdXOe

GeneraWe¬
neZ VampleV UVeU MRdeONeZ DaWa

SampleV

Figure 2: Main features of TextAttack.

TextAttack’s design also allows researchers to
easily construct new attacks from combinations
of novel and existing components. In just a few
lines of code, the same search method, transfor-
mation and constraints used in Jin et al. (2019)’s
TextFooler can be modified to attack a transla-
tion model with the goal of changing every word
in the output.

TextAttack is directly integrated with Hug-
gingFace’s transformers and nlp libraries. This
allows users to test attacks on models and datasets.
TextAttack provides dozens of pre-trained
models (LSTM, CNN, and various transformer-
based models) on a variety of popular datasets.
Currently TextAttack supports a multitude of
tasks including summarization, machine transla-
tion, and all nine tasks from the GLUE benchmark.
TextAttack also allows users to provide their
own models and datasets.

Ultimately, the goal of studying adversarial at-
tacks is to improve model performance and robust-
ness. To that end, TextAttack provides easy-
to-use tools for data augmentation and adversarial
training. TextAttack’s Augmenter class uses
a transformation and a set of constraints to produce
new samples for data augmentation. Attack recipes
are re-used in a training loop that allows models to
train on adversarial examples. These tools make it
easier to train accurate and robust models.

Uses for TextAttack include1:
1All can be done in < 5 lines of code. See A.1.

• Benchmarking and comparing NLP attacks
from previous works on standardized models
& datasets.

• Fast development of NLP attack methods by re-
using abundant available modules.

• Performing ablation studies on individual com-
ponents of proposed attacks and data augmenta-
tion methods.

• Training a model (CNN, LSTM, BERT,
RoBERTa, etc.) on an augmented dataset.

• Adversarial training with attacks from the litera-
ture to improve a model’s robustness.

2 The TextAttack Framework
TextAttack aims to implement attacks which,

given an NLP model, find a perturbation of an in-
put sequence that satisfies the attack’s goal and
adheres to certain linguistic constraints. In this
way, attacking an NLP model can be framed as a
combinatorial search problem. The attacker must
search within all potential transformations to find
a sequence of transformations that generate a suc-
cessful adversarial example.

Each attack can be constructed from four com-
ponents:

1. A task-specific goal function that determines
whether the attack is successful in terms of
the model outputs.
Examples: untargeted classification, targeted
classification, non-overlapping output, mini-
mum BLEU score.

2
120

2. A set of constraints that determine if a per-
turbation is valid with respect to the original
input.
Examples: maximum word embedding dis-
tance, part-of-speech consistency, grammar
checker, minimum sentence encoding cosine
similarity.

3. A transformation that, given an input, gener-
ates a set of potential perturbations.
Examples: word embedding word swap, the-
saurus word swap, homoglyph character sub-
stitution.

4. A search method that successively queries
the model and selects promising perturbations
from a set of transformations.
Examples: greedy with word importance rank-
ing, beam search, genetic algorithm.

See A.2 for a full explanation of each goal func-
tion, constraint, transformation, and search method
that’s built-in to TextAttack.

3 Developing NLP Attacks with
TextAttack

TextAttack is available as a Python package
installed from PyPI, or via direct download from
GitHub. TextAttack is also available for use
through our demo web app, displayed in Figure 3.

Python users can test attacks by creating and
manipulating Attack objects. The command-line
API offers textattack attack, which allows
users to specify attacks from their four components
or from a single attack recipe and test them on
different models and datasets.

TextAttack supports several different output
formats for attack results:

• Printing results to stdout.
• Printing to a text file or CSV.
• Printing attack results to an HTML table.
• Writing a table of attack results to a visualization

server, like Visdom or Weights & Biases.

3.1 Benchmarking Existing Attacks with
Attack Recipes

TextAttack’s modular design allows us to
implement many different attacks from past work
in a shared framework, often by adding only one
or two new components. Table 1 categorizes 16
attacks based on their goal functions, constraints,
transformations and search methods.

All of these attacks are implemented as ”at-
tack recipes” in TextAttack and can be bench-
marked with just a single command. See A.3

Figure 3: Screenshot of TextAttack’s web interface run-
ning the TextBugger black-box attack (Li et al., 2019).

for a comparison between papers’ reported at-
tack results and the results achieved by running
TextAttack.

3.2 Creating New Attacks by Combining
Novel and Existing Components

As is clear from Table 1, many components are
shared between NLP attacks. New attacks often re-
use components from past work, adding one or two
novel pieces. TextAttack allows researchers to
focus on the generation of new components rather
than replicating past results. For example, Jin et al.
(2019) introduced TextFooler as a method for
attacking classification and entailment models. If
a researcher wished to experiment with applying
TextFooler’s search method, transformations,
and constraints to attack translation models, all they
need is to implement a translation goal function in
TextAttack. They would then be able to plug
in this goal function to create a novel attack that
could be used to analyze translation models.

3.3 Evaluating Attacks on TextAttack’s
Pre-Trained Models

As of the date of this submission, TextAttack
provides users with 82 pre-trained models, includ-
ing word-level LSTM, word-level CNN, BERT, and
other transformer based models pre-trained on var-
ious datasets provided by HuggingFace nlp. Since
TextAttack is integrated with the nlp library, it
can automatically load the test or validation data
set for the corresponding pre-trained model. While
the literature has mainly focused on classification
and entailment, TextAttack’s pretrained mod-
els enable research on the robustness of models
across all GLUE tasks.

3
121

Attack Recipe Goal
Function

Constraints Transformation Search Method

bae
(Garg and
Ramakrishnan, 2020)

Untargeted
Classification

USE sentence encoding
cosine similarity

BERT Masked Token
Prediction

Greedy-WIR

bert-attack
(Li et al., 2020)

Untargeted
Classification

USE sentence encoding
cosine similarity,
Maximum number of
words perturbed

BERT Masked Token
Prediction (with
subword expansion)

Greedy-WIR

deepwordbug
(Gao et al., 2018)

{Untargeted,
Targeted}
Classification

Levenshtein edit
distance

{Character Insertion,
Character Deletion,
Neighboring Character
Swap, Character
Substitution}*

Greedy-WIR

alzantot,
fast-alzantot
(Alzantot et al., 2018;
Jia et al., 2019)

Untargeted
{Classification,
Entailment}

Percentage of words
perturbed, Language
Model perplexity, Word
embedding distance

Counter-fitted word
embedding swap

Genetic
Algorithm

iga
(Wang et al., 2019)

Untargeted
{Classification,
Entailment}

Percentage of words
perturbed, Word
embedding distance

Counter-fitted word
embedding swap

Genetic
Algorithm

input-reduction
(Feng et al., 2018)

Input
Reduction

Word deletion Greedy-WIR

kuleshov
(Kuleshov et al., 2018)

Untargeted
Classification

Thought vector encoding
cosine similarity,
Language model
similarity probability

Counter-fitted word
embedding swap

Greedy word
swap

hotflip (word swap)
(Ebrahimi et al., 2017)

Untargeted
Classification

Word Embedding Cosine
Similarity,
Part-of-speech match,
Number of words
perturbed

Gradient-Based Word
Swap

Beam search

morpheus
(Tan et al., 2020)

Minimum
BLEU Score

Inflection Word Swap Greedy search

pruthi
(Pruthi et al., 2019)

Untargeted
Classification

Minimum word length,
Maximum number of
words perturbed

{Neighboring Character
Swap, Character
Deletion, Character
Insertion,
Keyboard-Based
Character Swap}*

Greedy search

pso
(Zang et al., 2020)

Untargeted
Classification

HowNet Word Swap Particle Swarm
Optimization

pwws
(Ren et al., 2019)

Untargeted
Classification

WordNet-based
synonym swap

Greedy-WIR
(saliency)

seq2sick
(black-box)
(Cheng et al., 2018)

Non-
overlapping
output

Counter-fitted word
embedding swap

Greedy-WIR

textbugger
(black-box)
(Li et al., 2019)

Untargeted
Classification

USE sentence encoding
cosine similarity

{Character Insertion,
Character Deletion,
Neighboring Character
Swap, Character
Substitution}*

Greedy-WIR

textfooler
(Jin et al., 2019)

Untargeted
{Classification,
Entailment}

Word Embedding
Distance, Part-of-speech
match, USE sentence
encoding cosine
similarity

Counter-fitted word
embedding swap

Greedy-WIR

Table 1: TextAttack attack recipes categorized within our framework: search method, transformation, goal function,
constraints. All attack recipes include an additional constraint which disallows the replacement of stopwords. Greedy search
with Word Importance Ranking is abbreviated as Greedy-WIR.
* indicates a combination of multiple transformations

4
122

4 Utilizing TextAttack to Improve
NLP Models

4.1 Evaluating Robustness of Custom Models
TextAttack is model-agnostic - meaning it

can run attacks on models implemented in any deep
learning framework. Model objects must be able
to take a string (or list of strings) and return an
output that can be processed by the goal function.
For example, machine translation models take a list
of strings as input and produce a list of strings as
output. Classification and entailment models return
an array of scores. As long as the user’s model
meets this specification, the model is fit to use with
TextAttack.

4.2 Model Training
TextAttack users can train standard LSTM,

CNN, and transformer based models, or a user-
customized model on any dataset from the nlp li-
brary using the textattack train command.
Just like pre-trained models, user-trained models
are compatible with commands like textattack
attack and textattack eval.

4.3 Data Augmentation
While searching for adversarial examples,

TextAttack’s transformations generate pertur-
bations of the input text, and apply constraints to
verify their validity. These tools can be reused to
dramatically expand the training dataset by intro-
ducing perturbed versions of existing samples. The
textattack augment command gives users
access to a number of pre-packaged recipes for
augmenting their dataset. This is a stand-alone
feature that can be used with any model or train-
ing framework. When using TextAttack’s mod-
els and training pipeline, textattack train
--augment automatically expands the dataset be-
fore training begins. Users can specify the fraction
of each input that should be modified and how
many additional versions of each example to create.
This makes it easy to use existing augmentation
recipes on different models and datasets, and is a
great way to benchmark new techniques.

Figure 4 shows empirical results we obtained us-
ing TextAttack’s augmentation. Augmentation
with TextAttack immediately improves the per-
formance of a WordCNN model on small datasets.

4.4 Adversarial Training
With textattack train --attack, at-

tack recipes can be used to create new training

Figure 4: Performance of the built-in WordCNNmodel on the
rotten tomatoes dataset with increasing training set size.
Data augmentation recipes like EasyDataAugmenter
(EDA, (Wei and Zou, 2019)) and Embedding are most help-
ful when working with very few samples. Shaded regions
represent 95% confidence intervals over N = 5 runs.

sets of adversarial examples. After training for a
number of epochs on the clean training set, the at-
tack generates an adversarial version of each input.
This perturbed version of the dataset is substituted
for the original, and is periodically regenerated ac-
cording to the model’s current weaknesses. The
resulting model can be significantly more robust
against the attack used during training. Table 2
shows the accuracy of a standard LSTM classifier
with and without adversarial training against differ-
ent attack recipes implemented in TextAttack.

5 TextAttack Under the Hood
TextAttack is optimized under-the-hood to

make implementing and running adversarial attacks
simple and fast.

AttackedText. A common problem with im-
plementations of NLP attacks is that the original
text is discarded after tokenization; thus, the trans-
formation is performed on the tokenized version
of the text. This causes issues with capitalization
and word segmentation. Sometimes attacks swap a
piece of a word for a complete word (for example,
transforming ‘‘aren’t" into ‘‘aren’too").

To solve this problem, TextAttack stores
each input as a AttackedText object which
contains the original text and helper meth-
ods for transforming the text while retaining
tokenization. Instead of strings or tensors,

5
123

Attacked By
Trained Against - deepwordbug textfooler pruthi hotflip bae
baseline (early stopping) 77.30% 23.46% 2.23% 59.01% 64.57% 25.51%
deepwordbug (20 epochs) 76.38% 35.07% 4.78% 57.08% 65.06% 27.63%
deepwordbug (75 epochs) 73.16% 44.74% 13.42% 58.28% 66.87% 32.77%
textfooler (20 epochs) 61.85% 40.09% 29.63% 52.60% 55.75% 39.36%

Table 2: The default LSTM model trained on 3k samples from the sst2 dataset. The baseline uses early stopping on a clean
training set. deepwordbug and textfooler attacks are used for adversarial training. ‘Accuracy Under Attack‘ on the eval
set is reported for several different attack types.

classes in TextAttack operate primarily on
AttackedText objects. When words are added,
swapped, or deleted, an AttackedText can
maintain proper punctuation and capitalization.
The AttackedText also contains implementa-
tions for common linguistic functions like splitting
text into words, splitting text into sentences, and
part-of-speech tagging.

Caching. Search methods frequently encounter
the same input at different points in the search.
In these cases, it is wise to pre-store values to
avoid unnecessary computation. For each input
examined during the attack, TextAttack caches
its model output, as well as the whether or not
it passed all of the constraints. For some search
methods, this memoization can save a significant
amount of time.2

6 Related Work
We draw inspiration from the Transformers

library (Wolf et al., 2019) as an example of a
well-designed Natural Language Processing library.
Some of TextAttack’s models and tokenizers
are implemented using Transformers.

cleverhans (Papernot et al., 2018) is a library
for constructing adversarial examples for computer
vision models. Like cleverhans, we aim to
provide methods that generate adversarial exam-
ples across a variety of models and datasets. In
some sense, TextAttack strives to be a solution
like cleverhans for the NLP community. Like
cleverhans, attacks in TextAttack all im-
plement a base Attack class. However, while
cleverhans implements many disparate attacks
in separate modules, TextAttack builds attacks
from a library of shared components.

There are some existing open-source libraries re-
lated to adversarial examples in NLP. Trickster
proposes a method for attacking NLP models based
on graph search, but lacks the ability to ensure

2Caching alone speeds up the genetic algorithm of Alzantot
et al. (2018) by a factor of 5.

that generated examples satisfy a given constraint
(Kulynych et al., 2018). TEAPOT is a library for
evaluating adversarial perturbations on text, but
only supports the application of ngram-based com-
parisons for evaluating attacks on machine transla-
tion models (Michel et al., 2019). Most recently,
AllenNLP Interpret includes functionality
for running adversarial attacks on NLP models, but
is intended only for the purpose of interpretability,
and only supports attacks via input-reduction or
greedy gradient-based word swap (Wallace et al.,
2019). TextAttack has a broader scope than any
of these libraries: it is designed to be extendable to
any NLP attack.

7 Conclusion
We presented TextAttack, an open-source

framework for testing the robustness of NLP mod-
els. TextAttack defines an attack in four mod-
ules: a goal function, a list of constraints, a trans-
formation, and a search method. This allows us to
compose attacks from previous work from these
modules and compare them in a shared environ-
ment. These attacks can be reused for data aug-
mentation and adversarial training. As new at-
tacks are developed, we will add their components
to TextAttack. We hope TextAttack helps
lower the barrier to entry for research into robust-
ness and data augmentation in NLP. 3

8 Acknowledgements
The authors would like to thank everyone who

has contributed to make TextAttack a reality:
Hanyu Liu, Kevin Ivey, Bill Zhang, and Alan
Zheng, to name a few. Thanks to the IGA creators
(Wang et al., 2019) for contributing an implementa-
tion of their algorithm to our framework. Thanks to
the folks at HuggingFace for creating such easy-to-
use software; without them, TextAttack would
not be what it is today.

3For more information, an appendix is available online
here.

6
124

References
Abhaya Agarwal and Alon Lavie. 2008. Meteor,

m-bleu and m-ter: Evaluation metrics for high-
correlation with human rankings of machine trans-
lation output. In WMT@ACL.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani B. Srivastava, and Kai-Wei
Chang. 2018. Generating natural language adversar-
ial examples. ArXiv, abs/1804.07998.

Daniel Matthew Cer, Yinfei Yang, Sheng yi Kong,
Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah
Constant, Mario Guajardo-Cespedes, Steve Yuan,
Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal sentence encoder. ArXiv,
abs/1803.11175.

Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang,
and Cho-Jui Hsieh. 2018. Seq2sick: Evaluating the
robustness of sequence-to-sequence models with ad-
versarial examples.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In EMNLP.

Zhendong Dong, Qiang Dong, and Changling Hao.
2006. Hownet and the computation of meaning.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2017. Hotflip: White-box adversarial exam-
ples for text classification. In ACL.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56.

Siddhant Garg and Goutham Ramakrishnan. 2020.
Bae: Bert-based adversarial examples for text clas-
sification.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine
Bosselut, David Golub, and Yejin Choi. 2018.
Learning to write with cooperative discriminators.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1638–1649, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
Percy Liang. 2019. Certified robustness to adversar-
ial word substitutions. In EMNLP/IJCNLP.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
ArXiv, abs/1907.11932.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. ArXiv, abs/1602.02410.

James Kennedy and Russell Eberhart. 1995. Particle
swarm optimization. In Proceedings of ICNN’95-
International Conference on Neural Networks, vol-
ume 4, pages 1942–1948. IEEE.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Skip-thought vectors.
ArXiv, abs/1506.06726.

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung
Lau, and Stefano Ermon. 2018. Adversarial exam-
ples for natural language classification problems.

Bogdan Kulynych, Jamie Hayes, Nikita Samarin, and
Carmela Troncoso. 2018. Evading classifiers in dis-
crete domains with provable optimality guarantees.
CoRR, abs/1810.10939.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversar-
ial text against real-world applications. ArXiv,
abs/1812.05271.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. Bert-attack: Adversarial at-
tack against bert using bert.

Paul Michel, Xian Li, Graham Neubig, and
Juan Miguel Pino. 2019. On evaluation of ad-
versarial perturbations for sequence-to-sequence
models. CoRR, abs/1903.06620.

George Armitage Miller, Richard Beckwith, Christiane
Fellbaum, Derek Gross, and Katherine J. Miller.
1990. Introduction to wordnet: An on-line lexical
database. International Journal of Lexicography,
3:235–244.

Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vec-
tors to linguistic constraints. arXiv preprint
arXiv:1603.00892.

Daniel Naber et al. 2003. A rule-based style and gram-
mar checker. Citeseer.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian
Goodfellow, Reuben Feinman, Alexey Kurakin, Ci-
hang Xie, Yash Sharma, Tom Brown, Aurko Roy,

7
125

Alexander Matyasko, Vahid Behzadan, Karen Ham-
bardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li,
Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato,
Willi Gierke, Yinpeng Dong, David Berthelot, Paul
Hendricks, Jonas Rauber, and Rujun Long. 2018.
Technical report on the cleverhans v2.1.0 adversarial
examples library. arXiv preprint arXiv:1610.00768.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a method for automatic eval-
uation of machine translation. In ACL.

Maja Popovic. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In WMT@EMNLP.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
1085–1097, Florence, Italy. Association for Compu-
tational Linguistics.

Samson Tan, Shafiq Joty, Min-Yen Kan, and Richard
Socher. 2020. It’s morphin’ time! Combating
linguistic discrimination with inflectional perturba-
tions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2920–2935, Online. Association for Computa-
tional Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subra-
manian, Matthew Gardner, and Sameer Singh. 2019.
Allennlp interpret: A framework for explaining pre-
dictions of nlp models. ArXiv, abs/1909.09251.

Xiaosen Wang, Hao Jin, and Kun He. 2019. Natural
language adversarial attacks and defenses in word
level.

Jason W. Wei and Kai Zou. 2019. EDA: easy data aug-
mentation techniques for boosting performance on
text classification tasks. CoRR, abs/1901.11196.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Transformers: State-of-
the-art natural language processing.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combina-
torial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6066–6080, Online. Association
for Computational Linguistics.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

8
126

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 127–134
November 16-20, 2020. c©2020 Association for Computational Linguistics

Easy, Reproducible and Quality-Controlled Data Collection
with CROWDAQ

Qiang Ning� Hao Wu| Pradeep Dasigi� Dheeru Dua} Matt Gardner�
Robert L. Logan IV} Ana Marasović� Zhen Nie|

�Allen Institute for AI }University of California, Irvine |Hooray Data Co., Ltd
{qiangn,pradeepd,mattg,anam}@allenai.org

{haowu,zhennie}@hooray.ai
{ddua,rlogan}@uci.edu

Abstract
High-quality and large-scale data are key to
success for AI systems. However, large-scale
data annotation efforts are often confronted
with a set of common challenges: (1) design-
ing a user-friendly annotation interface; (2)
training enough annotators efficiently; and (3)
reproducibility. To address these problems,
we introduce CROWDAQ,1 an open-source
platform that standardizes the data collection
pipeline with customizable user-interface com-
ponents, automated annotator qualification,
and saved pipelines in a re-usable format. We
show that CROWDAQ simplifies data annota-
tion significantly on a diverse set of data col-
lection use cases and we hope it will be a con-
venient tool for the community.

1 Introduction

Data is the foundation of training and evaluating AI
systems. Efficient data collection is thus important
for advancing research and building time-sensitive
applications.2 Data collection projects typically
require many annotators working independently to
achieve sufficient scale, either in dataset size or
collection time. To work with multiple annotators,
data requesters (i.e., AI researchers and engineers)
usually need to design a user-friendly annotation
interface and a quality control mechanism. How-
ever, this involves a lot of overhead: we often spend
most of the time resolving frontend bugs and man-
ually checking or communicating with individual
annotators to filter out those who are unqualified,
instead of focusing on core research questions.

Another issue that has recently gained more at-
tention is reproducibility. Dodge et al. (2019) and
Pineau (2020) provide suggestions for system re-
producibility, and Bender and Friedman (2018) and

1Crowdsourcing with Automated Qualifcation; https:
//www.crowdaq.com/

2This holds not only for collecting static data annotations,
but also for collecting human judgments of system outputs.

Gebru et al. (2018) propose “data statements” and
“datasheets for datasets” for data collection repro-
ducibility. However, due to irreproducible human
interventions in training and selecting annotators
and the potential difficulty in replicating the an-
notation interfaces, it is often difficult to reuse or
extend an existing data collection project.

We introduce CROWDAQ, an open-source data
annotation platform for NLP research designed to
minimize overhead and improve reproducibility. It
has the following contributions. First, CROWDAQ

standardizes the design of data collection pipelines,
and separates that from software implementation.
This standardization allows requesters to design
data collection pipelines declaratively without be-
ing worried about many engineering details, which
is key to solving the aforementioned problems
(Sec. 2).

Second, CROWDAQ automates qualification con-
trol via multiple-choice exams. We also provide
detailed reports on these exams so that requesters
know how well annotators are doing and can adjust
bad exam questions if needed (Sec. 2).

Third, CROWDAQ carefully defines a suite of
pre-built UI components that one can use to com-
pose complex annotation user-interfaces (UIs) for
a wide variety of NLP tasks without expertise in
HTML/CSS/JavaScript (Sec. 3). For non-experts
on frontend design, CROWDAQ can greatly improve
efficiency in developing these projects.

Fourth, a dataset collected via CROWDAQ can
be more easily reproduced or extended by future
data requesters, because they can simply copy
the pipeline and pay for additional annotations, or
treat existing pipeline as a starting point for new
projects.

In addition, CROWDAQ has also integrated many
useful features: requesters can conveniently mon-
itor the progress of annotation jobs, whether they
are paying annotators fairly, and the agreement

127

level of different annotators on CROWDAQ. Finally,
Sec. 4 shows how to use CROWDAQ and Amazon
Mechanical Turk (MTurk)3 to collect data for an
example project. More use cases can be found in
our documentation.

2 Standardized Data Collection Pipeline

A data collection project with multiple annotators
generally includes some or all of the following: (1)
Task definition, which describes what should be
annotated. (2) Examples, which enhances annota-
tors’ understanding of the task. (3) Qualification,
which tests annotators’ understanding of the task
and only those qualified can continue; this step is
very important for reducing unqualified annotators.
(4) Main annotation process, where qualified an-
notators work on the task. CROWDAQ provides
easy-to-use functionality for each of these com-
ponents of the data collection pipeline, which we
expand next.

INSTRUCTION A Markdown document that de-
fines a task and instructs annotators how to com-
plete the task. It supports various formatting op-
tions, including images and videos.

TUTORIAL Additional training material pro-
vided in the form of multiple-choice questions
with provided answers that workers can use to
gauge their understanding of the INSTRUCTION.
CROWDAQ received many messages from real an-
notators saying that TUTORIALS are quite helpful
for learning tasks.

EXAM A collection of multiple-choice questions
similar to TUTORIAL, but for which answers are
not provided to participants. EXAM is used to test
whether an annotator understands the instructions
sufficiently to provide useful annotations. Partic-
ipants will only have a finite number of opportu-
nities specified by the requesters to work on an
EXAM, and each time they will see a random sub-
set of all the exam questions. After finishing an
EXAM, participants are informed of how many
mistakes they have made and whether they have
passed, but they do not receive feedback on individ-
ual questions. Therefore, data requesters should try
to design better INSTRUCTIONS and TUTORIALS

instead of using EXAM to teach annotators.
We restrict TUTORIALS and EXAMS to always

be in a multiple-choice format, irrespective of the

3https://www.mturk.com/

original task format, because it is natural for hu-
mans to learn and to be tested in a discriminative
setting.4 An important benefit of using multiple-
choice questions is that their evaluation can be au-
tomated easily, minimizing the effort a requester
spends on manual inspections. Another convenient
feature of CROWDAQ is that it displays useful statis-
tics to requesters, such as the distribution of scores
in each exam and which questions annotators often
make mistakes on, which can highlight areas of
improvement in the INSTRUCTION and TUTORIAL.
Below is the JSON syntax to specify TUTORIAL-
S/EXAMS (see Fig. 3 and Fig. 4 in the appendix).
"question_set": [

{
"type": "multiple-choice",
"question_id": ...,
"context": [{

"type": "text",
"text": "As of Tuesday, 144 of the state’s

then-294 deaths involved nursing
homes or longterm care facilities."

}],
"question": {

"question_text": "In \"294 deaths\", what
should you label as the quantity?",

"options": {"A": "294", "B": "294 deaths"}
},
"answer": "A",
"explanation": {

"A": "Correct",
"B": "In our definition, the quantity

should be \"294\"."
}

},
...

]

TASK For example, if we are doing sentence-
level sentiment analysis, then a TASK is to dis-
play a specific sentence and require the annotator
to provide a label for its sentiment. A collection
of TASKS are bundled into a TASK SET that we
can launch as a group. Unlike TUTORIALS and
EXAMS where we only need to handle multiple-
choice questions in CROWDAQ’s implementation,
a major challenge for TASK is how to meet differ-
ent requirements for annotation UI from different
datasets in a single framework, which we discuss
next.

3 Customizable Annotation Interface

It is time-consuming for non-experts on the fron-
tend to design annotation UIs for various datasets.
At present, requesters can only reuse the UIs of
very similar tasks and still, they often need to
make modifications with additional tests and debug-
ging. CROWDAQ comes with a variety of built-in

4E.g., we can always test one’s understanding of a concept
by multiple-choice questions like Do you think something is
correct? or Choose the correct option(s) from below.

128

resources for easily creating UIs, which we will
explain using an example dataset collection project
centered around confirmed COVID-19 cases and
deaths mentioned in news snippets.

3.1 Concepts

The design of CROWDAQ’s annotation UI is built
on some key concepts. First, every TASK is asso-
ciated with contexts—a list of objects of any
type: text, html, image, audio, or video.
It will be visible to the annotators during the en-
tire annotation process before moving to the next
TASK, so a requester can use contexts to show
any useful information to the annotators. Below
is an example of showing notes and a target news
snippet (see Fig. 5 in the appendix for visualiza-
tion). CROWDAQ is integrated with online editors
that can auto-complete, give error messages, and
quickly preview any changes.
"contexts": [

{
"label": "Note",
"type": "html",
"html": "<p>Remember to ...</p>",
"id": "note"

},
{

"type": "text",
"label": "The snippet was from an article

published on 2020-05-20 10:30:00",
"text": "As of Tuesday, 144 of the state’s

then-294 deaths involved nursing homes
or longterm care facilities.",

"id": "snippet"
}

],

Second, each TASK may have multiple
annotations. Although the number of dataset
formats can be arbitrary, we observe that the most
basic formats fall into the following categories:
multiple-choice, span selection, and free text gener-
ation. For instance, to emulate the data collection
process used for the CoNLL-2003 shared task on
named entity recognition (Tjong Kim Sang and
De Meulder, 2003), one could use a combination
of a span selection (for selecting a named entity)
and a multiple-choice question (selecting whether it
is a person, location, etc.); for the process used for
natural language inference in SNLI (Bowman et al.,
2015), one could use an input box (for writing a hy-
pothesis) and a multiple-choice question (for select-
ing whether the hypothesis entails or contradicts
the premise); for reading comprehension tasks in
the question-answering (QA) format, one could use
an input box (for writing a question) and a multiple-
choice question (for yes/no answers; Clark et al.
(2019)), a span selection (for span-based answers;
Rajpurkar et al. (2016)), or another input box (for

free text answers; Kočiskỳ et al. (2018)).
These annotation types are built in

CROWDAQ,5 which requesters can easily use to
compose complex UIs. For our example project,
we would like the annotator to select a quantity
from the “snippet” object in the contexts, and
then tell us whether it is relevant to COVID-19
(see below for how to build it and Fig. 6 in the
appendix for visualization).
"annotations": [

{
"type": "span-from-text",
"from_context": "snippet",
"prompt": "Select one quantity from below.",
"id": "quantity",

},
{

"type": "multiple-choice",
"prompt": "Is this quantity related to

COVID-19?",
"options":{

"A": "Relevant",
"B": "Not relevant"

}
"id": "relevance"

}
]

Third, a collection of annotations can form
an annotation group and a TASK can have
multiple of them. For complex TASKS, this
kind of semantic hierarchy can provide a big
picture for both the requesters and annotators.
We are also able to provide very useful features
for annotation groups. For example, we
can put the annotations object above into an
annotation group, and require 1-3 responses
in this group. Below is its syntax, and Fig. 7 in the
appendix shows the result.
"annotation_groups": [

{
"annotations": [

{"id": "quantity", ...},
{"id": "relevance", ...}

],
"id": "quantity_extraction_typing",
"title": "COVID-19 Quantities",
"repeated": true, "min": 1, "max": 3

}
],

3.2 Conditions

Requesters often need to collect some
annotations only when certain conditions
are satisfied. For instance, only if a quantity is
related to COVID-19 will we continue to ask the
type of it. These conditions are important
because by construction, annotators will not make
mistakes such as answering a question that should
not be enabled at all.

As a natural choice, CROWDAQ has imple-
mented conditions that take as input val-

5For a complete list, please refer to our documentation.

129

ues of multiple-choice annotations. The
field conditions can be applied to any
annotation, which will be enabled only when
the conditions are satisfied. Below we add a
multiple-choice question asking for the type of a
quantity only if the annotator has chosen option “A:
Relevant” in the question whose ID is “relevance”
(see Fig. 8 in the appendix).
"annotations": [

{"id": "quantity", ...},
{"id": "relevance", ...},
{

"id": "typing",
"type": "multiple-choice",
"prompt": "What type is it?",
"options":{

"A": "Number of Deaths",
"B": "Number of confirmed cases",
"C": "Number of hospitalized",
...

},
"conditions":[

{
"id": "relevance",
"op": "eq",
"value": "A"

}
]

}
],

CROWDAQ actually supports any boolean logic
composed by “AND,” “OR,” and “NOT.” Below is
an example of ¬(Q1 = A _Q2 = B).
"conditions": [

{
"op": "not", "arg": {

"op": "or", "args":[
{"id": "Q1","op": "eq","value": "A"},
{"id": "Q2","op": "eq","value": "B"}

]
}

}
]

3.3 Constraints
An important quality control mechanism is to im-
plement constraints for an annotator’s work such
that only if the constraints are satisfied will the
annotator be able to submit the instance (and get
paid). An implicit constraint in CROWDAQ is that
all annotations should be finished except for
those explicitly specified as “optional.”

For things that are repeated, CROWDAQ allows
the requester to specify the min/max number of
repetitions. This corresponds to scenarios where,
for instance, we know there is at least 1 quantity
(min=1) in a news snippet or we want to have ex-
actly two named entities selected for relation extrac-
tion (min=max=2). We have already shown usages
of this when introducing annotation group,
but the same also applies to text span selectors.

CROWDAQ also allows requesters to specify a
regular expression constraint. For instance, in our
COVID-19 example, when the annotator selects a

text span as a quantity, we want to make sure that
the span selection does not violate some obvious
rules. To achieve this, we define constraints
as a list of requirements and all of them must be
satisfied; if any one of them is violated, the annota-
tor will receive an error message specified by the
description field and also not able to submit
the work.

In addition, users can specify their own con-
straint functions via an API. Please refer to our
documentation for more details.
"annotations":[

{
"id": "quantity",
...,
"constraints": [

{
"description": "The quantity should

only start with digits or
letters.",

"regex": "ˆ[\\w\\d].*$",
"type": "regex"

},
{

"description": "The quantity should
only end with digits, letters, or
%.",

"regex": "ˆ.*[\\w\\d%]$",
"type": "regex"

},
{

"description": "The length of your
selection should be within 1 and
30.",

"regex": "ˆ.{1,30}$",
"type": "regex"

}
]

},
...

]

3.4 Extensibility
As we cannot anticipate every possible UI require-
ment, we have designed CROWDAQ to be extensi-
ble. In addition to a suite of built-in annotation
types, conditions, and constraints, users
can write their own components and contribute to
CROWDAQ easily. All these components are sep-
arate Vue.js6 components and one only needs to
follow some input/output specifications to extend
CROWDAQ.

4 Usage

We have already deployed CROWDAQ at https:
//www.crowdaq.com with load balancing, backend
cluster, relational database, failure recovery, and
user authentication. Data requesters can simply
register and enjoy the convenience it provides. For
users who need to deploy CROWDAQ, we provide
a Docker compose configuration so that they can
bring up a cluster with all the features with one

6https://vuejs.org/

130

Design Collection Finished
Dataset

Polish the design

Idea

Raw data

Requirements

Multiple-choice
questions

Markdown

User-interface

Tutorial
Exam

Taskset

Instruction

Crowd Workers

Exam Taskset

crowdaq.com
• Download

Reproduce

Extend

crowdaq.com
• Feedback
• Exam stats
• Data quality
• Hourly pay
• Progress
• Result preview

Client & Backend
• Launch as HITs on MTurk
• Job management
• Assign qualifications

crowdaq.com
• Built-in editors
• JSON schema
• Preview

Dataset
Pipeline
Annotators

Crowdaq

MTurkData requester Future requesters

*Best viewed in color

HITs

Submit to
Crowdaq

Published
on MTurk

Figure 1: Data collection using CROWDAQ and MTurk. Note that this is a general workflow and one can use only
part of it, or use it to build even more advanced workflows.

single command. Users will need to have their own
domain name and HTTPS certificate in that case in
order to use CROWDAQ with MTurk.

Figure 1 shows how a requester collects data
using CROWDAQ and MTurk. The steps are: (1)
identify the requirements of an application and find
the raw data that one wants to annotate; (2) design
the data collection pipeline using the built-in edi-
tors on CROWDAQ’s website, including the Mark-
down INSTRUCTION, TUTORIAL, EXAM, and IN-
TERFACE; (3) launch the EXAM and TASK SET

onto MTurk and get crowd annotators to work
on them; (4) if the quality and size of the data
have reached one’s requirement, publish the dataset.
We have color-coded those components in Fig. 1
to show the responsibilities of the data requester,
CROWDAQ, MTurk, and future requesters who
want to reproduce or extend this dataset. We can
see that CROWDAQ significantly reduces the effort
a data requester needs to put in implementing all
those features.

We have described how to write INSTRUCTIONS,
TUTORIALS, and EXAMS (Sec. 2) and how to de-
sign the annotation UI (Sec. 3). Suppose we have
provided 20 EXAM questions for the COVID-19
project. Before launching the EXAM, we need to
configure the sample size of the EXAM, the passing
score, and total number of chances (e.g., every time
a participant will see a random subset of 10 ques-
tions, and to pass it, one must get a score higher

than 80% within 3 chances). This can be done us-
ing the web interface of CROWDAQ (see Fig. 10 in
the appendix).

It is also very easy to launch the EXAM to MTurk.
CROWDAQ comes with a client package that one
can run from a local computer (Fig. 11 in the ap-
pendix). The backend of CROWDAQ will do the
job management, assign qualifications, and provide
some handy analysis of how well participants are
doing on the exam, including the score distribu-
tion of participants and analysis on each individual
questions (Fig. 12).

The semantic difference between EXAMS and
TASK SETS is handled by the backend of
CROWDAQ. From MTurk’s perspective, EXAMS

and TASK SETS are both EXTERNALQUESTIONS.7

Therefore, the same client package shown in Fig. 11
can also be used to launch a TASK SET to MTurk.
CROWDAQ’s backend will receive the annotations
submitted by crowd workers; the website will show
the annotation progress and average time spent on
each TASK, and also provide quick preview of each
individual annotations. If the data requester finds
that the quality of annotations is not acceptable, the
requester can go back and polish the design.

When data collection is finished, the requester
can download the annotation pipeline and list of
annotators from CROWDAQ, and get information
about the process such as the average time spent

7EXTERNALQUESTION is a type of HITs on MTurk.

131

by workers on the task (and thus their average pay
rate). Future requesters can then use the pipeline as
the starting point for their projects, if desired, e.g.,
using the same EXAM, to get similarly-qualified
workers on their follow-up project.

Although Fig. 1 shows a complete pipeline of
using CROWDAQ and MTurk, CROWDAQ is im-
plemented in such a way that data requesters have
the flexibility to use only part of it. For instance,
one can only use INSTRUCTION to host and render
Markdown files, only use EXAM to test annotators,
or only use TASK SET to quickly build annota-
tion UIs. One can also create even more advanced
workflows, e.g., using multiple EXAMS and filter-
ing annotators sequentially (e.g., Gated Instruction;
Liu et al., 2016), creating a second TASK SET to
validate previous annotations, or splitting a sin-
gle target dataset into multiple components, each
of which has its own EXAM and TASK SET. In
addition, data collection with in-house annotators
can be done on CROWDAQ directly, instead of via
MTurk. For instance, data requesters can conve-
niently create a contrast set (Gardner et al., 2020)
on CROWDAQ by themselves.

We have put more use cases into the appendix, in-
cluding DROP (Dua et al., 2019), MATRES (Ning
et al., 2018), TORQUE (Ning et al., 2020), VQA-E
(Li et al., 2018), and two ongoing projects.

5 Related Work

Crowdsourcing Platforms The most commonly
used platform at present is MTurk, and the features
CROWDAQ provides are overall complementary to
it. CROWDAQ provides integration with MTurk, but
it also allows for in-house annotators and any plat-
form that provides crowdsourcing service. Other
crowdsourcing platforms, e.g., CrowdFlower/Fig-
ureEight,8 Hive,9 and Labelbox,10 also have auto-
mated qualification control as CROWDAQ, but they
do not separate the format of an exam from the for-
mat of a main task; therefore it is impossible to use
its built-in qualification control for non-multiple-
choice tasks like question-answering. In addition,
CROWDAQ provides huge flexibility in annotation
UIs as compared to these platforms. Last but not
least, CROWDAQ is open-source and can be used,
contributed to, extended, and deployed freely.

8https://www.figure-eight.com/
9https://thehive.ai/

10https://labelbox.com/

Customizable UI To the best of our knowledge,
existing works on customizable annotation UI, e.g.,
MMAX211 (Müller and Strube, 2006), PALinkA
(Orăsan, 2003), and BRAT12 (Stenetorp et al.,
2012), were mainly designed for in-house anno-
tators on classic NLP tasks, and their adaptability
and extensibility are limited.

AMTI is a command line interface for interact-
ing with MTurk,13 while CROWDAQ is a website
providing one-stop solution including instructions,
qualification tests, customizable interfaces, and job
management on MTurk. AMTI also addresses the
reproducibility issue by allowing HIT definitions
to be tracked in version control, while CROWDAQ

addresses by standardizing the workflow and auto-
mated qualification control.

Sprout by Bragg and Weld (2018) is a meta-
framework similar to the proposed workflow. They
focus on teaching crowd workers, while CROWDAQ

spends most of engineering effort to allow re-
questers specify the workflow declaratively without
being a frontend or backend expert.

6 Conclusion

Efficient data collection at scale is important for
advancing research and building applications in
NLP. Existing workflows typically require multiple
annotators, which introduces overhead in building
annotation UIs and training and filtering annota-
tors. CROWDAQ is an open-source online platform
aimed to reduce this overhead and improve repro-
ducibility via customizable UI components, auto-
mated qualification control, and easy-to-reproduce
pipelines. The rapid modeling improvements seen
in the last few years need a commensurate improve-
ment in our data collection processes, and we be-
lieve that CROWDAQ is well-situated to aid in easy,
reproducible data collection research.

References
Emily M. Bender and Batya Friedman. 2018. Data

statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the Association for Computational
Linguistics, 6.

Samuel Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large an-

11http://mmax2.net/
12https://brat.nlplab.org/about.html
13https://github.com/allenai/amti

132

notated corpus for learning natural language infer-
ence. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 632–642.

Jonathan Bragg and Daniel S Weld. 2018. Sprout:
Crowd-powered task design for crowdsourcing. In
Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology, pages 165–
176.

Noam Chomsky and David W Lightfoot. 2002. Syntac-
tic structures. Walter de Gruyter.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL), pages 2924–2936.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show your
work: Improved reporting of experimental results.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2185–2194.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hanna Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, A. Zhang, and Ben Zhou.
2020. Evaluating NLP models via contrast sets. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).

Timnit Gebru, Jamie Morgenstern, Briana Vecchione,
Jennifer Wortman Vaughan, Hanna M. Wallach, Hal
Daumé, and Kate Crawford. 2018. Datasheets for
datasets. In Proceedings of the 5th Workshop on
Fairness, Accountability, and Transparency in Ma-
chine Learning.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gábor Melis, and
Edward Grefenstette. 2018. The narrativeqa read-
ing comprehension challenge. Transactions of the
Association for Computational Linguistics (TACL),
6:317–328.

Qing Li, Qingyi Tao, Shafiq R. Joty, Jianfei Cai, and
Jiebo Luo. 2018. VQA-E: Explaining, Elaborating,

and Enhancing Your Answers for Visual Questions.
In ECCV.

Angli Liu, Stephen Soderland, Jonathan Bragg,
Christopher H Lin, Xiao Ling, and Daniel S Weld.
2016. Effective crowd annotation for relation extrac-
tion. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL), pages 897–906.

Christoph Müller and Michael Strube. 2006. Multi-
level annotation of linguistic data with mmax2. Cor-
pus technology and language pedagogy: New re-
sources, new tools, new methods, 3:197–214.

Qiang Ning, Hao Wu, Rujun Han, Nanyun Peng, Matt
Gardner, and Dan Roth. 2020. TORQUE: A reading
comprehension dataset of temporal ordering ques-
tions. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Qiang Ning, Hao Wu, and Dan Roth. 2018. A multi-
axis annotation scheme for event temporal relations.
In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
1318–1328. Association for Computational Linguis-
tics.

Constantin Orăsan. 2003. PALinkA: A highly cus-
tomisable tool for discourse annotation. In Proceed-
ings of the Fourth SIGdial Workshop of Discourse
and Dialogue, pages 39–43.

Joelle Pineau. 2020. The Machine Learning Repro-
ducibility Checklist. https://www.cs.mcgill.
ca/˜jpineau/ReproducibilityChecklist.
pdf.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2383–2392.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: A web-based tool for nlp-assisted
text annotation. In Proceedings of the Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL).

Carson T Schütze. 2016. The empirical base of lin-
guistics: Grammaticality judgments and linguistic
methodology. Language Science Press.

Erik F Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Naushad UzZaman, Hector Llorens, James Allen, Leon
Derczynski, Marc Verhagen, and James Pustejovsky.

133

2013. SemEval-2013 Task 1: TEMPEVAL-3: Eval-
uating time expressions, events, and temporal rela-
tions. Proceedings of the Joint Conference on Lexi-
cal and Computational Semantics (*SEM), 2:1–9.

134

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 135–143
November 16-20, 2020. c©2020 Association for Computational Linguistics

SciSight: Combining faceted navigation and research group detection
for COVID-19 exploratory scientific search

Tom Hope♣,♡ Jason Portenoy♣,♥∗ Kishore Vasan♥∗ Jonathan Borchardt♣∗

Eric Horvitz♠ Daniel S. Weld♣,♡ Marti A. Hearst♢ Jevin West♥
♣Allen Institute for Artificial Intelligence

♡Paul G. Allen School for Computer Science & Engineering, University of Washington
♥Information School, University of Washington

♠Microsoft Research ♢University of California, Berkeley
{tomh,jasonp,jonathanb}@allenai.org {kishorev,jevinw}@uw.edu

Abstract

The COVID-19 pandemic has sparked un-
precedented mobilization of scientists, gener-
ating a deluge of papers that makes it hard
for researchers to keep track and explore new
directions. Search engines are designed for
targeted queries, not for discovery of con-
nections across a corpus. In this paper, we
present SciSight, a system for exploratory
search of COVID-19 research integrating two
key capabilities: first, exploring associations
between biomedical facets automatically ex-
tracted from papers (e.g., genes, drugs, dis-
eases, patient outcomes); second, combining
textual and network information to search and
visualize groups of researchers and their ties.
SciSight1 has so far served over 15K users
with over 42K page views and 13% returns.

1 Introduction

Scientists worldwide are racing against the grow-
ing number of COVID-19 infections, to under-
stand and treat the disease (Apuzzo and Kirk-
patrick, 2020). However, a very different kind of
exponential growth has been plaguing researchers
– the flurry of papers published every year, at a rate
that continues to increase (Williamson and Minter,
2019). At the time of this writing, the COVID-19
Open Research Dataset (CORD-19) (Wang et al.,
2020a) includes over 130,000 publications of po-
tential relevance, both historical and cutting-edge.

To boost scientific discovery over this corpus,
we propose SciSight, a working prototype system
for exploratory search of the COVID-19 litera-
ture. Unlike many tools (see Section 2), we shift
the focus from searching over lists of papers or au-
thors, to navigating networks of biomedical con-

∗ Equal contribution.
1http://scisight.apps.allenai.org/

cepts and research groups – for example, explor-
ing links between COVID-19 and other diseases,
or labs working on treatments. While search en-
gines are a powerful tool for finding documents,
they are mostly geared toward targeted search,
when researchers know what they are looking for
– less useful for exploring connections that are
not obvious from reading individual papers (Bales
et al., 2009; White and Roth, 2009).

Building exploratory interfaces in science is dif-
ficult not only due to the complexities of scien-
tific content, but also because of social under-
currents that have tremendous effects on the con-
struction of knowledge (Wagner and Leydesdorff,
2005; Pan et al., 2012; West et al., 2013) (as re-
flected, for example, in biased citation patterns
(King et al., 2017)). Silos of knowledge through-
out the literature (Vilhena et al., 2014)2 can hin-
der research advancement and cross-fertilization
across groups and fields that is crucial for driv-
ing innovation (Hope et al., 2017; Kittur et al.,
2019), ultimately impacting human lives (Loevin-
sohn et al., 2015). These problems are acute when
it comes to the COVID-19 pandemic, with new in-
formation rapidly emerging and urgently needed.

We aim to incorporate the social structure into
an intuitive design interface, to help researchers
make connections to other groups and ideas in
the literature by traversing across networks of
concepts and groups of scientists – helping users
discover who is working on what, and where?

We identify groups by clustering the co-
authorship graph, and extract topics and entities
from the group’s papers. Each group is rep-
resented using textual and network information:
the group’s salient authors (who), the topics they

2So Long to the Silos, Nature Biotech, https://
www.nature.com/articles/nbt.3544

135

work on (what) and their affiliations (where). We
build meta-edges capturing topical affinity be-
tween groups using a language model fine-tuned
for semantic similarity, and present approaches for
searching for groups with queries consisting of au-
thors, topics and affiliations. Each selected query
automatically suggests new queries to try, to sup-
port exploration (Kairam et al., 2015).

In summary, our main contributions:

• A working prototype for exploratory search
and visualization of COVID-19 scientific lit-
erature and collaboration networks, based on
a fusion of automatically extracted textual in-
formation (topics, entities) and co-authorship
network information.

• User interviews with experts suggest that
SciSight can help complement standard
search and help discover new directions.

2 Related work

The field of bibliometric visualization goes back
decades (Borgman and Furner, 2002), with a large
body of work. Visualizations of the scientific lit-
erature can take many shapes and forms, with
the aim of depicting the connections between
fields, topics, authors, and, most commonly, pa-
pers (Bales et al., 2020). While much research
has been done in this field over the years, actual
tools that are readily available primarily focus on
visualization of citation-based graphs between in-
dividual authors, papers or topics (Van Eck and
Waltman, 2010; Synnestvedt et al., 2005; Persson
et al., 2009). While this rich information could in
theory be useful, in practice it often renders the
visualization inscrutable, especially for real-world
networks comprising many authors. This problem
is especially acute when the goal is to enable dis-
covery of new areas with unfamiliar authors.

Recently, such tools have been applied to
COVID-19 papers, such as journal networks and
heat maps of frequently occurring terms (Haghani
et al., 2020). However, many tools require train-
ing before being able to be used, and state of the
art bibliometric mapping is currently considered
“complex and unwieldy” (Bales et al., 2020), po-
tentially because the typical user “does not imme-
diately comprehend a map and (as a result) is not
enticed into using it” (Buter et al., 2006).

COVID-19 tools. In response to COVID-19,
many tools for exploring the relevant literature

have been released. The great majority featured
paper search interfaces, with lists of titles and ab-
stracts being the main focus. Many of the COVID-
19 tools we reviewed included standard faceted
search functionality (Yee et al., 2003; Hearst,
2006; Tunkelang, 2009), enabling users to filter
papers according to various facets. In a search
tool from Microsoft Azure (Microsoft, 2020), for
example, users can filter search results by various
facets (such as by authors or gene mentions ex-
tracted automatically from texts). Similar services
were made available by IBM Watson (IBM, 2020),
Elsevier (Elsevier, 2020) and the National Insti-
tutes of Health (NIH, 2020).

Currently a small number of tools focus on con-
cept associations. One tool (Tu et al., 2020) feeds
a COVID-19 knowledge graph (KG) from (Wang
et al., 2020b) into Kibana3, an external product
for creating dashboards with complex heat maps
of term frequencies in documents, including a
specialized query language for users with suffi-
cient familiarity with Kibana. A tool from (Bras
et al., 2020) shows clusters of high-level topics
extracted with Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) (visualized with word clouds).

In this paper, we integrate textual information
from papers and the network of author collabora-
tions, allowing users to drill down from research
groups to papers to associations between entities
in one system, with a custom interface aimed to
help users “comprehend the map” (Bales et al.,
2020; Buter et al., 2006) intuitively.

3 SciSight: system overview

In this section we present an overview of our
prototype and its distinct components. We mo-
tivate each by discussing researcher needs. We
illustrate SciSight’s features and potential with
the following illustrative example:

Marc is a researcher interested in exploring
Chloroquine, an anti-malarial drug that has been
surrounded with controversies in the context of
COVID-19 (Touret and de Lamballerie, 2020). In
particular, Marc wants to find connections be-
tween Chloroquine and other drugs and diseases,
and to understand how these entities are intercon-
nected in order to explore other candidate drugs
and potential side-effects. Marc is familiar with
the field and its main papers, but the amount of re-

3https://www.elastic.co/kibana

136

lated work is overwhelming with a litany of drugs
and diseases. Complicating things further, know-
ing that Chloroquine is not a new medication,
Marc wants to examine connections across years
of research, not just recent work.

3.1 Collocation explorer

Users of SciSight can search for a term/concept
of interest, or get suggestions based on important
COVID-19 topics. Searching for a term displays a
network of top related terms mined from the cor-
pus, based on term collocation counts across the
corpus (co-appearance in the same sentence). En-
tities are displayed in a customized chord diagram
(Lee et al., 2015) layout4, with edge width corre-
sponding to collocation frequency. As seen in Fig-
ure 1a, interrelations between all terms are shown
(not just with the query), presenting the user with
more potential connections to explore (users can
also control the number of entities shown). Click-
ing an edge between two entities displays a list of
papers containing both terms.

Continuing our example, Marc can search for
Chloroquine and see its network of associations,
such as a potential connection to liver damage, or
its connection to other drugs such as the anti-viral
drug Ribavirin. Marc can navigate the graph by
clicking nodes to further explore new associations
(e.g., clicking liver damage to potentially discover
more related drugs and diseases). Navigation is
known to help facilitate exploration (Kairam et al.,
2015), such as when users do not have a pin-
pointed query in mind (White and Roth, 2009).

Entity extraction and selection To extract en-
tities we use S2ORC-BERT (Lo et al., 2020), a
new language model pre-trained on a large cor-
pus of scientific papers. This model is fine-tuned5

on two separate biomedical named entity recog-
nition (NER) tasks (BC5CDR (Li et al., 2016)
and JNLPBA (Kim et al., 2004)), enabling us to
extract spans of text corresponding to proteins,
genes, cells, drugs, and diseases from across the
corpus. We extract entities only from titles and ab-
stracts of papers to reduce noise and focus on the
more salient entities in each paper. We show only
entities collocated at least twice with other enti-

4SciSight is implemented with React, server-side Cross-
filter, DC.js, D3.js, and Varnish.

5 https://github.com/allenai/scibert/
blob/master/scripts/exp.py.

(a)

(b)

Figure 1: (a) Collocation explorer: corpus-wide asso-
ciations between biomedical entities, such as drugs and
conditions. Highlighted in the figure is the edge be-
tween Chloroquine and liver injury. (b) Exploratory
search of connections between patient characteristics
and interventions. Papers working with immunocom-
primised patients and Ribavirin would be listed below
the facet feature. The time graph above shows the num-
ber of papers per year with these criteria.

137

ties. Our choice of entities is the result of an initial
round of interviews with biomedical experts, iden-
tifying these concepts as fundamental to the study
of the virus. Participants with a more clinical ori-
entation expressed interest in viewing associations
between drugs and diseases, while users from a
biology background wished to focus on proteins,
genes and cells. When asked whether they would
prefer to have all types of entities in one view, par-
ticipants responded with a preference for separate
graphs to avoid clutter and reduce cognitive effort.

3.2 Faceted exploratory search

Similarly to other tools, we incorporate a faceted
search tool into SciSight. Our focus is on explo-
ration of topics and associations, with relevant pa-
pers displayed below the facets for users wishing
to dig deeper after refining their search – rather
than being featured front and center. When search-
ing for a topic or an author, new suggestions to
help refine the search are presented based on top
co-mentions with the initial query to help prevent
fixation on an initial topic and boost associative
exploration (Kairam et al., 2015). In our prototype
for this feature we aimed at providing one compact
set of facets that can cater to a wide range of inter-
ests but still be sufficiently granular. Based on for-
mative interviews and a review of biomedical con-
cept taxonomies, we converged on three widely-
used topical facets in biomedicine, that capture
characteristics of patients or the problem, inter-
ventions, and outcomes (Schardt et al., 2007) (see
Figure 1b), extracted automatically from biomed-
ical abstracts with the distant supervision model
in (Wallace et al., 2016). In addition, CORD-19
metadata facets are available, such as journal, affil-
iation and author. The number of relevant publica-
tions is shown over time, possibly revealing trends
for specific facets. Users can adjust the time range
to update the papers and facets displayed.

Having spotted a potential connection to Rib-
avirin, Marc searches for it under the intervention
facet to find out about related patient populations
and outcomes, and to see how often it has been
mentioned over time (see Figure 1b). A charac-
teristic that pops-up and catches Marc’s attention
is immunocompromised patients, as he recalls a
colleague discussing the risk of treating such pop-
ulations. He finds peaks of interest around some
points in time, and drilling down to papers from

around 2016 finds a paper with the following con-
clusion: ”No consensus was found regarding the
use of oral versus inhaled RBV... such heterogene-
ity demonstrates the need for further studies ...
in immunocompromised hosts.” Marc realizes his
knowledge of this domain is lacking, and decides
to zoom out and find out what groups and labs are
working on immunity and viral diseases, perhaps
also discovering some familiar collaborators.

3.3 Network of science

In the course of formative interviews with domain
experts, participants expressed the need to see
what other groups are doing in order to keep track,
explore new fields and potentially collaborate. We
build a visualization of groups and their ties and
integrate this social graph with exploratory faceted
search over topics, authors and affiliations. We de-
sign our tool with the following components.

3.3.1 Author groups
To identify groups of researchers, we start by con-
structing a co-authorship network in which links
between authors represent collaboration on a pa-
per, weighted by the number of papers. We then
employ an overlapping community detection algo-
rithm based on ego-splitting (Epasto et al., 2017)
so that authors can belong to multiple clusters
(groups). We relax the assumption typically made
in co-authorship analysis that authors belong to
one group alone – in reality, researchers can “wear
many hats” and belong to different groups depend-
ing on what they work on and with whom.

As shown in Figure 2, we represent groups with
“cards” (Bota et al., 2016) of salient authors, af-
filiations and topics (with information from Mi-
crosoft Academic Graph (MAG) (Sinha et al.,
2015)). Cards are color-coded to reflect relevance
to the user’s initial query – aiming to strike a bal-
ance between the relevance and diversity of the re-
sults shown. Users may select how many groups
to view, zoom in/out, click a group to see a list of
its topics, authors and papers.

To explore groups recently active in this space
we select authors with at least one paper in CORD-
19 since the year 2017. We focus on the giant con-
nected component of this network (111,236 author
nodes, 951,072 edges; smaller components typi-
cally represented disambiguation errors), and run
the community detection algorithm. We observe a
small number of “super clusters”, large communi-
ties with hundreds of authors not densely linked, a

138

Figure 2:
Visualizing the network of groups with group
“cards”. Each card has three icons denoting the
top three authors, topics and affiliations, respec-
tively. Card color indicates relevance to the search
query. Green edges capture social affinity (shared
authors), and purple edges capture topical affinity.

well-known characteristic of community structure
in real-world networks (Leskovec et al., 2009). We
thus apply the clustering algorithm again within
clusters with more than 120 authors to break them
down further into denser groups. This results in
6,475 clusters. There are 5276 authors belonging
to two groups; 6657 are in more than one cluster,
and 1381 in more than two clusters.

We display a mix of textual and social informa-
tion: the most salient authors (who), affiliations
(where) and topics (what). We rank topics by their
TF-IDF scores within a cluster, and authors and
affiliations by relative frequency in a group. Users
can also dig deeper into groups with two further
levels of resolution. First, when hovering over a
group with the cursor, users are shown a tooltip
box with the top 5 authors, affiliations and topics,
with full names shown. Secondly, upon clicking
a group we show full ranked lists of these entities,
in addition to the group’s papers ranked by recency
(with title, abstract, journal and authors, including
a hyperlink to read the full paper).

3.3.2 Group links
We construct two types of links between groups.
The first type (shown as purple edges) represents
topical affinity across groups – the interests they

have in common based on publishing on similar
topics. The second type of link (shown as green
edges) captures social affinity between groups,
meaning groups with many shared author rela-
tionships. By providing both kinds of links, the
tool implicitly suggests potential collaborations or
connections, particularly when a social connection
does not currently exist alongside a topical one.

Cluster Relationships To find topical affinity
between clusters we embed topic surface forms
with a language model trained to capture seman-
tic similarity6. With each topic represented with
its embedding, we get a vector representation of
groups with a simple TF-IDF weighted average of
embeddings, and compute cosine similarity.

Finding Bridges As a test case for demonstrat-
ing our framework’s ability to find gaps and sim-
ilarities across groups of researchers, we identify
“bridges” between groups, potentially signifying
structural holes (Burt, 2004) in the author network.
We examine groups that work on data science
(MAG topic), a highly interdisciplinary field con-
necting researchers from multiple domains. We
discover Derek AT Cummings, a prominent biolo-
gist and epidemiologist with appointments at two
different universities. We find him to be a sole
shared author between two different clusters: one
focusing on areas tied with virology and med-
ical microbiology, while the other more associ-
ated with computational epidemiology. The for-
mer group has 15 authors, and the latter has 35.

Similarity Evaluation In a preliminary exper-
iment, we selected 30 random clusters and com-
puted topical affinities to other clusters. For each
group we randomly sample one cluster out of the
top 3 closely related clusters, and another cluster
from the bottom 50% of farthest clusters (for net-
work construction as shown to users, we only cre-
ate links between top-most similar groups). We
randomize the results and give them to a biomedi-
cal data analyst for annotation. We find that over-
all, we are able to correctly find pairs of research
groups that work in similar areas with a 80% pre-
cision. In future work we plan to collect validation
data enabling to measure both precision and recall.

3.3.3 Exploratory search for groups
Users can search topics, affiliations, or authors.
We rank topics based on global TF-IDF scores. As
in standard faceted search, queries across facets

6RoBERTa-large-STS-SNLI(Liu et al., 2019)
github.com/UKPLab/sentence-transformers

139

are conjunctive (e.g., gene sequencing AND Har-
vard), and queries within facets are disjunctive
(e.g., gene sequencing OR bioassays). Each query
consists of one or more choices for each facets.
A selection automatically suggests new facets that
are frequently associated with the original query,
suggesting more groups and topics to explore.

The problem of finding relevant communities to
a query has been explored to a certain extent under
the rubric of community search (Sozio and Gionis,
2010; Fang et al., 2020), in which given a graph
G and a set of query nodes in the graph, the ob-
jective is to find a subgraph of G that contains the
query nodes and is also densely connected. The
problem of community search in heterogeneous
networks has only recently been explored (Fang
et al., 2020), and only for one query node. In
addition, in our setting we aim to retrieve high-
relevance groups, with ranked topics, authors and
affiliations. We propose to retrieve relevant results
for a user’s query with two simple approaches. In
the first, we compute the overlap between query
facets q and the top-K salient facets f for each
group, and rank groups by normalized overlap size∣{q∶q∈f}∣∣f ∣ . In the second approach, we compute
weighted PageRank scores (Xing and Ghorbani,
2004) over a graph with meta-nodes representing
groups, and meta-edges as described earlier in this
section. We do so separately for both types of
edges: one for topical affinity, and the other for
social proximity. At query time, we compute the
average of these scores and the facet overlap score.

4 Informal user studies and findings

We conduct preliminary user studies with four re-
searchers and one practitioner. P1 is a research
scientist in virology, whose work also studies the
Zika virus; P2 is a postdoctoral fellow in the area
of virology, working on viral infections and hu-
man antibody responses, and P3 is a postdoctoral
fellow and MD working primarily in Oncology.
P4 is a medical professional and PharmD. P5 is a
researcher working on viral diseases and proteins.

Discovering unknown associations. Based on
interest in a the CR3022 antibody , P2 searched
for it with SciSight’s collocation feature, finding
“very relevant associations” and also “two poten-
tially surprising and interesting publications. I’m
going to look into those papers.” P1 searched
for cells linked to a type of cytopathic effect and
found Calu-3 (a human lung cancer cell line),

which led to “spotting an interferon with relevant
and interesting studies, very useful.” P4 discov-
ered a link between broad-spectrum antivirals and
MERS, providing a “new and strongly relevant
idea”. P5 was able to find associations considered
new and interesting between the TNF inflamma-
tory cytokine and ERK1/2, a type of protein kinase
(relevant to P5’s interest in cytokine profiles).

Finding new groups and directions. P1 gave
an example of a group (lab) using assays to iden-
tify which proteins antibodies bind to in order to
to neutralize HIV, and connecting to other groups
working on serum utilization for SARS to poten-
tially collaborate. When searching for groups tied
with a prominent scientist, P2 found a group as-
sociated with the scientist with recent work (Yuan
et al., 2020) revealing a new direction regarding
SARS-CoV-2 epitopes. P2 also found a group in
China with shared focus on epitopes but no social
ties, revealing “new perspectives that I would not
have found otherwise” on virus evolution.

Limitations: more information and features.
P1, P4 suggested that user-inputted concepts be
combined with existing concepts/terms on-the-fly,
and that edges could be removed by the user. P3
and P4 suggested ranking associations by “mea-
sures of novelty” to allow users to focus on emer-
gent knowledge. Participants mentioned a diverse
range of other entities to explore, e.g., patient
weight, metabolic speed, drug dosages, vaccines,
mutation mechanisms, and various techniques.

5 Conclusion

In this paper we presented SciSight, an evolving
system for scientific literature search and explo-
ration. We demonstrate SciSight’s use on a large
corpus of papers related to the COVID-19 pan-
demic and previous coronaviruses. We use state-
of-the-art scientific language models to extract en-
tities such as proteins, drugs and diseases, and
an overlapping community detection approach for
identifying groups of researchers. To visualize
groups we display group “cards” with a novel link
scheme capturing topical and social affinities be-
tween communities, designed to identify socially
disjoint groups working on similar topics. Pre-
liminary user interviews suggest that SciSight can
help complement standard search and may pave
new research directions. In future work, we plan
to conduct extensive studies to validate SciSight
and better understand its potential and limitations.

140

References

Matt Apuzzo and David D. Kirkpatrick. 2020.
Covid-19 changed how the world does science,
together. https://www.nytimes.com/2020/04/
01/world/europe/coronavirus-science-
research-cooperation.html.

Michael E Bales, David R Kaufman, and Stephen B
Johnson. 2009. Evaluation of a prototype search and
visualization system for exploring scientific commu-
nities. In AMIA Annual Symposium Proceedings,
volume 2009, page 24. American Medical Informat-
ics Association.

Michael E Bales, Drew N Wright, Peter R Oxley, and
Terrie R Wheeler. 2020. Bibliometric visualization
and analysis software: State of the art, workflows,
and best practices.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Christine L Borgman and Jonathan Furner. 2002.
Scholarly communication and bibliometrics. An-
nual review of information science and technology,
36(1):2–72.

Horatiu Bota, Ke Zhou, and Joemon M Jose. 2016.
Playing your cards right: The effect of entity cards
on search behaviour and workload. In Proceedings
of the 2016 ACM on Conference on Human Informa-
tion Interaction and Retrieval, pages 131–140.

Pierre Le Bras, Azimeh Gharavi, David A. Robb,
Ana F. Vidal, Stefano Padilla, and Mike J. Chantler.
2020. Visualising covid-19 research.

Ronald S Burt. 2004. Structural holes and good ideas.
American journal of sociology, 110(2):349–399.

RK Buter, ECM Noyons, M Van Mackelenbergh, and
T Laine. 2006. Combining concept maps and bib-
liometric maps: First explorations. Scientometrics,
66(2):377–387.

Elsevier. 2020. Elsevier coronavirus research repos-
itory. https://coronavirus.1science.com/
search. Last accessed 2020-05-12.

Alessandro Epasto, Silvio Lattanzi, and Renato
Paes Leme. 2017. Ego-splitting framework: From
non-overlapping to overlapping clusters. In Pro-
ceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 145–154.

Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin
Lin, and Xin Cao. 2020. Effective and efficient com-
munity search over large heterogeneous information
networks. Proceedings of the VLDB Endowment,
13(6):854–867.

Milad Haghani, Michiel CJ Bliemer, Floris Goerlandt,
and Jie Li. 2020. The scientific literature on coro-
naviruses, covid-19 and its associated safety-related
research dimensions: A scientometric analysis and
scoping review. Safety Science.

Marti A Hearst. 2006. Clustering versus faceted cat-
egories for information exploration. Communica-
tions of the ACM, 49(4):59–61.

Tom Hope, Joel Chan, Aniket Kittur, and Dafna Sha-
haf. 2017. Accelerating innovation through analogy
mining. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, pages 235–243.

IBM. 2020. Watson insights for medical litera-
ture — covid-19 navigator. https://covid-19-
navigator.mybluemix.net/search. Last ac-
cessed 2020-05-12.

Sanjay Kairam, Nathalie Henry Riche, Steven Drucker,
Roland Fernandez, and Jeffrey Heer. 2015. Refin-
ery: Visual exploration of large, heterogeneous net-
works through associative browsing. In Computer
graphics forum, volume 34, pages 301–310. Wiley
Online Library.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. Introduction
to the bio-entity recognition task at jnlpba. In Pro-
ceedings of the international joint workshop on nat-
ural language processing in biomedicine and its ap-
plications, pages 70–75. Citeseer.

Molly M King, Carl T Bergstrom, Shelley J Correll,
Jennifer Jacquet, and Jevin D West. 2017. Men set
their own cites high: Gender and self-citation across
fields and over time. Socius, 3:2378023117738903.

Aniket Kittur, Lixiu Yu, Tom Hope, Joel Chan, Hila
Lifshitz-Assaf, Karni Gilon, Felicia Ng, Robert E
Kraut, and Dafna Shahaf. 2019. Scaling up ana-
logical innovation with crowds and ai. Proceedings
of the National Academy of Sciences, 116(6):1870–
1877.

Sukwon Lee, Sung-Hee Kim, Ya-Hsin Hung, Heidi
Lam, Youn-ah Kang, and Ji Soo Yi. 2015. How do
people make sense of unfamiliar visualizations?: A
grounded model of novice’s information visualiza-
tion sensemaking. IEEE transactions on visualiza-
tion and computer graphics, 22(1):499–508.

Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and
Michael W Mahoney. 2009. Community structure
in large networks: Natural cluster sizes and the ab-
sence of large well-defined clusters. Internet Math-
ematics, 6(1):29–123.

Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J Mattingly, Thomas C Wiegers, and
Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database, 2016.

141

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel S. Weld. 2020. S2ORC: The Se-
mantic Scholar Open Research Corpus. In Proceed-
ings of ACL.

Michael Loevinsohn, Lyla Mehta, Katie Cuming, Alan
Nicol, Oliver Cumming, and Jeroen HJ Ensink.
2015. The cost of a knowledge silo: a systematic
re-review of water, sanitation and hygiene interven-
tions. Health policy and planning, 30(5):660–674.

Microsoft. 2020. Azure cognitive search
- covid-19 search demo. https://
covid19search.azurewebsites.net/. Last
accessed 2020-05-12.

NIH. 2020. Nih litcovid. https:
//www.ncbi.nlm.nih.gov/research/
coronavirus/. Last accessed 2020-05-12.

Raj Kumar Pan, Kimmo Kaski, and Santo Fortunato.
2012. World citation and collaboration networks:
uncovering the role of geography in science. Scien-
tific reports, 2:902.

Olle Persson, Rickard Danell, and J Wiborg Schneider.
2009. How to use bibexcel for various types of bib-
liometric analysis. Celebrating scholarly communi-
cation studies: A Festschrift for Olle Persson at his
60th Birthday.

Connie Schardt, Martha B Adams, Thomas Owens,
Sheri Keitz, and Paul Fontelo. 2007. Utilization of
the pico framework to improve searching pubmed
for clinical questions. BMC medical informatics and
decision making, 7(1):16.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Dar-
rin Eide, Bo-June Hsu, and Kuansan Wang. 2015.
An overview of microsoft academic service (mas)
and applications. In Proceedings of the 24th inter-
national conference on world wide web, pages 243–
246.

Mauro Sozio and Aristides Gionis. 2010. The
community-search problem and how to plan a suc-
cessful cocktail party. In Proceedings of the 16th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 939–948.

Marie B Synnestvedt, Chaomei Chen, and John H
Holmes. 2005. Citespace ii: visualization and
knowledge discovery in bibliographic databases. In
AMIA Annual Symposium Proceedings. American
Medical Informatics Association.

Franck Touret and Xavier de Lamballerie. 2020. Of
chloroquine and covid-19. Antiviral Research, page
104762.

Jingxuan Tu, Marc Verhagen, Brent Cochran, and
James Pustejovsky. 2020. Exploration and discov-
ery of the covid-19 literature through semantic visu-
alization. arXiv preprint arXiv:2007.01800.

Daniel Tunkelang. 2009. Faceted search, volume 5.
Morgan & Claypool Publishers.

Nees Van Eck and Ludo Waltman. 2010. Software sur-
vey: Vosviewer, a computer program for bibliomet-
ric mapping. Scientometrics.

Daril A Vilhena, Jacob G Foster, Martin Rosvall,
Jevin D West, James Evans, and Carl T Bergstrom.
2014. Finding cultural holes: How structure and
culture diverge in networks of scholarly communi-
cation. Sociological Science, 1:221.

Caroline S Wagner and Loet Leydesdorff. 2005. Net-
work structure, self-organization, and the growth of
international collaboration in science. Research pol-
icy, 34(10):1608–1618.

Byron C Wallace, Joël Kuiper, Aakash Sharma, Mingxi
Zhu, and Iain J Marshall. 2016. Extracting pico sen-
tences from clinical trial reports using supervised
distant supervision. The Journal of Machine Learn-
ing Research. Available from drevidence.com.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn
Funk, Rodney Kinney, Ziyang Liu, William Merrill,
et al. 2020a. Cord-19: The covid-19 open research
dataset. arXiv preprint arXiv:2004.10706.

Qingyun Wang, Xuan Wang, Manling Li, Heng Ji,
and Jiawei Han. 2020b. Knowledge extraction
to assist scientific discovery from corona virus
literature. http://blender.cs.illinois.edu/
covid19/. Last accessed 2020-05-12.

Jevin D West, Jennifer Jacquet, Molly M King, Shel-
ley J Correll, and Carl T Bergstrom. 2013. The role
of gender in scholarly authorship. PloS one, 8(7).

Ryen W White and Resa A Roth. 2009. Exploratory
search: Beyond the query-response paradigm. Syn-
thesis lectures on information concepts, retrieval,
and services, 1(1):1–98.

Peace Ossom Williamson and Christian IJ Minter.
2019. Exploring pubmed as a reliable resource for
scholarly communications services. Journal of the
Medical Library Association: JMLA, 107(1):16.

Wenpu Xing and Ali Ghorbani. 2004. Weighted pager-
ank algorithm. In Proceedings. Second Annual Con-
ference on Communication Networks and Services
Research, 2004., pages 305–314. IEEE.

Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti
Hearst. 2003. Faceted metadata for image search
and browsing. In Proceedings of the SIGCHI con-
ference on Human factors in computing systems,
pages 401–408.

142

Meng Yuan, Nicholas C Wu, Xueyong Zhu, Chang-
Chun D Lee, Ray TY So, Huibin Lv, Chris KP Mok,
and Ian A Wilson. 2020. A highly conserved cryptic
epitope in the receptor binding domains of sars-cov-
2 and sars-cov. Science, 368(6491):630–633.

143

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 144–150
November 16-20, 2020. c©2020 Association for Computational Linguistics

SIMULEVAL : An Evaluation Toolkit
for Simultaneous Translation

Xutai Ma 1,2, Mohammad Javad Dousti1, Changhan Wang1, Jiatao Gu1, Juan Pino1

1Facebook AI
2Johns Hopkins University

xutai ma@jhu.edu
{juancarabina,dousti,changhan,jgu}@fb.com

Abstract

Simultaneous translation on both text and
speech focuses on a real-time and low-latency
scenario where the model starts translating be-
fore reading the complete source input. Evalu-
ating simultaneous translation models is more
complex than offline models because the la-
tency is another factor to consider in addition
to translation quality. The research commu-
nity, despite its growing focus on novel mod-
eling approaches to simultaneous translation,
currently lacks a universal evaluation proce-
dure. Therefore, we present SIMULEVAL, an
easy-to-use and general evaluation toolkit for
both simultaneous text and speech translation.
A server-client scheme is introduced to create
a simultaneous translation scenario, where the
server sends source input and receives predic-
tions for evaluation and the client executes cus-
tomized policies. Given a policy, it automati-
cally performs simultaneous decoding and col-
lectively reports several popular latency met-
rics. We also adapt latency metrics from text si-
multaneous translation to the speech task. Ad-
ditionally, SIMULEVAL is equipped with a vi-
sualization interface to provide better under-
standing of the simultaneous decoding process
of a system. SIMULEVAL has already been ex-
tensively used for the IWSLT 2020 shared task
on simultaneous speech translation. Code will
be released upon publication. 1

1 Introduction

Simultaneous translation, the task of generating
translations before reading the entire text or speech
source input, has become an increasingly popular
topic for both text and speech translation (Gris-
som II et al., 2014; Cho and Esipova, 2016; Gu

1The code is available at https://github.com/
facebookresearch/SimulEval

et al., 2017; Alinejad et al., 2018; Arivazhagan
et al., 2019; Zheng et al., 2019; Ma et al., 2020;
Ren et al., 2020). Simultaneous models are typi-
cally evaluated from quality and latency perspec-
tive. Note that the term latency is overloaded and
sometimes refers to the actual system speed. In this
paper, latency refers to the simultaneous ability,
which is how much partial source information is
needed to start the translation process.

While the translation quality is usually mea-
sured by BLEU (Papineni et al., 2002; Post,
2018), a wide variety of latency measurements
have been introduced, such as Average Proportion
(AP) (Cho and Esipova, 2016), Continues Wait
Length (CW) (Gu et al., 2017), Average Lagging
(AL) (Ma et al., 2019), Differentiable Average Lag-
ging (DAL) (Cherry and Foster, 2019), and so
on. Unfortunately, the latency evaluation processes
across different works are not consistent: 1) the
latency metric definitions are not precise enough
with respect to text segmentation; 2) the defini-
tions are also not precise enough with respect to
the speech segmentation, for example some models
are evaluated on speech segments (Ren et al., 2020)
while others are evaluated on time duration (Ansari
et al., 2020); 3) little prior work has released im-
plementations of the decoding process and latency
measurement. The lack of clarity and consistency
of the latency evaluation process makes it chal-
lenging to compare different works and prevents
tracking the scientific progress of this field.

In order to provide researchers in the commu-
nity with a standard, open and easy-to-use method
to evaluate simultaneous speech and text transla-
tion systems, we introduce SIMULEVAL, an open
source evaluation toolkit which automatically simu-
lates a real-time scenario and evaluates both latency

1
144

and translation quality. The design of this toolkit
follows a server-client scheme, which has the ad-
vantage of creating a fully simultaneous translation
environment and is suitable for shared tasks such
as the IWSLT 2020 shared task on simultaneous
speech translation2 or the 1st Workshop on Au-
tomatic Simultaneous Translation at ACL 20203.
The server provides source input (text or audio)
upon request from the client, receives predictions
from the client and returns different evaluation met-
rics when the translation process is complete. The
client contains two components, an agent and a
state, where the former executes the system’s pol-
icy and the latter keeps track of information nec-
essary to execute the policy as well as generating
a translation. SIMULEVAL has built-in support
for quality metrics such as BLEU (Papineni et al.,
2002; Post, 2018), TER (Snover et al., 2006) and
METEOR (Banerjee and Lavie, 2005), and latency
metrics such as AP, AL and DAL. It also support
customized evaluation functions. While all latency
metrics have been defined for text translation, we
discuss issues and solutions when adapting them
to the task of simultaneous speech translation. Ad-
ditionally, SIMULEVAL users can define their own
customized metrics. SIMULEVAL also provides an
interface to visualize the policy of the agent. An in-
teractive visualization interface is implemented to
illustrate the simultaneous decoding process. The
initial version of SIMULEVAL was used to evaluate
submissions from the first shared task on simulta-
neous speech translation at IWSLT 2020 (Ansari
et al., 2020).

In the remainder of the paper, we first formally
define the task of simultaneous translation. Next, la-
tency metrics and their adaptation to the speech task
are introduced. After that, we provide a high-level
overview of the client-server design of SIMULE-
VAL. Finally, usage instructions and a case study
are provided before concluding.

2 Task Formalization

An evaluation corpus for a translation task contains
one or several instances, each of which consists
of a source sequence X = [x1, ..., x|X|] and a ref-
erence sequence Y ∗ = [y∗1, ..., y

∗
|Y |]. The system

to be evaluated takes X as input, and generates
Y = [y1, ..., y|Y |]. We denote the elements of

2http://iwslt2020.ira.uka.de/doku.php?
id=simultaneous_translation

3https://autosimtrans.github.io/

the X , Y and Y ∗ segments. For text translation,
each xj is an individual word while for speech
translation, xj is a raw audio segment of dura-
tion Tj . In the simultaneous translation task, a
system starts generating a hypothesis with partial
input only. Then it either reads a new source seg-
ment, or writes a new target segment. Assuming
X1:j = [x1, ..., xj], j < |X| has been read when
generating yi, we define the delay of yi as

di =

{
j, when input is text∑j

k=1 Tk, when input is speech
(1)

Similar to an offline model, the quality is measured
by comparing the hypothesis Y to the reference
Y ∗ after the translation process is complete. On
the other hand, the latency measurement involves
considering partial hypotheses. The latency met-
rics are calculated from a function which takes a
sequence of delays D = [d1, ..., d|Y |] as input.

3 Latency Evaluation

3.1 Existing Text Latency Metrics
First, we review three latency metrics previously
introduced for the text translation task.

Average Proportion (AP) (Cho and Esipova,
2016), defined in Eq. (2), measures the average
of proportion of source input read when generating
a target prediction.

AP =
1

|X||Y |

|Y |∑

i=1

di (2)

Despite AP’s simplicity, several concerns have
been raised. Specifically, AP is not length invari-
ant, i.e. the value of the metric depends on the
input and output lengths. For instance, AP for
a wait-3 model (Ma et al., 2019) is 0.72 when
|X| = |Y | = 10 but 0.52 when |X| = |Y | = 100.
Moreover, AP is not evenly distributed on the [0, 1]
interval, i.e., values below 0.5 represent models
that have lower latency than an ideal policy, and an
improvement of 0.1 from 0.7 to 0.6 is much more
difficult to obtain than the same absolute improve-
ment from 0.9 to 0.8 (Ma et al., 2019).

Average Lagging (AL) first defines an ideal pol-
icy, which is equivalent to a wait-0 policy that has
the same prediction as the system to be evaluated.
Ma et al. (2019) define AL as

AL =
1

τ(|X|)

τ(|X|)∑

i=1

di −
(i− 1)

γ
(3)

145

where τ(|X|) = min{i|di = |X|} is the index
of the target token when the policy first reaches
the end of the source sentence and γ = |Y |/|X|.
(i− 1) /γ term is the ideal policy for the system to
compare with. AL has good properties such as be-
ing length-invariant and intuitive. Its value directly
describes the lagging behind the ideal policy.

Differentiable Average Lagging (DAL) intro-
duces a minimum delay of 1/γ after each oper-
ation. Unlike AL, it considers the tokens when
i > τ(|X|) (Cherry and Foster, 2019). It is de-
fined in Eq. (4):

DAL =
1

|Y |

|Y |∑

i=1

d′i −
i− 1

γ
, (4)

where

d′i =

{
di i = 0

max(di, d
′
i−1 + γ) i > 0

. (5)

A minimum delay prevent DAL recovering from
lagging once it has been incurred.

3.2 Adapting Metrics to the Speech Task
In this section, we adapt the three latency met-
rics introduced in Section 3.1 to the simultaneous
speech translation task.

Average Proportion is straightforward to adapt to
the speech task and as follows:

APspeech =
1

|Y |∑|X|j=1 Tj

|Y |∑

i=1

di (6)

Average Lagging is adapted as follows:

ALspeech =
1

τ ′(|X|)

τ ′(|X|)∑

i=1

di − d∗i , (7)

where τ ′(|X|) = min{i|di =
∑|X|

j=1 Tj} and
d∗i are the delays of an ideal policy, of which
the straightforward adaption is d∗i = (i − 1) ×∑|X|

j=1 Tj /|Y |. However such adaptation is not ro-
bust for models that tend to stop hypothesis genera-
tion too early and generate translations that are too
short. This is more likely to happen in simultane-
ous speech translation where a model can generate
the end of sentence token too early, for example
when there is a long pause even though the en-
tire source input has not been consumed. Fig. 1

Actual Source Length

Figure 1: An example of original AL failed on early
stop translation. Red (solid straight) line shows the
ideal policy in (Ma et al., 2019). Green (dotted straight)
line depicts the modified ideal policy in this paper.
Black (solid zigzag) line demonstrates the alignment
between source and target.

illustrate this phenomenon. The red line in Fig. 1
corresponds to the ideal policy defined in (Ma et al.,
2019). We can see that when the model stops gen-
erating the translation, the lagging behind the ideal
policy is negative. This is because the model stops
reading any input after completing hypothesis gen-
eration. This kind of model can obtain relatively
good latency-quality trade-offs as measured by AL
(and BLEU), which does not reflect the reality. We
thus define

d∗i = (i− 1) ·
|X|∑

j=1

Tj /|Y ∗| (8)

to prevent this issue, i.e., it is assumed that the
ideal policy generates the reference rather than the
system hypothesis. The newly defined ideal policy
is represented by the green line in Fig. 1.

Differentiable Average Lagging for the speech
task still uses Eq. (4) and Eq. (5) with a new γ
defined as

γspeech = |Y |/
|X|∑

j=1

Tj (9)

4 Architecture

SIMULEVAL simulates a real-time scenario by set-
ting up a server and a client. The server and client

146

Read

StateWrite

Client

GET

PUTPost-Process

Pre-Process

Server

Policy

Agent

......

......

......

RESTful API

Figure 2: The architecture of SIMULEVAL. The client executes the policy and the server operates the evaluation.

can be run separately or jointly, and are connected
through RESTful APIs. An overview is shown in
Fig. 2.

4.1 Server
The server has primarily four functions. First, read
source and reference files. Second, send source
segments to the client upon a READ action. Third,
receive predicted segments from the client upon a
WRITE action, and record the corresponding de-
lays. Fourth, run the evaluation on instances.

The evaluation process by the server on one in-
stance is shown in Algorithm 1. Note that in line
18 in Algorithm 1, the server only runs sentence-
level metrics. The server will collect Y , D and
T for every instance in the evaluation corpus, and
calculate corpus-level metrics after all hypotheses
are complete.

Algorithm 1 Server side algorithm
Input: X = [x1, ..., x|X|],Y

∗ = [y∗1 , ..., y
∗
|Y ∗|]

Input: Y = [],D = []
Input: i = 0, j = 0, y0 = BOS, d0 = 0

1: while yi 6= EOS do
2: r = await request from client()
3: if r.action == READ then
4: if j < |X| then
5: j = j + 1
6: send segment to client(xj)
7: else
8: send segment to client(EOS)
9: else

10: i = i+ 1
11: yi = r.segment
12: Y = Y + [yi]
13: if data type is speech then
14: di = di−1 + Tj

15: else
16: di = j

17: D = D + [di]

18: return evaluate(Y ,Y ∗,D,T)

4.2 Client
The client contains two components — an agent
and a state. The agent is a user-defined class that

operates the policy and generates hypotheses for
simultaneous translation, the latter provides func-
tions such as pre-processing, post-processing and
memorizing context. The purpose of this design
is to make the user free from complicated setups,
and focus on the policy. The client side algorithm
is shown in Algorithm 2.

Algorithm 2 Client side algorithm
Input: X = [], i = 0, j = 0, y0 = BOS, State, Agent

1: while yi 6= EOS do
2: action = Agent.policy(State)
3: if action == READ then
4: x = request segment from server()
5: if x is not EOS then
6: j = j + 1
7: xj = State.preprocess(x)
8: States.update source(xj)
9: continue

10: i = i+ 1
11: yi = Agent.predict(State)
12: yi = State.postprocess(yi)
13: States.update target(yi)
14: send segment to server(yi)

5 Usage Instructions

5.1 User-Defined Agent
A user-defined agent class is required for evalu-
ation, along with the user’s model specific argu-
ments. The user is able to add customized argu-
ments and initialize the model. Two functions must
be defined in order to successfully run online de-
coding. The first one is “policy”, which takes the
state as input and returns a decision on whether to
perform a read or write action. The other function
is “predict” which will be called when the “policy”
returns a write action and return a new target pre-
diction given the state. An example of a text wait-k
model is shown below.

147

from simuleval.agents import TextAgent
from simuleval import READ_ACTION, WRITE_ACTION,

DEFAULT_EOS↪→
User defined model code
from user_library import init_model

class WaitKTextAgent(TextAgent):
def __init__(self, args):

super().__init__(args)
Initialization
self.waitk = args.waitk
self.model = init_model(args.model)

@staticmethod
def add_args(parser):

Customized arguments
parser.add_argument(

"--waitk", type=int,
help="Lagging between source and

target")↪→
parser.add_argument(

"--model", help="model specifics")

def preprocess(self, state):
preprocess code
return state

def postprocess(self, state):
postprocess code
return state

def policy(self, state):
Make a decision here
if (

len(state.source) - len(state.target)
< self.waitk
and not state.finish_read()

):
return READ

else:
return WRITE

def predict(self, state):
Predict a token here
Called when self.policy() returns

WRITE_ACTION↪→
return model.predict(state)

Listing 1: An example of user defined agent class for a text
wait-k model.

Additionally, the user can define pre-processing
or post-processing methods to handle different
types of input. For example, for a speech trans-
lation model, the pre-processing method can be
a feature extraction function that converts speech
samples to filterbank features while for text trans-
lation, the pre-processing can be tokenization or
subword splitting. Post-processing can implement
functions such as merging subwords and detok-
enization.

5.2 User-Defined Client
A typical user will only need to implement an agent
and will rely on the out-of-the-box client implemen-
tation of Algorithm 2. However, sometimes, a user
may want to customize the client, for example if
they want to use a different programming language
than Python or make the implementation of Al-
gorithm 2 more efficient. In that case, they can
take advantage of the RESTful APIs between the

client and the server described in Table 1. Users
can easily plug in these APIs into their own client
implementations.

5.3 Evaluation
With a well-defined agent class, SIMULE-
VAL is able to start the evaluation automati-
cally. Assuming the agent class is stored in
text waitk agent.py, the evaluation can be
run in one single command or separate commands:

simuleval \
--output $OUT_DIR \
--source $SOURCE \
--reference $TARGET \
--agent text_waitk_agent.py \
--waitk 3 \
--model $MODEL_PARAMS

Listing 2: Evaluation command (joint)

simuleval server \
--output $OUT_DIR \
--port 5000 \
--source $SOURCE \
--reference $TARGET &

simuleval client \
--port 5000 \
--agent text_waitk_agent.py \
--waitk 3 \
--model $MODEL_PARAMS

Listing 3: Evaluation command (Separate)

After all hypotheses are generated, the interme-
diate results and corpus level evaluation metrics
will be saved in the output directory. SIMULEVAL

also supports resuming an evaluation if the process
has been interrupted.

5.4 Visualization
SIMULEVAL provides a web user interface (UI) for
visualizing the online decoding process. Fig. 3
shows an interactive example on simultaneous
speech translation. A user can move the cursor to
find the corresponding translation at a certain point.
The visualization server can be simply started by

simuleval server --visual --log-dir $OUT_DIR

The default port is 7777 and the web UI can be
accessed at http://ip-of-server:7777.

5.5 Case Study: IWSLT 2020
In order to avoid inconsistencies in how latency
metrics are computed and to ensure fair compar-
isons between results presented in research pa-
pers, we encourage the research community to use
SIMULEVAL when reporting latency in the future.

148

Function Endpoint Params Response / Body

Get next source segment xj /src {sent id: sent idx} xj (text)
Get next Tj ms speech segment xj /src {sent id: sent idx, segment size: Tj} xj (samples)
Send a predicted yi /hypo {sent id: sent idx} yi

Table 1: A subset of the RESTful APIs for the SIMULEVAL server.

Figure 3: Visualization interface of SIMULEVAL.

In addition, an earlier version of SIMULEVAL

was used in the context of the first simultaneous
speech translation shared task at IWSLT (Ansari
et al., 2020), where it is of paramount importance
to have the same evaluation conditions for all sub-
missions. In order to preserve the integrity of the
evaluation process, the test set, including the source
side, could not be released to participants. This mo-
tivated the client-server design, where participants
defined their own agent file and submitted their
system in a Docker (Merkel, 2014) environment.
The organizers of the task were then able to run
SIMULEVAL and score each submission in a consis-
tent way, even for systems implemented in different
frameworks.

6 Conclusion

In this paper, we introduced SIMULEVAL, a general
and easy-to-use evaluation toolkit for simultaneous
speech and text translation. It simulates a real-time
scenario with a server-client scheme and automat-
ically evaluates simultaneous translation given a
user-defined agent, both for text and speech. Fur-
thermore, it provides a visualization interface for
the user to track the online decoding process. We
introduced example use cases of the toolkit and
showed that its general design allows evaluation

on different frameworks. We encourage future re-
search on simultaneous speech and text translation
to make use of this toolkit in order to obtain an
accurate and standard comparison of the latency
between different systems.

References
Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar.

2018. Prediction improves simultaneous neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3022–3027.

Ebrahim Ansari, amittai axelrod, Nguyen Bach, Ondřej
Bojar, Roldano Cattoni, Fahim Dalvi, Nadir Dur-
rani, Marcello Federico, Christian Federmann, Ji-
atao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stüker, Marco
Turchi, Alexander Waibel, and Changhan Wang.
2020. FINDINGS OF THE IWSLT 2020 EVALU-
ATION CAMPAIGN. In Proceedings of the 17th In-
ternational Conference on Spoken Language Trans-
lation, pages 1–34, Online. Association for Compu-
tational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic infinite lookback attention for simulta-
neous machine translation. In Proceedings of the

149

57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1313–1323, Florence,
Italy. Association for Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Colin Cherry and George Foster. 2019. Thinking slow
about latency evaluation for simultaneous machine
translation. arXiv preprint arXiv:1906.00048.

Kyunghyun Cho and Masha Esipova. 2016. Can neu-
ral machine translation do simultaneous translation?
arXiv preprint arXiv:1606.02012.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until the
final verb wait: Reinforcement learning for simul-
taneous machine translation. In Proceedings of the
2014 Conference on empirical methods in natural
language processing (EMNLP), pages 1342–1352.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor OK Li. 2017. Learning to translate in real-time
with neural machine translation. In 15th Confer-
ence of the European Chapter of the Association
for Computational Linguistics, EACL 2017, pages
1053–1062. Association for Computational Linguis-
tics (ACL).

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3036,
Florence, Italy. Association for Computational Lin-
guistics.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Puzon,
and Jiatao Gu. 2020. Monotonic multihead attention.
In International Conference on Learning Represen-
tations.

Dirk Merkel. 2014. Docker: lightweight linux con-
tainers for consistent development and deployment.
Linux journal, 2014(239):2.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Yi Ren, Jinglin Liu, Xu Tan, Chen Zhang, Tao QIN,
Zhou Zhao, and Tie-Yan Liu. 2020. SimulSpeech:
End-to-end simultaneous speech to text translation.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
3787–3796, Online. Association for Computational
Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine transla-
tion in the Americas, volume 200. Cambridge, MA.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019. Simultaneous translation with flexible
policy via restricted imitation learning. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 5816–5822,
Florence, Italy. Association for Computational Lin-
guistics.

150

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 151–157
November 16-20, 2020. c©2020 Association for Computational Linguistics

Agent Assist through Conversation Analysis

Kshitij P. Fadnis1, Nathaniel Mills1, Jatin Ganhotra1, Haggai Roitman2∗, Gaurav Pandey1,
Doron Cohen1, Yosi Mass1, Shai Erera1, Chulaka Gunasekara1, Danish Contractor1,

Siva Sankalp Patel1, Q. Vera Liao1, Sachindra Joshi1, Luis A. Lastras1, David Konopnicki1

1IBM Research, 2eBay Research
{kpfadnis, wnm3, jatinganhotra, lastrasl}@us.ibm.com

{hroitman}@ebay.com, {doronc, yosimass, shaie, davidko}@il.ibm.com
{siva.sankalp.patel, chulaka.gunasekara, vera.liao}@ibm.com

{gpandey1, dcontrac, jsachind}@in.ibm.com,

Abstract

Customer support agents play a crucial role
as an interface between an organization and
its end-users. We propose CAIRAA: Conver-
sational Approach to Information Retrieval
for Agent Assistance, to reduce the cognitive
workload of support agents who engage with
users through conversation systems. CAIRAA
monitors an evolving conversation and recom-
mends both responses and URLs of documents
the agent can use in replies to their client. We
combine traditional information retrieval (IR)
approaches with more recent Deep Learning
(DL) models to ensure high accuracy and ef-
ficient run-time performance in the deployed
system. Here, we describe the CAIRAA sys-
tem and demonstrate its effectiveness in a pilot
study via a short video1.

1 Introduction

Customer care conversation systems have been
used in a variety of domains, including technical
support, reservation systems, and banking appli-
cations (Acomb et al., 2007). The majority of
such systems provide a dashboard to customer sup-
port agents, so that they can interact with multi-
ple end-users in parallel. The support agents use
such dashboards to perform diverse tasks to address
user requests, such as question-answering, conver-
sational search, document passage extraction and
transactions. When identifying the responses to
user queries, the support agents either, (1) rely on
their own domain knowledge and articulate such
knowledge to be sent to the users or, (2) manually
extract the keywords from the conversation and use
search functions provided in their dashboards to
identify the relevant knowledge contained in docu-
ments, and send URLs for these documents. The

∗ Work done when author was at IBM Research
1https://youtu.be/EeqMLLBWhxQ

Dialogue

A: Hello. Thank you for contacting
Help@IBM. How may I help you?

U: Hi yes. I cannot connect to ibm connections cloud
in ios

U: yesterday my phone asked for the pw out of the blue
and I clicked cancel bec on the road and now I have
no connection to server

A: No worries. First you will need to cre-
ate a 16 digit password for for ibm connec-
tions cloud https://w3.ibm.com/help/#/
article/ios_create_16char_pass then
you will need to open on the iphone settings-
accounts and passwords-ibm connections cloud click
on your email address and in the password field enter
this 16 digit password.

U: I have that pw. Can I use my old one or better to
create a new one?

A: Please always try the existing
password first. If it doesn’t
work, then create a new password.

U: Worked. ;) Thanks

Table 1: Sample dialog from Help@IBM where Agent
(A) utterance includes a URL to the User (U) query.

continuous process of identifying knowledge and
responding becomes an immense cognitive work-
load for the customer support agents.

Although automated conversation systems have
improved immensely in the last decade with ad-
vances in natural language processing, machine
learning and dialog management (Wen et al. (2016);
Li et al. (2016); Li et al. (2017)), these systems still
fail to satisfy the sophisticated customer’s needs in
real-life scenarios. This leads to frustration (Weisz
et al., 2019) and less engagement (Vtyurina et al.,
2017). Therefore, having an empathetic human
agent in-the-loop supported by efficient and ac-
curate content retrieval, allows better coverage of
customer needs and reduces customer frustration.

With CAIRAA, we propose and showcase a sys-
tem that provides real-time assistance to the sup-
port agents and alleviates their cognitive workload.
Our system provides two forms of real-time rec-

151

Figure 1: CAIRAA System Architecture: (a) Agent Dashboard - a web application (b) Orchestrator APIs -
server side communications, controls data and process flow (c) Document Recommendation Engine - retrieves and
recommends documents relevant to conversational context (d) Response Recommendation Engine - recommends
agent responses based on conversational context (f) Storage - retains document content, conversation and system
logs, agents feedback and activity (g) Training infrastructure - a dedicated cluster for deep learning models training
(In development)

ommendations to the support agents: (1) URLs of
the documents that contain information to resolve
user issues, and (2) natural language responses that
the agent can use to respond to their customer’s
queries. The operation of CAIRAA is illustrated
in Table 1 with a sample conversation between a
user and a support agent. In the example, the ut-
terances made by the support agents are prefixed
by A and the utterances made by the user are pre-
fixed by U. The natural language utterances that
CAIRAA predicted for the support agent are shown
in different font (monospace) while the URLs of
the related documents predicted by CAIRAA are
shown in blue. In the following sections we de-
scribe the different components of our system and
their implementation details.

2 System
The architecture of CAIRAA is illustrated in Figure
1. It consists of an Agent-dashboard that is used by
customer-support agents to interact with customers
(users). The agent is assisted by recommendations
from two engines - Document Recommendation
Engine and the Response Recommendation Engine.
As their names suggest, these engines provide real-
time recommendations for documents that could
be relevant during the chat, as well as, responses
to the agent. Figure 1 also depicts components for
data storage as well as model training.

2.1 Web Content Extraction

Given a collection of human-to-human conversa-
tion logs, we extract the mentions of URLs (doc-

152

uments) from these conversations. We use Sele-
nium2 to render static as well as dynamic web-
content. With our primary focus on text content,
additional cleaning processes that filters selected
HTML content (e.g., menus, search bars, side bars,
headers and footers) and only preserves text con-
tent, along with embedded procedural and multi-
media content references is implemented. The pro-
cessed content is exported in two formats. a) mark-
down and b) formatted text.

2.2 Document Recommendation Engine

Given a set of conversational logs along with
documents mentioned in those conversations, we
train the Document Recommendation Engine us-
ing a pipeline consisting of an information-retrieval
model followed by a deep-learning model to recom-
mend URLs relevant to an evolving conversation.
This Document Recommendation Engine is trained
with the objective of predicting the most relevant
web content for the conversation at hand. Once
trained, this is provided as a real-time service to
the agent dashboard to recommend the appropriate
URLs to support agents while they converse.

2.2.1 Information Retrieval model
The Information Retrieval (IR) model is imple-
mented using an Apache Lucene index, employed
with English language analyzer and default BM25
similarity. Documents in the index are represented
using two fields, (1) web page content, (2) docu-
ment’s representation augmented with the text of
all historic conversations that link to it.

For a given (dialog) query d, matching docu-
ments are retrieved using four different ranking
steps, which are combined using a cascade ap-
proach (Wang et al., 2011). Following (Van Gysel
et al., 2016), we obtain an initial pool of candi-
date documents using a lexical query aggregation
approach. To this end, each utterance ti ∈ d is
represented as a separate weighted query-clause,
having its weight assigned relatively to its sequence
position in the dialog (Van Gysel et al., 2016). Var-
ious sub-queries are then combined using a sin-
gle disjunctive query. The second ranker evalu-
ates each document y obtained by the first ranker
against an expanded query (applying relevance
model (Lavrenko and Croft, 2001)). The third
ranker applies a manifold-ranking approach (Xu
et al., 2011), aiming to score content-similar doc-

2http://www.seleniumhq.org

uments (measured by Bhattacharyya language-
model based similarity) with similar scores.

The last ranker in the cascade treats the dia-
log query d as a verbose query and applies the
Fixed-Point (FP) method (Paik and Oard, 2014) for
weighting its words. Yet, compared to “traditional”
verbose queries, dialogs are further segmented into
distinct utterances. Using this approach, we imple-
ment an utterance-biased extension for enhanced
word-weighting. To this end, we first score the
various utterances based on the initial FP weights
of words they contain and their relative position.
We then propagate utterance scores back to their
associated words.

2.2.2 Deep Learning Model
We use the Enhanced Sequential Inference Model
(ESIM) proposed by Chen et al. (2017) with the
same goal as the IR model but it uses dense vec-
tors to represent conversation-contexts and doc-
uments. The objective is to predict the relevant
URL given the dialog history (context). The
multi-turn dialog history is concatenated together
to form the context of length m, represented as
C = (c1, c2, ..., ci, ..., cm), where ci is the ith
word in context. Given a web page content U
as U = (r1, r2, ..., rj , ..., rn), where rj is the jth
word in web page content, the web page is selected
using the conditional probability P (y = 1|C,U),
which shows the confidence of selecting the web
page U given context C.

We observe that the IR model is much faster than
the neural ESIM model, but the ESIM model pro-
vides improved performance in comparison. We
combine the ESIM model with the IR model us-
ing a re-ranking of latter’s candidate pool, which
provides a combination of both ranker models. For
example, the IR model returns the top-k relevant
web pages (k = 20) and then the ESIM model
is used to re-rank them and show a subset to the
agent based on their confidence scores. We refer to
this two-stage pipeline as a hybrid approach, which
combines the best of both worlds and deliver near
real-time experience with better performance.

2.2.3 Rating and Confidence Estimation
In addition to providing a ranked list of webpages,
the Document Recommendation Engine provides
a rating and confidence estimate for each recom-
mended web content, allowing to better guide the
agent to the best solutions. The rating and confi-
dence per each single recommended content URL

153

is estimated using a novel query performance pre-
diction (QPP) model (Roitman et al., 2019), trained
over a multitude of features obtained from the con-
versation context and recommended content analy-
sis.

Besides, at every step of the conversation, a cru-
cial decision that the Document Recommendation
Engine has to make is to decide whether or not
to present the recommendations to the agent. In
case of a low confidence, the human agent may ask
for further clarifications from the end-user. Such
a decision is taken by training another confidence
estimation model that considers the confidence of
each individual recommended URL. Here, the sys-
tem further exploits the interaction between the rec-
ommendations made by the IR and ESIM models,
with the observation that higher agreement (mea-
sured by ranking-similarity) usually translates to
higher overall confidence (Roitman and Kurland,
2019). We assessed the quality of our confidence
estimation model by measuring its accuracy and
log-loss per each task. For a single recommended
URL, the model is trained to classify it as relevant
or not. For a top-k recommended URLs list, the
model is trained to determine whether it contains
at least one relevant URL.

2.3 Response Recommendation Engine

As mentioned above, an agent is also shown recom-
mended responses based on how other agents have
responded to similar conversation contexts in the
pasts. Thus, given the current dialog input context
C = (c1, c2, ..ci..cm), CAIRAA generates recom-
mendations using a combination of generative as
well as retrieval based methods.

2.3.1 Multi-task training
We use a hierarchical encoder (Serban et al., 2016)
to encode conversation contexts. Specifically, the
encoder first encodes each conversation turn and
generates turn-level representations for the dialog.
A secondary encoder then generates the overall con-
text representation using the turn-level encodings.

We utilize this context encoding to generate re-
sponse recommendations in three ways: (1) Using
a vanilla decoder (Serban et al., 2016) (2) Using a
decoder that additionally validates whether a sub-
sequence at each time-step is likely to be relevant.
(3) Using the encoded representations in a Siamese
dual-encoder (Lowe et al., 2017) that also encodes
the responses.
Vanilla Decoder: The decoder is initialized using

the context encoding. The decoder generates the
response autoregressively, that is, the token at each
time-step is generated conditioned on the previous
tokens of the response. The decoder is trained to
minimize the log-perplexity of each word in the
gold response.
Decoder with sub-sequence validation: When
trained on actual conversation logs, vanilla de-
coders often resort to generic responses or re-
sponses that are irrelevant to the context. Hence, to
enforce relevance, we enhance the decoder with a
classifier for each time-step of decoding. At each
time-step, the classifier predicts the relevance of the
response so-far for the given conversational con-
text. The classifier is trained to predict a relevance
of 1 for a prefix of the gold response and 0 for a
prefix of any other randomly sampled response at
each time-step of decoding. Simultaneously, the
decoder is also trained to minimize the word loss,
that is, log-perplexity of each word in the gold re-
sponse. For any response r, the relevance loss can
be written as follows:

lossr(r) = −
T∑

t=1

log p(yt|w1, . . . , wt) , (1)

where yt = 1 for the gold response and 0 for the
randomly sampled response.

During inference, the token at each time-step
is generated so as to maximize the sum of log-
probability of the token and the log-relevance of
the resultant partial response.
Siamese Dual-Encoder: Finally, the context en-
coding is also fed to a Siamese network. To train
the Siamese network, we randomly sample k − 1
negative responses for each conversation context.
The negative responses as well as the gold response
are fed to a recurrent encoder (bidirectional LSTM)
to generate the corresponding response embed-
dings. The context embedding as well as the corre-
sponding response embeddings are fed to a 1-in-k
classifier, where the k labels correspond to the k
responses. The classifier is trained to predict the
class-label that corresponds to the gold response.
If the gold response r has label `, the Siamese loss
can be computed as follows:

losss(r) = − log p(`|r1, . . . , rk) . (2)

Multi-task training Objective: The final loss is
the sum of the loss for each of the above models.
The model is trained until the loss on an indepen-
dent validation set stops decreasing.

154

Figure 2: CAIRAA In Action; (A & B) Document and Response recommendations panel respectively; (C) Top
Recommendation; (D) Confidence score of the recommendation and a button to copy URLs/responses into agent’s
chat with the end-user; (E) Agent’s response; (F) Full-text search bar for agents to perform manual search.

2.3.2 Retrieval-based model

In order to build a retrieval based model, we encode
the dialog contexts using the pre-trained Univer-
sal Sentence Encoder (USE) (Cer et al., 2018) as
well as the context encoder trained using multi-task
objective discussed above. For each encoder, we
create an annoy index3 which stores the context
embeddings and the corresponding responses from
the training data.

In order to return a response recommendation, a
given dialog context is encoded either using USE
or the context encoder. We fetch the responses of
the k-nearest neighbours in the annoy index.

2.3.3 Scoring the responses

Before the retrieved and generated responses are
presented to the user, they are scored from 0 to 1.
We use a voting-based scoring mechanism, where
each response votes for all the other responses (gen-
erated as well as retrieved). To achieve this, we en-
code each response using the pre-trained USE. The
score of a response is the mean of the inner-product
between the corresponding embedding and all the
other response embeddings. Since USE embed-
dings are normalized, these inner products range
between 0 and 1. Finally, the responses are sorted
based on their scores and presented to the user.

3https://github.com/spotify/annoy

3 Deployment Details

Once the recommendation engines are trained,
CAIRAA is tasked with the live operation of the
agent dashboard. CAIRAA adopts optimized user
interface design to deliver precise information with
minimal agent interactions. Prioritizing scalabil-
ity, each operational component is intentionally
designed to be modular and stateless.

3.1 Agent Dashboard

The Agent dashboard (Figure 2) is an interactive
web application that is integrated with customer
support applications (e.g., LivePerson). Imple-
mented using Javascript/ HTML5, it comprises of
a chat interceptor; document and response recom-
mendations panels; a full-text search; and a feed-
back facility runnable in an ES6 compliant browser.
Chat interceptor monitors customer support appli-
cations (e.g., LivePerson) for conversation updates.
Both document and response recommendations
panels in their minimalist design limits informa-
tion overload, where the former shows the title and
a short description of the web content and the latter
displays the recommended utterance. The agent
interactivity with recommendations is limited to
copy, view and reject. A full-text search allows the
expert agents to perform simple keyword searches
based on their domain knowledge.

While we have automated the agent assistance
for recommending documents and responses, we

155

have retained the support agent in the loop to pro-
vide final edits and control over what is presented to
the end-user. This allows a support agent to adjust
the tone of responses, and to include documents
outside recommended ones in their responses. Our
framework captures these responses and their em-
bedded recommendations for future retraining /
retesting so that the system can self learn and auto-
matically adjust to support agent activities.

4 Conclusion and Future Work

By providing real-time assistance to agents to sup-
port their clients, we leverage the speed and accu-
racy of automated recommendation engines while
retaining the agents’ expertise. Learning from con-
versation logs, CAIRAA promotes more uniform
support by keeping all agents aware of the latest in-
formation to address current end-user needs. Com-
bining traditional information retrieval approaches
with modern deep learning models ensures high
accuracy and efficient run-time performance in our
deployed system.

References
Kate Acomb, Jonathan Bloom, Krishna Dayanidhi,

Phillip Hunter, Peter Krogh, Esther Levin, and
Roberto Pieraccini. 2007. Technical support di-
alog systems: issues, problems, and solutions.
In Proceedings of the Workshop on Bridging the
Gap: Academic and Industrial Research in Dialog
Technologies, pages 25–31. Association for Compu-
tational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei,
Hui Jiang, and Diana Inkpen. 2017. Enhanced
lstm for natural language inference. In Proceedings
of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1657–1668.

Victor Lavrenko and W. Bruce Croft. 2001. Relevance
based language models. In Proceedings of the 24th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’01, page 120–127, New York, NY, USA. As-
sociation for Computing Machinery.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016. Deep rein-
forcement learning for dialogue generation. arXiv
preprint arXiv:1606.01541.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversar-
ial learning for neural dialogue generation. arXiv
preprint arXiv:1701.06547.

Ryan Thomas Lowe, Nissan Pow, Iulian Vlad Serban,
Laurent Charlin, Chia-Wei Liu, and Joelle Pineau.
2017. Training end-to-end dialogue systems with
the ubuntu dialogue corpus. Dialogue & Discourse,
8(1):31–65.

Jiaul H. Paik and Douglas W. Oard. 2014. A fixed-
point method for weighting terms in verbose in-
formational queries. In Proceedings of the 23rd
ACM International Conference on Conference on
Information and Knowledge Management, CIKM
’14, page 131–140, New York, NY, USA. Associa-
tion for Computing Machinery.

Haggai Roitman, Shai Erera, and Guy Feigenblat. 2019.
A study of query performance prediction for answer
quality determination. In Proceedings of the 2019
ACM SIGIR International Conference on Theory of
Information Retrieval, ICTIR ’19, page 43–46, New
York, NY, USA. Association for Computing Machin-
ery.

Haggai Roitman and Oren Kurland. 2019. Query
performance prediction for pseudo-feedback-
based retrieval. In Proceedings of the 42nd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SI-
GIR’19, page 1261–1264, New York, NY, USA.
Association for Computing Machinery.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Thirtieth AAAI
Conference on Artificial Intelligence.

Christophe Van Gysel, Evangelos Kanoulas, and
Maarten de Rijke. 2016. Lexical query model-
ing in session search. In Proceedings of the 2016
ACM International Conference on the Theory of
Information Retrieval, ICTIR ’16, page 69–72, New
York, NY, USA. Association for Computing Machin-
ery.

Alexandra Vtyurina, Denis Savenkov, Eugene
Agichtein, and Charles L. A. Clarke. 2017.
Exploring conversational search with humans,
assistants, and wizards. In Proceedings of the 2017
CHI Conference Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’17, page
2187–2193, New York, NY, USA. Association for
Computing Machinery.

Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A
cascade ranking model for efficient ranked retrieval.
In Proceedings of the 34th International ACM
SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’11, page 105–114,
New York, NY, USA. Association for Computing
Machinery.

156

Justin D Weisz, Mohit Jain, Narendra Nath Joshi,
James Johnson, and Ingrid Lange. 2019. Bigbluebot:
teaching strategies for successful human-agent inter-
actions. In Proceedings of the 24th International
Conference on Intelligent User Interfaces, pages
448–459.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-

based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.

Bin Xu, Jiajun Bu, Chun Chen, Deng Cai, Xiaofei
He, Wei Liu, and Jiebo Luo. 2011. Efficient mani-
fold ranking for image retrieval. In Proceedings of
the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’11, page 525–534, New York, NY, USA. As-
sociation for Computing Machinery.

157

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 158–164
November 16-20, 2020. c©2020 Association for Computational Linguistics

NeuSpell: A Neural Spelling Correction Toolkit

Sai Muralidhar Jayanthi, Danish Pruthi, Graham Neubig
Language Technologies Institute

Carnegie Mellon University
{sjayanth, ddanish, gneubig}@cs.cmu.edu

Abstract

We introduce NeuSpell, an open-source toolkit
for spelling correction in English. Our
toolkit comprises ten different models, and
benchmarks them on naturally occurring mis-
spellings from multiple sources. We find that
many systems do not adequately leverage the
context around the misspelt token. To remedy
this, (i) we train neural models using spelling
errors in context, synthetically constructed by
reverse engineering isolated misspellings; and
(ii) use contextual representations. By training
on our synthetic examples, correction rates im-
prove by 9% (absolute) compared to the case
when models are trained on randomly sampled
character perturbations. Using richer contex-
tual representations boosts the correction rate
by another 3%. Our toolkit enables practition-
ers to use our proposed and existing spelling
correction systems, both via a unified com-
mand line, as well as a web interface. Among
many potential applications, we demonstrate
the utility of our spell-checkers in combating
adversarial misspellings. The toolkit can be ac-
cessed at neuspell.github.io.1

1 Introduction

Spelling mistakes constitute the largest share of
errors in written text (Wilbur et al., 2006; Flor
and Futagi, 2012). Therefore, spell checkers are
ubiquitous, forming an integral part of many ap-
plications including search engines, productivity
and collaboration tools, messaging platforms, etc.
However, many well performing spelling correc-
tion systems are developed by corporations, trained
on massive proprietary user data. In contrast, many
freely available off-the-shelf correctors such as En-
chant (Thomas, 2010), GNU Aspell (Atkinson,
2019), and JamSpell (Ozinov, 2019), do not ef-
fectively use the context of the misspelled word.

1Code and pretrained models are available at:
https://github.com/neuspell/neuspell

Figure 1: Our toolkit’s web and command line inter-
face for spelling correction.

For instance, they fail to disambiguate
::::::
thaught to

taught or thought based on the context: “Who

:::::::
thaught you calculus?” versus “I never

::::::
thaught I

would be awarded the fellowship.”
In this paper, we describe our spelling correction

toolkit, which comprises of several neural mod-
els that accurately capture context around the mis-
spellings. To train our neural spell correctors, we
first curate synthetic training data for spelling cor-
rection in context, using several text noising strate-
gies. These strategies use a lookup table for word-
level noising, and a context-based character-level
confusion dictionary for character-level noising. To
populate this lookup table and confusion matrix, we
harvest isolated misspelling-correction pairs from
various publicly available sources.

158

Further, we investigate effective ways to incor-
porate contextual information: we experiment with
contextual representations from pretrained models
such as ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2018) and compare their efficacies with
existing neural architectural choices (§ 5.1).

Lastly, several recent studies have shown that
many state-of-the-art neural models developed for
a variety of Natural Language Processing (NLP)
tasks easily break in the presence of natural or syn-
thetic spelling errors (Belinkov and Bisk, 2017;
Ebrahimi et al., 2017; Pruthi et al., 2019). We
determine the usefulness of our toolkit as a counter-
measure against character-level adversarial attacks
(§ 5.2). We find that our models are better defenses
to adversarial attacks than previously proposed
spell checkers. We believe that our toolkit would
encourage practitioners to incorporate spelling cor-
rection systems in other NLP applications.

Model
Correction

Rates
Time per sentence

(milliseconds)
ASPELL (Atkinson, 2019) 48.7 7.3∗

JAMSPELL (Ozinov, 2019) 68.9 2.6∗

CHAR-CNN-LSTM (Kim et al., 2015) 75.8 4.2
SC-LSTM (Sakaguchi et al., 2016) 76.7 2.8
CHAR-LSTM-LSTM (Li et al., 2018) 77.3 6.4
BERT (Devlin et al., 2018) 79.1 7.1
SC-LSTM

+ELMO (input) 79.8 15.8
+ELMO (output) 78.5 16.3
+BERT (input) 77.0 6.7
+BERT (output) 76.0 7.2

Table 1: Performance of different correctors in the
NeuSpell toolkit on the BEA-60K dataset with real-
world spelling mistakes. ∗ indicates evaluation on a
CPU (for others we use a GeForce RTX 2080 Ti GPU).

2 Models in NeuSpell

Our toolkit offers ten different spelling correction
models, which include: (i) two off-the-shelf non-
neural models, (ii) four published neural models
for spelling correction, (iii) four of our extensions.
The details of first six systems are following:

• GNU Aspell (Atkinson, 2019): It uses a com-
bination of metaphone phonetic algorithm,2

Ispell’s near miss strategy,3 and a weighted
edit distance metric to score candidate words.

• JamSpell (Ozinov, 2019): It uses a variant of
the SymSpell algorithm,4 and a 3-gram lan-
guage model to prune word-level corrections.

2http://aspell.net/metaphone/
3https://en.wikipedia.org/wiki/Ispell
4https://github.com/wolfgarbe/SymSpell

• SC-LSTM (Sakaguchi et al., 2016): It corrects
misspelt words using semi-character represen-
tations, fed through a bi-LSTM network. The
semi-character representations are a concate-
nation of one-hot embeddings for the (i) first,
(ii) last, and (iii) bag of internal characters.

• CHAR-LSTM-LSTM (Li et al., 2018): The
model builds word representations by passing
its individual characters to a bi-LSTM. These
representations are further fed to another bi-
LSTM trained to predict the correction.

• CHAR-CNN-LSTM (Kim et al., 2015): Similar
to the previous model, this model builds word-
level representations from individual charac-
ters using a convolutional network.

• BERT (Devlin et al., 2018): The model uses
a pre-trained transformer network. We aver-
age the sub-word representations to obtain the
word representations, which are further fed to
a classifier to predict its correction.

To better capture the context around a misspelt
token, we extend the SC-LSTM model by aug-
menting it with deep contextual representations
from pre-trained ELMo and BERT. Since the best
point to integrate such embeddings might vary by
task (Peters et al., 2018), we append them either
to semi-character embeddings before feeding them
to the biLSTM or to the biLSTM’s output. Cur-
rently, our toolkit provides four such trained mod-
els: ELMo/BERT tied at input/output with a semi-
character based bi-LSTM model.

Implementation Details Neural models in
NeuSpell are trained by posing spelling correction
as a sequence labeling task, where a correct
word is marked as itself and a misspelt token
is labeled as its correction. Out-of-vocabulary
labels are marked as UNK. For each word in the
input text sequence, models are trained to output
a probability distribution over a finite vocabulary
using a softmax layer.

We set the hidden size of the bi-LSTM network
in all models to 512 and use {50,100,100,100}
sized convolution filters with lengths {2,3,4,5} re-
spectively in CNNs. We use a dropout of 0.4 on
the bi-LSTM’s outputs and train the models using
cross-entropy loss. We use the BertAdam5 opti-
mizer for models with a BERT component and the

5github.com/cedrickchee/pytorch-pretrained-BERT

159

Adam (Kingma and Ba, 2014) optimizer for the
remainder. These optimizers are used with default
parameter settings. We use a batch size of 32 ex-
amples, and train with a patience of 3 epochs.

During inference, we first replace UNK predic-
tions with their corresponding input words and then
evaluate the results. We evaluate models for accu-
racy (percentage of correct words among all words)
and word correction rate (percentage of misspelt to-
kens corrected). We use AllenNLP6 and Hugging-
face7 libraries to use ELMo and BERT respectively.
All neural models in our toolkit are implemented
using the Pytorch library (Paszke et al., 2017), and
are compatible to run on both CPU and GPU en-
vironments. Performance of different models are
presented in Table 1.

3 Synthetic Training Datasets

Due to scarcity of available parallel data for
spelling correction, we noise sentences to gener-
ate misspelt-correct sentence pairs. We use 1.6M
sentences from the one billion word benchmark
(Chelba et al., 2013) dataset as our clean corpus.
Using different noising strategies from existing lit-
erature, we noise ∼20% of the tokens in the clean
corpus by injecting spelling mistakes in each sen-
tence. Below, we briefly describe these strategies.

RANDOM: Following Sakaguchi et al. (2016),
this noising strategy involves four character-level
operations: permute, delete, insert and replace. We
manipulate only the internal characters of a word.
The permute operation jumbles a pair of consecu-
tive characters, delete operation randomly deletes
one of the characters, insert operation randomly
inserts an alphabet and replace operation swaps a
character with a randomly selected alphabet. For
every word in the clean corpus, we select one of
the four operations with 0.1 probability each. We
do not modify words of length three or smaller.

WORD: Inspired from Belinkov and Bisk (2017),
we swap a word with its noised counterpart from a
pre-built lookup table. We collect 109K misspelt-
correct word pairs for 17K popular English words
from a variety of public sources.8

For every word in the clean corpus, we replace it
by a random misspelling (with a probability of 0.3)

6allennlp.org/elmo
7huggingface.co/transformers/model doc/bert.html
8https://en.wikipedia.org/, dcs.bbk.ac.uk, norvig.com, cor-

pus.mml.cam.ac.uk/efcamdat

sampled from all the misspellings associated with
that word in the lookup table. Words not present in
the lookup table are left as is.

PROB: Recently, Piktus et al. (2019) released a
corpus of 20M correct-misspelt word pairs, gener-
ated from logs of a search engine.9 We use this cor-
pus to construct a character-level confusion dictio-
nary where the keys are 〈character, context〉 pairs
and the values are a list of potential character re-
placements with their frequencies. This dictionary
is subsequently used to sample character-level er-
rors in a given context. We use a context of 3
characters, and backoff to 2, 1, and 0 characters.
Notably, due to the large number of unedited char-
acters in the corpus, the most probable replacement
will often be the same as the source character.

PROB+WORD: For this strategy, we simply con-
catenate the training data obtained from both
WORD and PROB strategies.

4 Evaluation Benchmarks

Natural misspellings in context Many publicly
available spell-checkers correctors evaluate on iso-
lated misspellings (Atkinson, 2019; Mitton; Norvig,
2016). Whereas, we evaluate our systems using
misspellings in context, by using publicly available
datasets for the task of Grammatical Error Correc-
tion (GEC). Since the GEC datasets are annotated
for various types of grammatical mistakes, we only
sample errors of SPELL type.

Among the GEC datasets in BEA-2019 shared
task10, the Write & Improve (W&I) dataset along
with the LOCNESS dataset are a collection of texts
in English (mainly essays) written by language
learners with varying proficiency levels (Bryant
et al., 2019; Granger, 1998). The First Certificate
in English (FCE) dataset is another collection of
essays in English written by non-native learners tak-
ing a language assessment exam (Yannakoudakis
et al., 2011) and the Lang-8 dataset is a collection
of English texts from Lang-8 online language learn-
ing website (Mizumoto et al., 2011; Tajiri et al.,
2012). We combine data from these four sources
to create the BEA-60K test set with nearly 70K
spelling mistakes (6.8% of all tokens) in 63044
sentences.

The JHU FLuency-Extended GUG Corpus
(JFLEG) dataset (Napoles et al., 2017) is another

9https://github.com/facebookresearch/moe
10www.cl.cam.ac.uk/research/nl/bea2019st/

160

Spelling correction systems in NeuSpell (Word-Level Accuracy / Correction Rate)
Synthetic Natural Ambiguous

WORD-TEST PROB-TEST BEA-60K JFLEG BEA-4660 BEA-322
ASPELL (Atkinson, 2019) 43.6 / 16.9 47.4 / 27.5 68.0 / 48.7 73.1 / 55.6 68.5 / 10.1 61.1 / 18.9
JAMSPELL (Ozinov, 2019) 90.6 / 55.6 93.5 / 68.5 97.2 / 68.9 98.3 / 74.5 98.5 / 72.9 96.7 / 52.3
CHAR-CNN-LSTM (Kim et al., 2015) 97.0 / 88.0 96.5 / 84.1 96.2 / 75.8 97.6 / 80.1 97.5 / 82.7 94.5 / 57.3
SC-LSTM (Sakaguchi et al., 2016) 97.6 / 90.5 96.6 / 84.8 96.0 / 76.7 97.6 / 81.1 97.3 / 86.6 94.9 / 65.9
CHAR-LSTM-LSTM (Li et al., 2018) 98.0 / 91.1 97.1 / 86.6 96.5 / 77.3 97.6 / 81.6 97.8 / 84.0 95.4 / 63.2
BERT (Devlin et al., 2018) 98.9 / 95.3 98.2 / 91.5 93.4 / 79.1 97.9 / 85.0 98.4 / 92.5 96.0 / 72.1
SC-LSTM

+ELMO (input) 98.5 / 94.0 97.6 / 89.1 96.5 / 79.8 97.8 / 85.0 98.2 / 91.9 96.1 / 69.7
+ELMO (output) 97.9 / 91.4 97.0 / 86.1 98.0 / 78.5 96.4 / 76.7 97.9 / 88.1 95.2 / 63.2
+BERT (input) 98.7 / 94.3 97.9 / 89.5 96.2 / 77.0 97.8 / 83.9 98.4 / 90.2 96.0 / 67.8
+BERT (output) 98.1 / 92.3 97.2 / 86.9 95.9 / 76.0 97.6 / 81.0 97.8 / 88.1 95.1 / 67.2

Table 2: Performance of different models in NeuSpell on natural, synthetic, and ambiguous test sets. All models
are trained using PROB+WORD noising strategy.

collection of essays written by English learners
with different first languages. This dataset con-
tains 2K spelling mistakes (6.1% of all tokens) in
1601 sentences. We use the BEA-60K and JFLEG
datasets only for the purposes of evaluation, and do
not use them in training process.

Synthetic misspellings in context From the two
noising strategies described in §3, we additionally
create two test sets: WORD-TEST and PROB-TEST.
Each of these test sets contain around 1.2M spelling
mistakes (19.5% of all tokens) in 273K sentences.

Ambiguous misspellings in context Besides
the natural and synthetic test sets, we create a chal-
lenge set of ambiguous spelling mistakes, which
require additional context to unambiguously cor-
rect them. For instance, the word

::::::
whitch can be

corrected to “witch” or “which” depending upon
the context. Simliarly, for the word

::::::
begger, both

“bigger” or “beggar” can be appropriate corrections.
To create this challenge set, we select all such mis-
spellings which are either 1-edit distance away
from two (or more) legitimate dictionary words,
or have the same phonetic encoding as two (or
more) dictionary words. Using these two criteria,
we sometimes end up with inflections of the same
word, hence we use a stemmer and lemmatizer
from the NLTK library to weed those out. Finally,
we manually prune down the list to 322 sentences,
with one ambiguous mistake per sentence. We refer
to this set as BEA-322.

We also create another larger test set where we ar-
tificially misspell two different words in sentences
to their common ambiguous misspelling. This pro-
cess results in a set with 4660 misspellings in 4660
sentences, and is thus referred as BEA-4660. No-
tably, for both these ambiguous test sets, a spelling

correction system that doesn’t use any context in-
formation can at best correct 50% of the mistakes.

5 Results and Discussion

5.1 Spelling Correction

We evaluate the 10 spelling correction systems in
NeuSpell across 6 different datasets (see Table 2).
Among the spelling correction systems, all the neu-
ral models in the toolkit are trained using synthetic
training dataset, using the PROB+WORD synthetic
data. We use the recommended configurations for
Aspell and Jamspell, but do not fine-tune them on
our synthetic dataset. In all our experiments, vo-
cabulary of neural models is restricted to the top
100K frequent words of the clean corpus.

We observe that although off-the-shelf checker
Jamspell leverages context, it is often inadequate.
We see that models comprising of deep contextual
representations consistently outperform other exist-
ing neural models for the spelling correction task.
We also note that the BERT model performs con-
sistently well across all our benchmarks. For the
ambiguous BEA-322 test set, we manually evalu-
ated corrections from Grammarly—a professional
paid service for assistive writing.11 We found that
our best model for this set, i.e. BERT, outperforms
corrections from Grammarly (72.1% vs 71.4%)
We attribute the success of our toolkit’s well per-
forming models to (i) better representations of the
context, from large pre-trained models; (ii) swap
invariant semi-character representations; and (iii)
training models with synthetic data consisting of
noise patterns from real-world misspellings. We
follow up these results with an ablation study to
understand the role of each noising strategy (Ta-

11Retrieved on July 13, 2020 .

161

Sentiment Analysis (1-char attack / 2-char attack)
Defenses No Attack Swap Drop Add Key All

Word-Level Models
SC-LSTM (Pruthi et al., 2019) 79.3 78.6 / 78.5 69.1 / 65.3 65.0 / 59.2 69.6 / 65.6 63.2 / 52.4
SC-LSTM+ELMO(input) (F) 79.6 77.9 / 77.2 72.2 / 69.2 65.5 / 62.0 71.1 / 68.3 64.0 / 58.0

Char-Level Models
SC-LSTM (Pruthi et al., 2019) 70.3 65.8 / 62.9 58.3 / 54.2 54.0 / 44.2 58.8 / 52.4 51.6 / 39.8
SC-LSTM+ELMO(input) (F) 70.9 67.0 / 64.6 61.2 / 58.4 53.0 / 43.0 58.1 / 53.3 51.5 / 41.0

Word+Char Models
SC-LSTM (Pruthi et al., 2019) 80.1 79.0 / 78.7 69.5 / 65.7 64.0 / 59.0 66.0 / 62.0 61.5 / 56.5
SC-LSTM+ELMO(input) (F) 80.6 79.4 / 78.8 73.1 / 69.8 66.0 / 58.0 72.2 / 68.7 64.0 / 54.5

Table 3: We evaluate spelling correction systems in NeuSpell against adversarial misspellings.

ble 4).12 For each of the 5 models evaluated, we
observe that models trained with PROB noise out-
perform those trained with WORD or RANDOM

noises. Across all the models, we further observe
that using PROB+WORD strategy improves correc-
tion rates by at least 10% in comparison to RAN-
DOM noising.

Spelling Correction (Word-Level Accuracy / Correction Rate)
Model Train

Noise
Natural test sets

BEA-60K JFLEG
CHAR-CNN-LSTM

(Kim et al., 2015)
RANDOM 95.9 / 66.6 97.4 / 69.3
WORD 95.9 / 70.2 97.4 / 74.5
PROB 96.1 / 71.4 97.4 / 77.3
PROB+WORD 96.2 / 75.5 97.4 / 79.2

SC-LSTM

(Sakaguchi et al., 2016)
RANDOM 96.1 / 64.2 97.4 / 66.2
WORD 95.4 / 68.3 97.4 / 73.7
PROB 95.7 / 71.9 97.2 / 75.9
PROB+WORD 95.9 / 76.0 97.6 / 80.3

CHAR-LSTM-LSTM

(Li et al., 2018)
RANDOM 96.2 / 67.1 97.6 / 70.2
WORD 96.0 / 69.8 97.5 / 74.6
PROB 96.3 / 73.5 97.4 / 78.2
PROB+WORD 96.3 / 76.4 97.5 / 80.2

BERT

(Devlin et al., 2018)
RANDOM 96.9 / 66.3 98.2 / 74.4
WORD 95.3 / 61.1 97.3 / 70.4
PROB 96.2 / 73.8 97.8/ 80.5
PROB+WORD 96.1 / 77.1 97.8 / 82.4

SC-LSTM RANDOM 96.9 / 69.1 97.8 / 73.3
+ELMO (input) WORD 96.0 / 70.5 97.5 / 75.6

PROB 96.8 / 77.0 97.7 / 80.9
PROB+WORD 96.5 / 79.2 97.8 / 83.2

Table 4: Evaluation of models on the natural test sets
when trained using synthetic datasets curated using dif-
ferent noising strategies.

5.2 Defense against Adversarial Mispellings
Many recent studies have demonstrated the suscep-
tibility of neural models under word- and character-
level attacks (Alzantot et al., 2018; Belinkov and
Bisk, 2017; Piktus et al., 2019; Pruthi et al., 2019).
To combat adversarial misspellings, Pruthi et al.
(2019) find spell checkers to be a viable defense.

12To fairly compare across different noise types, in this
experiment we include only 50% of samples from each of
PROB and WORD noises to construct the PROB+WORD noise
set.

Therefore, we also evaluate spell checkers in our
toolkit against adversarial misspellings.

We follow the same experimental setup as Pruthi
et al. (2019) for the sentiment classification task
under different adversarial attacks. We finetune
SC-LSTM+ELMO(input) model on movie reviews
data from the Stanford Sentiment Treebank (SST)
(Socher et al., 2013), using the same noising strat-
egy as in (Pruthi et al., 2019). As we observe from
Table 3, our corrector from NeuSpell toolkit (SC-
LSTM+ELMO(input)(F)) outperforms the spelling
corrections models proposed in (Pruthi et al., 2019)
in most cases.

6 Conclusion

In this paper, we describe NeuSpell, a spelling
correction toolkit, comprising ten different mod-
els. Unlike popular open-source spell checkers,
our models accurately capture the context around
the misspelt words. We also supplement mod-
els in our toolkit with a unified command line,
and a web interface. The toolkit is open-sourced,
free for public use, and available at https://

github.com/neuspell/neuspell. A demo of the
trained spelling correction models can be accessed
at https://neuspell.github.io/.

Acknowledgements

The authors thank Punit Singh Koura for insight-
ful discussions and participation during the initial
phase of the project.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,

162

pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Kevin Atkinson. 2019. Gnu aspell.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion.

Christopher Bryant, Mariano Felice, Øistein E. An-
dersen, and Ted Briscoe. 2019. The BEA-2019
shared task on grammatical error correction. In Pro-
ceedings of the Fourteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 52–75, Florence, Italy. Association for Com-
putational Linguistics.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2017. Hotflip: White-box adversarial exam-
ples for text classification.

Michael Flor and Yoko Futagi. 2012. On using context
for automatic correction of non-word misspellings
in student essays. In Proceedings of the Seventh
Workshop on Building Educational Applications Us-
ing NLP, pages 105–115, Montréal, Canada. Associ-
ation for Computational Linguistics.

Sylviane Granger. 1998. The computerized learner cor-
pus: a versatile new source of data for sla research.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-aware neural lan-
guage models.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Hao Li, Yang Wang, Xinyu Liu, Zhichao Sheng, and
Si Wei. 2018. Spelling error correction using a
nested rnn model and pseudo training data.

Roger Mitton. Corpora of misspellings.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revi-
sion log of language learning SNS for automated
Japanese error correction of second language learn-
ers. In Proceedings of 5th International Joint Con-
ference on Natural Language Processing, pages
147–155, Chiang Mai, Thailand. Asian Federation
of Natural Language Processing.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and
benchmark for grammatical error correction. In Pro-
ceedings of the 15th Conference of the European

Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 229–234,
Valencia, Spain. Association for Computational Lin-
guistics.

Peter Norvig. 2016. Spelling correction system.

Filipp Ozinov. 2019. Jamspell.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers).

Aleksandra Piktus, Necati Bora Edizel, Piotr Bo-
janowski, Edouard Grave, Rui Ferreira, and Fabrizio
Silvestri. 2019. Misspelling oblivious word embed-
dings. Proceedings of the 2019 Conference of the
North.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics.

Keisuke Sakaguchi, Kevin Duh, Matt Post, and Ben-
jamin Van Durme. 2016. Robsut wrod reocginiton
via semi-character recurrent neural network.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction
for ESL learners using global context. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 198–202, Jeju Island, Korea. Associa-
tion for Computational Linguistics.

Reuben Thomas. 2010. Enchant.

W. John Wilbur, Won Kim, and Natalie Xie. 2006.
Spelling correction in the pubmed search engine. Inf.
Retr., 9(5):543–564.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational

163

Linguistics: Human Language Technologies, pages
180–189, Portland, Oregon, USA. Association for
Computational Linguistics.

164

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 165–174
November 16-20, 2020. c©2020 Association for Computational Linguistics

LibKGE
A knowledge graph embedding library for reproducible research

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, Rainer Gemulla
Data and Web Science Group

University of Mannheim, Germany
broscheit, daniel, adrian@informatik.uni-mannheim.de,

pbetz@mail.uni-mannheim.de,
rgemulla@uni-mannheim.de

Abstract

LIBKGE1 is an open-source PyTorch-based
library for training, hyperparameter optimiza-
tion, and evaluation of knowledge graph em-
bedding models for link prediction. The key
goals of LIBKGE are to enable reproducible
research, to provide a framework for compre-
hensive experimental studies, and to facilitate
analyzing the contributions of individual com-
ponents of training methods, model architec-
tures, and evaluation methods. LIBKGE is
highly configurable and every experiment can
be fully reproduced with a single configura-
tion file. Individual components are decou-
pled to the extent possible so that they can
be mixed and matched with each other. Im-
plementations in LIBKGE aim to be as ef-
ficient as possible without leaving the scope
of Python/Numpy/PyTorch. A comprehensive
logging mechanism and tooling facilitates in-
depth analysis. LIBKGE provides implemen-
tations of common knowledge graph embed-
ding models and training methods, and new
ones can be easily added. A comparative study
(Ruffinelli et al., 2020) showed that LIBKGE
reaches competitive to state-of-the-art perfor-
mance for many models with a modest amount
of automatic hyperparameter tuning.

1 Introduction

Knowledge graphs (KG) (Hayes-Roth, 1983) en-
code real-world facts as structured data. A knowl-
edge graph can be represented as a set of (subject,
relation, object)-triples, where the subject and ob-
ject entities correspond to vertices, and relations to
labeled edges in a graph.

KG embedding (KGE) models represent the
KG’s entities and relations as dense vectors, termed
embeddings. KGE models compute a score based
on these embeddings and are trained with the ob-
jective of predicting high scores for true triples and

1https://github.com/uma-pi1/kge

low scores for false triples. Link prediction is the
task of predicting edges missing in the KG (Nickel
et al., 2015). Some uses of KGE models are: en-
hancing the knowledge representation in language
models (Peters et al., 2019), drug discovery in bio-
medical KGs (Mohamed et al., 2019), as part of
recommender systems (Wang et al., 2017), or for
visual relationship detection (Baier et al., 2017).

KGE models for link prediction have seen a
heightened interest in recent years. Many com-
ponents of the KGE pipeline—i.e., KGE models,
training methods, evaluation techniques, and hy-
perparameter optimization—have been studied in
the literature, as well as the whole pipeline it-
self (Nickel et al., 2016; Wang et al., 2017; Ali
et al., 2020). Ruffinelli et al. (2020) argued that it
is difficult to reach a conclusion about the impact of
each component based on the original publications.
For example, multiple components may have been
changed simultaneously without performing an ab-
lation study, baselines may not have been trained
with state-of-the-art methods, or the hyperparame-
ter space may not have been sufficiently explored.

LIBKGE is an open-source KGE library for re-
producible research. It aims to facilitate meaning-
ful experimental comparisons of all components of
the KGE pipeline. To this end, LIBKGE is faithful
to the following principles:

Modularization and extensibility. LIBKGE is
cleanly modularized. Individual components can
be mixed and matched with each other, and new
components can be easily added.

Configurability and reproducibility. In
LIBKGE an experiment is entirely defined by a
single configuration file with well-documented
configuration options for every component. When
an experiment is started, its current configu-
ration is stored alongside the model to enable
reproducibility and analysis.

165

Profiling and analysis. LIBKGE performs ex-
tensive logging during experiments and monitors
performance metrics such as runtime, memory us-
age, training loss, and evaluation metrics. Addi-
tionally, specific monitoring of any part of the KGE
pipeline can be added via a hook system. The log-
ging is done in both human-readable form and in a
machine-readable format.

Ease of use. LIBKGE is designed to support the
workflow of researchers by convenient tooling and
easy usage with single line commands. Each train-
ing job or hyperparameter search job can be in-
terrupted and resumed at any time. For tuning of
hyperparameters, LIBKGE supports grid search,
quasi-random search and Bayesian Optimization.
All implementations stay in the realm of Python/Py-
Torch/Numpy and aim to be as efficient as possible.

LIBKGE supports the needs of researchers
who want to investigate new components or im-
provements of the KGE pipeline. The strengths
of LIBKGE enabled a comprehensive study that
provided new insights about training KGE mod-
els (Ruffinelli et al., 2020). For an overview about
usage, pretrained models, and detailed documenta-
tion, please refer to LIBKGE’s project page. In this
paper, we discuss the key principles of LIBKGE.

2 Modularization and extensibility

LIBKGE is highly modularized, which allows to
mix and match training methods, models, and eval-
uation methods (see Figure 1). The modularization
allows for simple and clean ways to extend the
framework with new features that will be available
for every model.

For example, LIBKGE decouples the Relation-
alScorer (the KGE scoring function) and KgeEm-
bedder (the way embeddings are obtained) as de-
picted in Figure 1. In other frameworks, the em-
bedder function is hardcoded to the equivalent of
LIBKGE’s LookupEmbedder, in which embed-
dings are explicitly stored for each entity. Due to
LIBKGE’s decoupling, the embedder type can be
freely specified independently of the scoring func-
tion, which enables users to train a KGE model
with other types of embedders. For example, the
embedding function could be an encoder that com-
putes an entity or relation embedding from textual
descriptions or pixels of an image (Pezeshkpour
et al., 2018; Broscheit et al., 2020, inter alia).

Search:Job
+device_pool: str[...*]
+process_pool: TrainingJob
+...

1

*

TrainingJob:Job
+model: KgeModel
+loss: Loss
+optimizer: Optimizer
+valid_job: EvaluationJob
+...

GridSearch

AxSearch
Quasi random

search, Bayesian
Optimization

KgeModel
+scorer: RelationalScorer
+entity_embedder: KgeEmbedder
+relation_embedder: KgeEmbedder
+...

NegativeSampling

KvsAll

OnevsAll

1

1

ComplExScorer

TransEScorer

...

RelationalScorer
+score_emb(s:emb,p_emb,o_emb)

KgeEmbedder
+embed(indexes)

1

1

LookupEmbedder

ProjectionEmbedder

...

EvaluationJob

EntityRanking

1

1

1

1

...

...

...

Figure 1: A brief overview of LIBKGE’s architecture.

3 Configurability and reproducibility

Reproducibility is important, which means that con-
figuration is important. To enable reproducibility,
it is key that the entire configuration of each exper-
iment be persistently stored and accessible. While
this sounds almost obvious, the crux is how this
can be achieved. Typically, source code can and
will change. Therefore, to make an experiment in a
certain setting reproducible, the configuration for
an experiment has to be decoupled from the code
as much as possible.

In LIBKGE all settings are always retrieved
from a configuration object that is initialized from
configuration files and is used by all components
of the pipeline. This leads to comprehensive con-
figuration files that fully document an experiment
and make it reproducible as well.

To make this comprehensive configurabil-
ity feasible—while also remaining modular—
LIBKGE includes a lightweight import function-
ality for configuration files. In Figure 2, we show
an (almost) minimal configuration for an experi-
ment for training a ComplEx KGE model (Trouil-
lon et al., 2016). The main configuration file

166

0 j o b . t y p e : t r a i n
1 d a t a s e t . name: fb15k−237
2

3 t r a i n :
4 o p t i m i z e r : Adagrad
5 o p t i m i z e r a r g s :
6 l r : 0 . 2
7

8 v a l i d :
9 e v e r y : 5

10 m e t r i c :
m e a n r e c i p r o c a l r a n k f i l t e r e d

11

12 complex
13 lookup embedder :
14 dim: 200
15 r e g u l a r i z e w e i g h t : 0 . 8 e−7

0 i m p o r t : [lookup embedder]
1

2 complex:
3 c l a s s n a m e : ComplEx
4 e n t i t y e m b e d d e r :
5 t y p e : lookup embedder
6 r e l a t i o n e m b e d d e r :
7 t y p e : lookup embedder

0 lookup embedder :
1 c l a s s n a m e : LookupEmbedder
2

3 dim: 100
4

5 i n i t i a l i z e : n o r m a l
6

7

8
d r o p o u t : 0 .

9

10

r e g u l a r i z e : ’l p’

11

r e g u l a r i z e w e i g h t : 0 . 0

12

r e g u l a r i z e a r g s :
p: 2

m o d e l:

imports settings from

my_experiment.yaml complex.yaml

lookup_embedder.yaml

imports settings from

overwrites default value

Figure 2: A minimal configuration my experiment.yaml that defines 10 out of ≈ 100 configurable settings.
All settings from the main configuration file my experiment.yaml and from the imported configurations are
merged and stored in one combined file. No default settings are defined in the code.

my experiment.yaml in Figure 2 will auto-
matically import the model-specific configuration
complex.yaml, which in turn imports the con-
figuration lookup embedder.yaml. The latter
defines the default configurations of the LookupEm-
bedder for entities and relations, which associates
every entity and relation identifier with its respec-
tive embedding. All configurations are merged into
a single configuration object. During merging, the
settings in the main configuration file always have
precedence over the settings from imported files.
The resulting single configuration will be automati-
cally saved in the experiment directory along with
the checkpoints and the log files.

As an example of how configurability also helps
modularization, we come back to the example of
switching the LookupEmbedder with an encoder
that computes entity embeddings from string to-
kens. For this purpose, one may implement a
TokenPoolEmbedder. The simple changes to the
configuration that uses the new embedder type are
demonstrated in Figure 3 (see line 12).

It is worth noting that while the default set-
tings in LIBKGE’s main configuration file reflect

0 t o k e n p o o l e m b e d d e r :
1 c l a s s n a m e : TokenPoolEmbedder
2 dim: 100

0 i m p o r t : [t o k e n p o o l e m b e d d e r]
1 j o b . t y p e : t r a i n
2 d a t a s e t . name: fb15k −237
3

4 t r a i n :
5 o p t i m i z e r : Adagrad
6 o p t i m i z e r a r g s . l r : 0 . 2
7

8 model: complex
9 complex:

10 c l a s s n a m e : ComplEx
11 e n t i t y e m b e d d e r :
12 t y p e : t o k e n p o o l e m b e d d e r
13 r e l a t i o n e m b e d d e r :
14 t y p e : lookup embedder

Figure 3: Example of using a token-based embedder.

the currently known best practices, LIBKGE also
includes—and makes configurable—some settings
that might not be considered best practice, e.g.,
different tie breaking schemes for ranking evalua-
tions (Sun et al., 2020). Therefore, with regards to
configurability, the goal is not only that the frame-

167

0 j o b . t y p e : s e a r c h
1 s e a r c h :
2 t y p e : ax
3 d e v i c e p o o l : [cuda:0 , cuda:1]
4 num workers : 4
5

6 d a t a s e t . name: wnrr
7

8 model: complex
9

10 t r a i n :
11 o p t i m i z e r : Adagrad
12 t y p e : n e g a t i v e s a m p l i n g
13

14 v a l i d . m e t r i c :
m e a n r e c i p r o c a l r a n k f i l t e r e d

15

16 a x s e a r c h :
17 n u m t r i a l s : 30
18 # r e m a i n i n g t r i a l s a f t e r random
19 # s e a r c h a r e B a y e s i a n O p t i m i z a t i o n
20 n u m s o b o l t r i a l s : 10
21 p a r a m e t e r s :
22 - name: t r a i n . b a t c h s i z e
23 t y p e : c h o i c e
24 v a l u e s : [2 5 6 , 512 , 1024]
25 i s o r d e r e d : True
26 - name: t r a i n . o p t i m i z e r a r g s . l r
27 t y p e : r a n g e
28 bounds: [0 . 0 0 1 , 1 . 0]
29 l o g s c a l e : True
30 - name: n e g a t i v e s a m p l i n g . num . s
31 t y p e : r a n g e
32 bounds: [1 6 , 8192]
33 - name: n e g a t i v e s a m p l i n g . num . o
34 t y p e : r a n g e
35 bounds: [1 6 , 8192]

Figure 4: An example for a hyperparameter optimiza-
tion job. This configurations first runs 10 trials of a
quasi-random search followed by 10 trials of Bayesian
Optimization (see ax search.num trials
and ax search.num sobol trials). By
setting the keys search.device pool and
search.num workers in lines 3 and 4 the execu-
tion of the trials is parallelized to run 4 parallel trials
distributed over two GPU devices.

work reflects best practices, but also reflects popu-
lar practices that might influence ongoing research.

4 Hyperparameter optimization

Hyperparameter optimization is crucial in empir-
ically investigating the impact of individual com-
ponents of the KGE pipeline. LIBKGE offers
manual search, grid search, random search, and
Bayesian Optimization; the latter two provided by
the hyperparameter optimization framework Ax.2

In this context, LIBKGE further benefits from its
configurability because everything can be treated

2https://ax.dev/

as a hyperparameter, even the choice of model,
score function, or embedder. The example in Fig-
ure 4 shows a simple hyperparameter search with
an initial quasi-random search, and a subsequent
Bayesian Optimization phase over the learning rate,
batch size and negative samples for the ComplEx
model. The trials during the quasi-random search
are independent, which can be exploited by paral-
lelizing their runs over multiple devices. In this
way, a comprehensive search over a large space of
hyperparameters can be sped up significantly (also
shown in the example; for more details, please refer
to the documentation).

5 Profiling and metadata analysis

LIBKGE provides extensive options for profiling,
debugging, and analyzing the KGE pipeline. While
most frameworks print the current training loss
and some frameworks also record the validation
metrics, LIBKGE aims to make every moving part
of the pipeline observable. Per default, LIBKGE
records during training things such as runtimes,
training loss and penalties (e.g., from the entity
and relation embedders), relevant meta data such
as the PyTorch version and the current commit
hash, and dependencies between various jobs. We
show an example logging output during training
one epoch in Appendix B. For more fine-grained
logging, LIBKGE also can log at the batch level.

During evaluation, the framework records many
variations of the evaluation metrics, such as group-
ing relations by relation type, relation frequency,
head or tail. Additionally, users can extract and
add information by adding their custom function
to one of multiple hooks that are executed before
and after all relevant calls in the framework. In
this way, users can interact with all components
of the pipeline, without risking divergence from
LIBKGE’s master branch.

Finally, LIBKGE provides convenience methods
to export (subsets of) the logged meta data into
plain CSV files.

6 Comparison to other KGE Projects

In this section, we compare LIBKGE to other open
source software (OSS) that provides functionality
around training and evaluating KGE models for
link prediction. The assessments are a snaphot
taken at the end of May 2020. All model-specific
comparisons have been evaluated w.r.t. the Com-
plEx model, which is supported by all projects.

168

KGE project Implementation Config- Log- Hyperparam. Res- Act-
language(s) urable ging Optimization ume ive

keys train/eval Grid Rnd BO
Fr

am
ew

or
k LIBKGE (Ours) PyTorch 91 17/414 x x x x 668

PyKeen PyTorch 61 2/27 x x 575
Ampligraph TF 1.x 20 0/8 x x 286
OpenKE PyTorch/C++ 19 1/30 22
SK-libkge TF 1.x 14 5/7 x 24

La
rg

e
Sc

al
e GraphVite C++/PyTorch 34 2/5 14

DGL-KE PyTorch/MxNET 15 10/6 x 134
PyTorch-BG PyTorch 52 12/8 x 102

Pa
pe

r
C

od
e KBC PyTorch 10 4/12 2

Hyperb. KGE TF 2.x/PyTorch 20 6/5 12/19
ConvE PyTorch 15 5/36 x 2
RotatE PyTorch 28 3/5 3

Table 1: Comparing LIBKGE and other OSS that provide functionality around training KGE models for link
prediction. All assessments have been made at the end of May 2020. Frameworks denotes focus on fostering KGE
research with modularization, extensibility and coverage of relevant models and training methods. Large Scale
denotes focus on extremely large-scale graphs, with support of training in multi-node or multi-gpu mode, or both.
Paper Code denotes projects published alongside a KGE model’s publications. Configurable keys are the number
of possible options for training a single ComplEx model, i.e. not counting options for hyperparameter search.
Logging denotes the number of metadata keys that are logged per epoch for training and evaluation in a machine
readable format for later analysis. Hyperparameter optimization shows if the project supports grid search, random
search and Bayesian Optimization. Resume denotes the feature to resume hyperparameter search or training from
checkpoints at any time. Active is the amount of commits to the master branch in the last 12 months.

In Table 1, we provide an overview of other
KGE projects (full references in Appendix C) and
compare them w.r.t. configurability and ease of
use. We mainly included projects that could be
considered as a basis for a researcher’s experi-
ments because they are active, functional, and cover
at least a few of the most common models. All
projects can be extended with models, losses, or
training methods. Large-scale projects and pa-
per code projects—in comparison to more holistic
frameworks—typically have a more narrow scope,
e.g., they often do not feature hyperparameter opti-
mization. Large-scale projects are typically tailored
towards parallelizing training methods and models.

The focus on configurability and reproducibil-
ity in LIBKGE is reflected by the large amount
of configurable keys. For example, in contrast to
other projects, LIBKGE does not tie the regular-
ization weights of the entity and relation embedder
to be the same. For entity ranking evaluation, only
LIBKGE and PyKeen transparently implement dif-
ferent tie breaking schemes for equally ranked en-
tities. This is important, because evaluation under

different tie breaking schemes can result in differ-
ences of ≈ .40 MRR in some models and can lead
to misleading conclusions, as shown by Sun et al.
(2020). OpenKE, for example, only supports the
problematic tie breaking scheme named TOP by
Sun et al. (2020). LIBKGE and PyKeen are the
only frameworks that provide machine-readable
logging. Only LIBKGE offers resuming from a
checkpoint for training and hyperparameter search.
LIBKGE, Ampligraph, and PyKeen are the most
active projects in terms of amount of commits dur-
ing the past 12 months.

Efficiency In Table 2, we show a comparison
of KGE frameworks in terms of time for one full
training epoch. The configuration setting was cho-
sen such that it was supported by all frameworks,
and also facilitates to demonstrate behaviour un-
der varying load. We translate the configurations
faithfully to each framework, ensuring that total
number of embedding parameters per batch are the
same for each framework. Most projects, including
LIBKGE, can handle small numbers of negative
samples efficiently, but LIBKGE seems to scale

169

Number of negative samples per triple
Parallel 64 1024 16384

batch con- ran- pseudo ran- pseudo ran- pseudo
Project struction dom negative dom negative dom negative

LIBKGE (Ours) x 9 s 13 s 14 s 19 s 74 s 113 s
PyKeen x 10 s - 64 s - 930 s -
Ampligraph 21 s - 190 s - OOM -
OpenKE x 7 s 7 s 59 s 63 s OOM OOM
SK-libkge 99 s - 1210 s - OOT -

GraphVite (*) 54 s - 58 s - 82 s -

Table 2: Runtime comparison between frameworks. The runtime is the time per epoch in seconds (averaged over
5 epochs executed on the same machine). The configuration is fixed to be similar for all frameworks (details in
Appendix A). For negative samples, we show runtimes for random, i.e., sampling triples without checking if they
are contained in the KG, and for pseudo-negative, which avoids sampling triples contained in the KG. The column
parallel batch construction indicates whether the code in the training loop for generating the batches is parallelized;
if yes, then we set the number of workers to 4. OOM stands for out-of-memory. OOT is short for out-of-time; we
stopped the run when the first epoch did not finish within 30 minutes. (*) Graphvite is optimized for multi-gpu
training with large batch sizes, therefore the chosen settings might not be optimal.

MRR HITS@10

LIBKGE (Ours) 0.35 0.54
PyKeen - 0.44
Ampligraph 0.32 0.50
OpenKE - 0.43

GraphVite 0.27 0.45

Table 3: The reported best performances (on the
project’s homepage or the related publication as of May
2020) for ComplEx on FB15K-237 for each project.
The performances have been obtained with different
amount of effort for hyperparameter optimization and
should not be compared directly. Reported ranking met-
rics: Mean Reciprocal Rank (MRR) and HITS@10.

better to higher numbers of negative samples. A
large number of negative samples becomes impor-
tant when large KGs with millions of entities are
embedded. Although the runtimes are purely anec-
dotal and should be taken with a grain of salt, they
do show that LIBKGE can provide competitive run-
time performance. Currently, LIBKGE only sup-
ports single-node single-gpu training. It neverthe-
less fares well when compared to GraphVite, one
of the large-scale frameworks that dispatches some
routines into C/C++. LIBKGE also has optimized
versions of negative sampling for large graphs,
which enables it to train ComplEx on Wikidata-5m
(Wang et al., 2019), a large KG with 5M entities.

Predictive performance. In Table 3, we col-
lected the reported performances for ComplEx
on the dataset FB15K-237 (Toutanova and Chen,
2015). The numbers are not comparable due to
different amount of effort to find a good configu-
ration3, but they reflect the performance that the
framework authors achieved in their experiments.
The results show that with LIBKGE’s architecture
and hyperparameter optimization a state-of-the-art
result can be achieved. For more results obtained
with LIBKGE and an in-depth analysis of the im-
pact of hyperparameters on model performance we
refer to the study by Ruffinelli et al. (2020).

7 Conclusions

In this work, we presented LIBKGE, a config-
urable, modular, and efficient framework for repro-
ducible research on knowledge graph embedding
models. We briefly described the internal structure
of the framework and how it facilitates LIBKGE’s
goals. The framework is efficient and yields state-
of-the-art performance. We hope that LIBKGE
is a helpful ingredient to gain new insights into
knowledge graph embeddings, and that a lively
community gathers around this project to improve
and extend it further.

3We did not attempt to use our best configuration with
other frameworks because they only partly support the settings,
e.g., they do not offer dropout or independent regularization
for entity and relation embeddings.

170

References
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-

rent Vermue, Mikhail Galkin, Sahand Sharifzadeh,
Asja Fischer, Volker Tresp, and Jens Lehmann. 2020.
Bringing light into the dark: A large-scale evaluation
of knowledge graph embedding models under a uni-
fied framework. arXiv preprint arXiv:2006.13365.

Stephan Baier, Yunpu Ma, and Volker Tresp. 2017. Im-
proving visual relationship detection using seman-
tic modeling of scene descriptions. In Proceedings
of the 16th International Semantic Web Conference
(ISWC).

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, pages 2787–
2795.

Samuel Broscheit, Kiril Gashteovski, Yanjie Wang, and
Rainer Gemulla. 2020. Can we predict new facts
with open knowledge graph embeddings? A bench-
mark for open link prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2296–2308, Online. As-
sociation for Computational Linguistics.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. Annual Meeting of the Association for Com-
putational Linguistics.

Luca Costabello, Sumit Pai, Chan Le Van, Rory Mc-
Grath, Nicholas McCarthy, and Pedro Tabacof. 2019.
AmpliGraph: a library for representation learning on
knowledge graphs.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Ap-
plications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 1811–
1818.

Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu,
Maosong Sun, and Juanzi Li. 2018. OpenKE: An
open toolkit for knowledge embedding. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Frederick Hayes-Roth. 1983. Building expert systems,
volume 1 of Advanced book program. Addison-
Wesley.

Timothée Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. In Proceedings
of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, pages 2869–2878.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee
Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. 2019. PyTorch-BigGraph: A Large-
scale Graph Embedding System. In Proceedings of
the 2nd SysML Conference, Palo Alto, CA, USA.

Sameh K. Mohamed, Aayah Nounu, and Vı́t Nováček.
2019. Drug target discovery using knowledge graph
embeddings. In Proceedings of the 34th ACM/SI-
GAPP Symposium on Applied Computing, SAC 19,
page 1118, New York, NY, USA. Association for
Computing Machinery.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2015. A review of relational
machine learning for knowledge graphs. Proceed-
ings of the IEEE.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2016. A review of relational
machine learning for knowledge graphs. Proceed-
ings of the IEEE, 104(1):11–33.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 43–54, Hong Kong, China. Associ-
ation for Computational Linguistics.

Pouya Pezeshkpour, Liyan Chen, and Sameer Singh.
2018. Embedding multimodal relational data for
knowledge base completion. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3208–3218, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You CAN teach an old dog new
tricks! on training knowledge graph embeddings. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. RotatE: Knowledge graph embedding
by relational rotation in complex space. In Proceed-
ings of the 7th International Conference on Learning
Representations (ICLR).

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal,
Partha Talukdar, and Yiming Yang. 2020. A re-
evaluation of knowledge graph completion methods.
In Proceedings of the 58th Annual Meeting of the

171

Association for Computational Linguistics, pages
5516–5522, Online. Association for Computational
Linguistics.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66, Beijing, China. Association
for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, pages 2071–2080.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on
Knowledge and Data Engineering.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan
Liu, Juanzi Li, and Jian Tang. 2019. Kepler: A
unified model for knowledge embedding and pre-
trained language representation.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zi-
Hao Ye, J. Dong, Hao Xiong, Zheng Zhang, and
G. Karypis. 2020. Dgl-ke: Training knowledge
graph embeddings at scale. Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Zhaocheng Zhu, Shizhen Xu, Meng Qu, and Jian Tang.
2019. Graphvite: A high-performance cpu-gpu hy-
brid system for node embedding. In The World Wide
Web Conference, pages 2494–2504. ACM.

A Runtime comparison experiment

The configuration was as follows: Dataset FB15K
(Bordes et al., 2013), batch size 512, model Com-
plEx, effective parameter embedding size per enti-
ty/relation 128, optimizer Adagrad, negative sam-
pling with negative log likelihood loss or sigmoid
loss, no regularization. The hardware was a 8-core
Intel Xeon E5-1630m v4.0, TitanXP GPU, dataset
on SSD.

172

B Logging

0 {
1 "entry_id":84d75bf2-c3fe-4c6f-ac5e-001e1edb85de,
2 "event":"job_created",
3 "folder":/home/USER/kge/local/experiments/20200705-215353-toy-complex-train,
4 "git_head":7fad132,
5 "hostname":USER-Workstation,
6 "job":"eval",
7 "job_id":683d00bf-520d-4919-937e-d9b634c11d2e,
8 "parent_job_id":dc960211-9cbe-4ba1-ad62-7ffd41d2017e,
9 "timestamp":1593978837.304522,

10 "torch_version":1.5.0,
11 "username":"USER"
12 }{
13 "entry_id":418889f0-728b-486f-9977-48795f6ed5fa,
14 "event":"job_created",
15 "folder":/home/USER/kge/local/experiments/20200705-215353-toy-complex-train,
16 "git_head":7fad132,
17 "hostname":USER-Workstation,
18 "job":"train",
19 "job_id":dc960211-9cbe-4ba1-ad62-7ffd41d2017e,
20 "timestamp":1593978837.4033182,
21 "torch_version":1.5.0,
22 "username":"USER"
23 }{
24 "avg_cost":1.06542689547832,
25 "avg_loss":1.0650610147438764,
26 "avg_penalties":{
27 complex.entity_embedder.L2_penalty:0.00031927969330354246,
28 complex.relation_embedder.L2_penalty:4.6601041140093004e-05
29 },
30 "avg_penalty":0.0003658807344436354,
31 "backward_time":0.0765678882598877,
32 "batches":20,
33 "entry_id":4b07adfa-3e2b-42f4-a994-2b4f02e1b3f4,
34 "epoch":1,
35 "epoch_time":1.161754846572876,
36 "event":"epoch_completed",
37 "forward_time":0.7509596347808838,
38 "job":"train",
39 "job_id":dc960211-9cbe-4ba1-ad62-7ffd41d2017e,
40 "lr":[0.2],
41 "optimizer_time":0.015013933181762695,
42 "other_time":0.2690012454986572,
43 "prepare_time":0.05021214485168457,
44 "scope":"epoch",
45 "size":1949,
46 "split":"train",
47 "timestamp":1593978838.5940151,
48 "type":"KvsAll"
49 }

Figure 5: Example for training logging output for one epoch. Evaluation logging output is too verbose to add
an example here. Please see https://github.com/uma-pi1/kge/blob/master/docs/examples/train_
and_valid_trace_after_one_epoch.yaml for an example for the output after one epoch of training and
evaluation.

173

C Related projects

K
G

E
pr

oj
ec

t
U

R
L

R
ef

er
en

ce
L

IB
K

G
E

(O
ur

s)
ht

tp
s:

//g
ith

ub
.c

om
/u

m
a-

pi
1/

kg
e

R
uf

fin
el

li
et

al
.(

20
20

)
Py

K
ee

n
ht

tp
s:

//g
ith

ub
.c

om
/p

yk
ee

n/
py

ke
en

A
li

et
al

.(
20

20
)

A
m

pl
ig

ra
ph

ht
tp

s:
//g

ith
ub

.c
om

/A
cc

en
tu

re
/A

m
pl

iG
ra

ph
C

os
ta

be
llo

et
al

.(
20

19
)

O
pe

nK
E

ht
tp

s:
//g

ith
ub

.c
om

/th
un

lp
/O

pe
nK

E
H

an
et

al
.(

20
18

)
G

ra
ph

V
ite

ht
tp

s:
//g

ith
ub

.c
om

/D
ee

pG
ra

ph
L

ea
rn

in
g/

gr
ap

hv
ite

Z
hu

et
al

.(
20

19
)

D
G

L
-K

E
ht

tp
s:

//g
ith

ub
.c

om
/a

w
sl

ab
s/

dg
l-

ke
Z

he
ng

et
al

.(
20

20
)

Py
to

rc
h-

B
ig

gr
ap

h
ht

tp
s:

//g
ith

ub
.c

om
/fa

ce
bo

ok
re

se
ar

ch
/P

yT
or

ch
-B

ig
G

ra
ph

L
er

er
et

al
.(

20
19

)
SK

-l
ib

kg
e

ht
tp

s:
//g

ith
ub

.c
om

/s
am

eh
ka

m
al

el
di

n/
lib

kg
e

K
B

C
ht

tp
s:

//g
ith

ub
.c

om
/fa

ce
bo

ok
re

se
ar

ch
/k

bc
L

ac
ro

ix
et

al
.(

20
18

)
H

yp
er

bo
lic

K
G

E
ht

tp
s:

//g
ith

ub
.c

om
/te

ns
or

flo
w

/n
eu

ra
l-

st
ru

ct
ur

ed
-l

ea
rn

in
g/

tr
ee

/m
as

te
r/

re
se

ar
ch

/k
g

hy
p

em
b

C
ha

m
ie

ta
l.

(2
02

0)
C

on
vE

ht
tp

s:
//g

ith
ub

.c
om

/T
im

D
et

tm
er

s/
C

on
vE

D
et

tm
er

s
et

al
.(

20
18

)
R

ot
at

E
ht

tp
s:

//g
ith

ub
.c

om
/D

ee
pG

ra
ph

L
ea

rn
in

g/
K

no
w

le
dg

eG
ra

ph
E

m
be

dd
in

g
Su

n
et

al
.(

20
19

)

Ta
bl

e
4:

O
ve

rv
ie

w
of

re
la

te
d

w
or

k

174

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 175–181
November 16-20, 2020. c©2020 Association for Computational Linguistics

WantWords: An Open-source Online Reverse Dictionary System

Fanchao Qi1,2∗, Lei Zhang2∗†, Yanhui Yang2†, Zhiyuan Liu1,2,3, Maosong Sun1,2,3

1Department of Computer Science and Technology, Tsinghua University
2Institute for Artificial Intelligence, Tsinghua University

Beijing National Research Center for Information Science and Technology
3Beijing Academy of Artificial Intelligence

qfc17@mails.tsinghua.edu.cn, zhanglei9003@gmail.com
flutter0696@gmail.com, {liuzy,sms}@tsinghua.edu.cn

Abstract

A reverse dictionary takes descriptions of
words as input and outputs words semanti-
cally matching the input descriptions. Re-
verse dictionaries have great practical value
such as solving the tip-of-the-tongue problem
and helping new language learners. There
have been some online reverse dictionary sys-
tems, but they support English reverse dictio-
nary queries only and their performance is far
from perfect. In this paper, we present a new
open-source online reverse dictionary system
named WantWords (https://wantwords.
thunlp.org/). It not only significantly out-
performs other reverse dictionary systems on
English reverse dictionary performance, but
also supports Chinese and English-Chinese
as well as Chinese-English cross-lingual re-
verse dictionary queries for the first time.
Moreover, it has user-friendly front-end de-
sign which can help users find the words they
need quickly and easily. All the code and
data are available at https://github.com/
thunlp/WantWords.

1 Introduction

Opposite to a regular (forward) dictionary that pro-
vides definitions for query words, a reverse dic-
tionary (Sierra, 2000) returns words semantically
matching the query descriptions. In Figure 1, for
example, a regular dictionary tells you the defini-
tion of “expressway” is “a wide road that allows
traffic to travel fast”, while a reverse dictionary
outputs “expressway” and other semantically sim-
ilar words like “freeway” which match the query
description “a road where cars go very quickly
without stopping” you input.

Reverse dictionaries are useful in practical ap-
plications. First and foremost, they can effectively
solve the tip-of-the-tongue problem (Brown and

∗Indicates equal contribution
†Work done during internship at Tsinghua University

Figure 1: An example illustrating what a regular (for-
ward) dictionary and a reverse dictionary are.

McNeill, 1966), namely the phenomenon of failing
to retrieve a word from memory. Many people fre-
quently suffer the problem, especially those who
write a lot such as writers, researchers and students.
With the help of reverse dictionaries, people can
quickly and easily find the words that they need but
temporarily forget.

In addition, reverse dictionaries are helpful to
new language learners who grasp a limited num-
ber of words. They will know and learn some new
words that have the meanings they want to express
by using a reverse dictionary. Also, reverse dictio-
naries can help word selection (or word dictionary)
anomia patients, people who can recognize and
describe an object but fail to name it due to neuro-
logical disorder (Benson, 1979).

Currently, there are mainly two online reverse
dictionaries, namely OneLook1 and ReverseDic-
tionary.2 Their performance is far from perfect.
Further, both of them are closed-source and only
support English reverse dictionary queries.

To solve these problems, we design and de-
velop a new online reverse dictionary system
named WantWords, which is totally open-source.
WantWords is mainly based on our proposed
multi-channel reverse dictionary model (Zhang
et al., 2020), which achieves state-of-the-art perfor-
mance on an English benchmark dataset. Our sys-
tem uses an improved version of the multi-channel
reverse dictionary model and incorporates some

1https://onelook.com/thesaurus/
2https://reversedictionary.org/

175

engineering tricks to handle extreme cases. Eval-
uation results show that with these improvements,
our system achieves higher performance. Besides,
our system supports Chinese reverse dictionary
queries and Chinese-English as well as English-
Chinese cross-lingual reverse dictionary queries,
all of which are realized for the first time. Finally,
our system is very user-friendly. It includes multi-
ple filters and sort methods, and can automatically
cluster the candidate words, all of which help users
find the target words as quickly as possible.

2 Related Work

There are mainly two methods for reverse dictio-
nary building. The first one is based on sentence
matching (Bilac et al., 2004; Zock and Bilac, 2004;
Méndez et al., 2013; Shaw et al., 2013). Its main
idea is to return the words whose dictionary defini-
tions are most similar to the query description. Al-
though effective in some cases, this method cannot
cope with the problem that human-written query
descriptions might differ widely from dictionary
definitions.

The second method uses a neural language
model (NLM) to encode the query description into
a vector in the word embedding space, and returns
the words with the closest embeddings to the vector
of the query description (Hill et al., 2016; Morinaga
and Yamaguchi, 2018; Kartsaklis et al., 2018; Hed-
derich et al., 2019; Pilehvar, 2019). Performance of
this method depends largely on the quality of word
embeddings. Unfortunately, according to Zipf’s
law (Zipf, 1949), many words are low-frequency
and usually have poor embeddings.

To tackle this issue of the NLM-based method,
we proposed a multi-channel reverse dictionary
model (Zhang et al., 2020). This model is com-
posed of a sentence encoder, more specifically, a
bi-directional LSTM (BiLSTM) (Hochreiter and
Schmidhuber, 1997) with attention (Bahdanau
et al., 2015), and four characteristic predictors.
The four predictors are used to predict the part-of-
speech, morphemes, word category and sememes3

of the target word according to the query descrip-
tion, respectively. The incorporation of the char-
acteristic predictors can help find the target words
with poor embeddings and exclude wrong words
with similar embeddings to the target words, such

3A sememe is defined as the minimum semantic units of
human languages (Bloomfield, 1926). The meaning of a word
can be expressed by several sememes.

Query Description

Translation

Cross-lingual
Dictionary

Multi-channel Reverse
Dictionary Model

Query
Length

Mode

Cross-lingual
(en-zh/zh-en)

Monolingual
(en/zh)

=1 (Word)

>1 (Sentence) Word Similarity

Confidence Score

Query
Length

=1 (Word)

>1 (Sentence)

Filter / Sort / Cluster

Thesaurus

Word List

Figure 2: Workflow of WantWords.

as antonyms. Experimental results have demon-
strated that our multi-channel reverse dictionary
model achieves state-of-the-art performance. In
WantWords, we employ an improved version of
it that yields better results.

3 System Architecture

In this section, we describe the system architec-
ture of WantWords. We first give an overview of
its workflow, then we detail the improved multi-
channel reverse dictionary model, and finally we
introduce its front-end design.

3.1 Overall Workflow
The workflow of WantWords is illustrated in Fig-
ure 2. There are two reverse dictionary modes,
namely monolingual and cross-lingual modes. In
the monolingual mode, if the query description is
longer than one word, it will be fed into the multi-
channel reverse dictionary model directly, which
calculates a confidence score for each candidate
word in the vocabulary; if the query description
is just a word, the confidence score of each candi-
date word is mostly based on the cosine similarity
between the embeddings of the query word and
candidate word.

In the cross-lingual mode, where the query de-
scriptions are in the source language and the target
words are in the target language, if the query de-
scription is longer than one word, it will be trans-
lated into the target language first and then pro-
cessed in the monolingual mode of the target lan-
guage; if the query description is just a word, cross-
lingual dictionaries will be consulted for the target-

176

language definitions of the query word, and then the
definitions are fed into the multi-channel reverse
dictionary model to calculate candidate words’ con-
fidence scores.

After obtaining confidence scores, all candidate
words in the vocabulary will be sorted by descend-
ing confidence scores and listed as system output.
The words in the query description are excluded
since they are unlikely to be the target word. Differ-
ent filters, other sort methods and clustering may
be further employed to adjust the final results.

3.2 Multi-channel Reverse Dictionary Model

The multi-channel reverse dictionary model
(MRDM) is the core module of our system. We
use an improved version of MRDM that employs
BERT (Devlin et al., 2019) rather than BiLSTM
as the sentence encoder. Figure 3 illustrates the
model.

For a given query description, MRDM calculates
a confidence score for each candidate word in the
vocabulary. The confidence score is composed of
five parts:

(1) The first part is word score. To obtain it,
the input query description is first encoded into a
sentence vector by BERT, then the sentence vector
is mapped into the space of word embeddings by a
single-layer perceptron, and finally word score is
the dot product of the mapped sentence vector and
the candidate word’s embedding.

(2) The second part is part-of-speech (PoS) score,
which is based on the prediction for the PoS of the
target word. MRDM first calculates a prediction
score for each PoS tag by feeding the sentence
vector into a single-layer perceptron, and then a
candidate word’s PoS score is the sum of the pre-
diction scores of all its PoS tags.

(3) The third part is category score, which is
related to the category of the target word and can
be obtained in a similar way to PoS score.

(4) The fourth part is morpheme score, which
is supposed to capture the morphemes of the tar-
get word. Each token of the input query descrip-
tion corresponds to a hidden state as the output of
BERT. MRDM first feeds each hidden state into a
single-layer perceptron to obtain a local morpheme
prediction score, then does max-pooling over all
the local morpheme prediction scores to obtain a
prediction score for each morpheme, and finally a
candidate word’s morpheme score is the sum of the
prediction scores of all its morphemes.

BERT

Dictionary Definition
/ Query Description

Sentence Vector

Max-Pooling

Word Score

Local Morpheme Prediction Score
& Local Sememe Prediction Score

Morpheme Score
& Sememe Score

Part-of-speech Score
& Category Score

Confidence Score

Figure 3: Revised version of the multi-channel reverse
dictionary model.

(5) The fifth part is sememe score, which is based
on the prediction for the sememes of the target
word. Sememe score can be calculated in a similar
way to morpheme score.

We use the official pre-trained BERT models
for both English and Chinese.4 As for fine-tuning
(training) for English, we use the dictionary defi-
nition dataset created by Hill et al. (2016), which
contains about 100, 000 words and 900, 000 word-
definition pairs extracted from five dictionaries.
For fine-tuning (training) for Chinese, we build
a large-scale dictionary definition dataset based on
the dataset created by Zhang et al. (2020). It con-
tains 137, 174 words and 270, 549 word-definition
pairs, where the definitions are extracted from sev-
eral authoritative Chinese dictionaries including
Modern Chinese Dictionary, Xinhua Dictionary
and Chinese Idiom Dictionary as well as an open-
source dictionary dataset.5

MRDM requires some other resources, and we
simply follow the settings in Zhang et al. (2020).
Specifically, for English, we use Morfessor (Virpi-
oja et al., 2013) to segment words into morphemes,
WordNet (Miller, 1995) to obtain PoS and word
category information, and OpenHowNet6 (Qi et al.,
2019) to obtain sememe information. As for Chi-
nese, we simply use Chinese characters as mor-
phemes. We utilize the PoS tags in Modern Chinese
Dictionary. In addition, we use HIT-IR Tongyici
Cilin7 and OpenHowNet to obtain word category
and sememe information, respectively.

4https://github.com/google-research/
bert

5https://github.com/pwxcoo/
chinese-xinhua

6https://github.com/thunlp/OpenHowNet
7https://github.com/yaleimeng/Final_

word_Similarity/tree/master/cilin

177

Figure 4: Front-end design of WantWords in the English monolingual mode.

3.3 One-word Query in the Monolingual
Mode

In the monolingual reverse dictionary mode, in the
case where the query description is a single word,
we simply use word embedding similarity to calcu-
late the confidence scores of candidate words in the
vocabulary, rather than feed the query word into
MRDM. We also take the synonyms into considera-
tion and double the confidence score of a candidate
word if it is a synonym of the query word. We use
WordNet and HIT-IR Tongyici Cilin as English and
Chinese thesauri, respectively.

3.4 The Cross-lingual Mode
In the cross-lingual mode, a query description
longer than one word is first translated into the
target language using Baidu Translation API8, and
then the translated query description is processed
in the same procedure as the monolingual mode.

As for a one-word query description, we do not
utilize machine translation because existing trans-
lation APIs cannot return all the possible trans-
lation results, especially for polysemous query
words, which may impairs system performance.
Instead, we consult cross-lingual dictionaries for
definitions in the target language of the query
word, and feed all the definitions into the target-
language MRDM. Specifically, we use StarDict
and LangDao English-Chinese Dictionaries in the

8https://fanyi-api.baidu.com/

English-Chinese mode and LangDao, CEDICT,
and MDBG Chinese-English dictionaries in the
Chinese-English mode. We concatenate multiple
dictionary definitions before feeding into MRDM.

3.5 Front-end Design

The front-end design of WantWords is simple and
user-friendly, as shown in Figure 4. After inputting
a query description in the textbox in the center of
the system web page and clicking the “Search” but-
ton, one hundred candidate words will be listed in
descending order of confidence scores. The words
with confidence scores higher than a threshold have
a background color whose shade is proportional to
the confidence score.

A tool bar will appear below the textbox. Users
can filter the candidate words by different filters
in the tool bar. Specifically, for English candidate
words, there are PoS, word length, initial and wild-
card pattern filters; for Chinese candidate words,
there are word length, total stroke number, wild-
card pattern, pinyin initials, PoS and rhyme filters.
These filters can help users find the word they need
as quickly as possible.

In the tool bar, users can also change the sort
method of the candidate words. Users can sort the
English candidate words in regular or reverse al-
phabetical order and by word length, and Chinese
candidate words in regular or reverse pinyin alpha-
betical order and by total stroke number. Besides,

178

WantWords supports dividing candidate words
into six clusters, where we use k-means cluster-
ing algorithm in the word embedding space. The
sort methods and clustering are also beneficial to
quickly finding the target word.

Considering the cases where users, especially
new language learners, do not know rather than
forget a word, our system provides definitions for
candidate words. Users can click a candidate word
to invoke a floating window that displays the PoS
and definition of the word. The displayed defini-
tions of English and Chinese words are from Word-
Net and the open-source Chinese dictionary dataset
respectively, both of which are freely available.

Finally, our system has quick feedback channels
to collect real-world data. Due to the lack of human-
written description data, existing reverse dictio-
nary systems can only utilize dictionary definitions
in training. However, dictionary definitions are
usually different from human-written descriptions,
which affects the performance of reverse dictionar-
ies. Therefore, we design some feedback channels
to collect users’ feedback, aiming to use it to im-
prove our system. Specifically, users can choose
between “Matched Well” and “Not Matched” in
the floating window of a candidate word to give
their opinions about the candidate word. In addi-
tion, users can directly propose appropriate words
matching the query description.

4 Evaluation

In this section, we evaluate the reverse dictio-
nary performance of WantWords. We conduct
both monolingual (English and Chinese) and cross-
lingual (English-Chinese and Chinese-English) re-
verse dictionary evaluations.

4.1 Datasets

In the evaluation of English monolingual reverse
dictionary performance, we use two test sets includ-
ing (1) Definition set, which contains 500 pairs of
words and WordNet definitions that are randomly
selected and have been excluded from the training
set; and (2) Description set, which comprises 200
pairs of words and human-written descriptions and
is a benchmark dataset created by Hill et al. (2016).

As for Chinese, we use three test sets: (1) Defini-
tion set, which contains 2, 000 pairs of words and
dictionary definitions that are selected at random
and do not exist in the training set; (2) Description
set, which is composed of 200 word-description

pairs given by Chinese native speakers and is built
by Zhang et al. (2020); and (3) Question set, which
collects 272 real-world Chinese exam question-
answers of writing the right word given a descrip-
tion from the Internet and is also created by Zhang
et al. (2020).

To evaluate cross-lingual reverse dictionary per-
formance, we build two test sets based on the two
monolingual Description sets. We manually trans-
late the word of each word-description pair in the
English Description sets into Chinese to obtain the
English-Chinese Description set, which is com-
posed of 200 pairs of English descriptions and
Chinese words. In a similar way, we construct
the Chinese-English Description set, which con-
tains 200 pairs of Chinese descriptions and English
words.

4.2 Baseline Methods

We choose two existing online reverse dictionary
systems, namely OneLook and ReverseDictionary,
and two reverse dictionary models, namely original
MRDM and BERT, as baseline methods.

OneLook and ReverseDictionary can only
support English monolingual reverse dictionary
queries. MRDM, as mentioned before, is the
current state-of-the-art reverse dictionary model
(Zhang et al., 2020) and mainly differs from
WantWords in the sentence encoder (BiLSTM
vs BERT) and engineering tricks (e.g., special pro-
cessing for one-word queries) to handle one-word
queries. As for BERT, it does not have extra char-
acteristic predictors and engineering tricks as com-
pared to WantWords. MRDM and BERT are
trained with the same training sets as WantWords
to respond English and Chinese reverse dictionary
queries, respectively. They can also support cross-
lingual reverse dictionary queries processed with
the same procedure as the cross-lingual mode of
WantWords.

4.3 Evaluation Metrics

Following previous work (Hill et al., 2016; Zhang
et al., 2020), we use four evaluation metrics: the
median rank of the target words in the final word
lists (lower better) and the accuracy that the tar-
get words appear in top 1/10/100 (acc@1/10/100,
higher better). Every experiment is run five times,
and we report the average results. We also con-
duct Student’s t-test to measure the significance of
performance difference.

179

Model En Definition En Description Zh Definition Zh Description Zh Question

OneLook – – 6 .33/.54/.76 – – – – – –
ReverseDictionary – – 4 .30/.64/.80 – – – – – –

MRDM 53 .08/.29/.59 3 .31/.65/.88 8 .21/.51/.76 4 .27/.60/.85 1 .50/.79/.91
BERT 34 .09/.34/.61 2 .33/.76/.93 13 .13/.45/.72 5 .23/.62/.86 1 .49/.79/.91

WantWords 19 .10/.38/.72 2 .36/.75/.92 7 .22/.54/.77 2 .37/.74/.91 0 .60/.82/.93

Table 1: Evaluation results of English and Chinese monolingual reverse dictionaries (median rank and
acc@1/10/100). The boldfaced results denote significant dominance, and the underlined results indicate insignifi-
cant difference, where the statistical significance threshold of p-value is 0.05. The same is true for Table 2.

Model en-zh zh-en
MRDM 40 .12/.31/.63 8 .20/.52/.76
BERT 16 .14/.40/.75 7 .21/.54/.76

WantWords 19 .14/.38/.76 8 .22/.53/.78

Table 2: Evaluation results of cross-lingual reverse dic-
tionaries (median rank and acc@1/10/100).

4.4 Evaluation Results

The monolingual reverse dictionary evaluation re-
sults of WantWords and baseline methods are
shown in Table 1. OneLook and ReverseDictionary
have stored all the WordNet definitions, and we
cannot exclude the word-definition pairs in the Def-
inition set from their databases. Therefore, they
can be evaluated on the Description set only.

We observe that WantWords basically per-
forms better than all the baseline methods on all
the five test sets. On the English benchmark test set
Description, WantWords completely outperforms
the two existing online systems and achieves new
state-of-the-art performance. On the three Chinese
test sets, WantWords also yields significantly bet-
ter results than the two baseline methods.

Table 2 shows the cross-lingual reverse dictio-
nary evaluation results of WantWords and two
baseline methods. We find that the performance
of three models is similar and much poorer than
that on corresponding monolingual datasets. We
conjecture that the unsatisfying translation quality
seriously affects final performance, based on our
observation that translations of some query descrip-
tions are inaccurate and even ungrammatical.

4.5 Case Study

Table 3 shows two English reverse dictionary cases,
where the query descriptions and output word lists
of three reverse dictionary systems are displayed.
In the first case, WantWords finds 8 correct words
among top 10 while the other two systems finds
none among top 15. In the second case, OneLook
and WantWords use the PoS filter to retain verbs
only. After filtering, the target word “receive” is

System Results
Query: a road where cars go very quickly without stopping

Onelook
station stationing stations pass passed stump stumped
stumping stumps shoulder turnout flash run turn turned

ReverseDictionary
run garage scoot tipple rush direct shoulder flash
tollbooth interchange resort hie drive station cessation

WantWords
superhighway autobahn beltway motorway freeway
highway gridlock pothole expressway thruway dragstrip

Query: when somebody gives something to you and afterwards you have it

Onelook
can lie form catch else greyhound retribution employ
tire snap order find assure employed face starter bolt reach

ReverseDictionary
have satisfaction lose claim deposit guess license repent
change ration misappropriate charge carry leave remember

WantWords
gift pawning gifting loaning beneficiary payment buying
giving giver how cash bonus refund purchase receive

Table 3: Two English reverse dictionary cases. The
boldfaced words are correct answers while the words
struck through are filtered out by PoS filter (verb).

ranked top 3 in the word list of WantWords while
OneLook still cannot find any correct words among
top 6. ReverseDictionary has no filter and none of
correct words appear among top 15.

5 Conclusion and Future work

In this paper, we present WantWords, an online
reverse dictionary system, which achieves state-
of-the-art performance on an English reverse dic-
tionary benchmark dataset. Besides, it supports
Chinese and English-Chinese as well as Chinese-
English cross-lingual reverse dictionary queries for
the first time. In the future, we will try to incor-
porate multi-word expressions and idioms in the
system. Also, we will work on improving cross-
lingual reverse dictionary performance by bilingual
word embeddings or multilingual BERT.

Acknowledgements

This work is supported by the Major Program of
the National Social Science Fund of China (No.
18ZDA238), the National Key Research and Devel-
opment Program of China (No. 2020AAA0105200
and 2018YFB1004503), the National Natural Sci-
ence Foundation of China (NSFC, No. 61732008),
the NExT++ project from the National Research
Foundation, Prime Minister’s Office, Singapore
under its IRC@Singapore Funding Initiative, and
Beijing Academy of Artificial Intelligence (BAAI).

180

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

D Frank Benson. 1979. Neurologic correlates of
anomia. In Studies in Neurolinguistics, pages 293–
328. Elsevier.

Slaven Bilac, Wataru Watanabe, Taiichi Hashimoto,
Takenobu Tokunaga, and Hozumi Tanaka. 2004.
Dictionary search based on the target word descrip-
tion. In Proceedings of NLP.

Leonard Bloomfield. 1926. A set of postulates for the
science of language. Language, 2(3):153–164.

Roger Brown and David McNeill. 1966. The “tip of the
tongue” phenomenon. Journal of Verbal Learning
and Verbal Behavior, 5(4):325–337.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT.

Michael A Hedderich, Andrew Yates, Dietrich Klakow,
and Gerard de Melo. 2019. Using multi-sense vector
embeddings for reverse dictionaries. In Proceedings
of IWCS.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. TACL, 4:17–
30.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Dimitri Kartsaklis, Mohammad Taher Pilehvar, and
Nigel Collier. 2018. Mapping text to knowledge
graph entities using multi-sense lstms. In Proceed-
ings of EMNLP.

Oscar Méndez, Hiram Calvo, and Marco A. Moreno-
Armendáriz. 2013. A reverse dictionary based on
semantic analysis using wordnet. In Proceedings of
MICAI.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Yuya Morinaga and Kazunori Yamaguchi. 2018. Im-
provement of reverse dictionary by tuning word vec-
tors and category inference. In Proceedings of
ICIST.

Mohammad Taher Pilehvar. 2019. On the importance
of distinguishing word meaning representations: A
case study on reverse dictionary mapping. In Pro-
ceedings of NAACL-HLT.

Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Qiang
Dong, Maosong Sun, and Zhendong Dong. 2019.
Openhownet: An open sememe-based lexical knowl-
edge base. arXiv preprint arXiv:1901.09957.

Ryan Shaw, Anindya Datta, Debra E. VanderMeer, and
Kaushik Dutta. 2013. Building a scalable database-
driven reverse dictionary. TKDE, 25:528–540.

Gerardo Sierra. 2000. The onomasiological dictionary:
a gap in lexicography. In Proceedings of the Ninth
Euralex International Congress.

Sami Virpioja, Peter Smit, Stig Arne Grönroos, and
Mikko Kurimo. 2013. Morfessor 2.0: Python im-
plementation and extensions for morfessor baseline.
Aalto University Publication.

Lei Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Qun Liu, and Maosong Sun. 2020. Multi-channel
reverse dictionary model. In Proceedings of AAAI.

George Kingsley Zipf. 1949. Human behavior and the
principle of least effort. SERBIULA (sistema Li-
brum 2.0).

Michael Zock and Slaven Bilac. 2004. Word lookup on
the basis of associations: from an idea to a roadmap.
In Proceedings of the Workshop on Enhancing and
Using Electronic Dictionaries.

181

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 182–188
November 16-20, 2020. c©2020 Association for Computational Linguistics

BENNERD: A Neural Named Entity Linking System for COVID-19

Mohammad Golam Sohrab†,∗, Khoa N. A. Duong†,∗, Makoto Miwa†, ‡

, Goran Topić†, Masami Ikeda†, and Hiroya Takamura†
†Artificial Intelligence Research Center (AIRC)

National Institute of Advanced Industrial Science and Technology (AIST), Japan
‡Toyota Technological Institute, Japan

{sohrab.mohammad, khoa.duong, goran.topic}@aist.go.jp,
{ikeda-masami, takamura.hiroya}@aist.go.jp,

makoto-miwa@toyota-ti.ac.jp

Abstract
We present a biomedical entity linking (EL)
system BENNERD that detects named enti-
ties in text and links them to the unified
medical language system (UMLS) knowledge
base (KB) entries to facilitate the corona virus
disease 2019 (COVID-19) research. BEN-
NERD mainly covers biomedical domain, es-
pecially new entity types (e.g., coronavirus, vi-
ral proteins, immune responses) by address-
ing CORD-NER dataset. It includes several
NLP tools to process biomedical texts includ-
ing tokenization, flat and nested entity recog-
nition, and candidate generation and rank-
ing for EL that have been pre-trained using
the CORD-NER corpus. To the best of our
knowledge, this is the first attempt that ad-
dresses NER and EL on COVID-19-related
entities, such as COVID-19 virus, potential
vaccines, and spreading mechanism, that may
benefit research on COVID-19. We release
an online system to enable real-time entity
annotation with linking for end users. We
also release the manually annotated test set
and CORD-NERD dataset for leveraging EL
task. The BENNERD system is available at
https://aistairc.github.io/BENNERD/.

1 Introduction

In response to the coronavirus disease 2019
(COVID-19) for global research community to ap-
ply recent advances in natural language processing
(NLP), COVID-19 Open Research Dataset (CORD-
19)1 is an emerging research challenge with a re-
source of over 181,000 scholarly articles that are
related to the infectious disease COVID-19 caused
by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). To facilitate COVID-19 stud-
ies, since NER is considered a fundamental step

∗*Both authors contributed equally.
1https://www.kaggle.com/

allen-institute-for-ai/
CORD-19-research-challenge

in text mining system, Xuan et al. (2020b) created
CORD-NER dataset with comprehensive NE an-
notations. The annotations are based on distant
or weak supervision. The dataset includes 29,500
documents from the CORD-19 corpus. The CORD-
NER dataset gives a shed on NER, but they do not
address linking task which is important to address
COVID-19 research. For example, in the example
sentence in Figure 1, the mention SARS-CoV-2
needs to be disambiguated. Since the term SARS-
CoV-2 in this sentence refers to a virus, it should
be linked to an entry of a virus in the knowledge
base, not to an entry of ‘SARS-CoV-2 vaccination’,
which corresponds to therapeutic or preventive pro-
cedure to prevent a disease.

We present a BERT-based Exhaustive Neural
Named Entity Recognition and Disambiguation
(BENNERD) system. The system is composed
of four models: NER model (Sohrab and Miwa,
2018) that enumerates all possible spans as po-
tential entity mentions and classifies them into en-
tity types, masked language model BERT (Devlin
et al., 2019), candidate generation model to find
a list of candidate entities in the unified medical
language system (UMLS) knowledge base (KB) for
entity linking (EL) and candidate ranking model
to disambiguate the entity for concept indexing.
The BENNERD system provides a web interface to
facilitate the process of text annotation and its dis-
ambiguation without any training for end users. In
addition, we introduce CORD-NERD (COVID-19
Open Research Dataset for Named Entity Recog-
nition and Disambiguation) dataset an extended
version of CORD-NER as for leveraging EL task.

2 System Description

The main objective of this work is to address re-
cent pandemic of COVID-19 research. To facil-
itate COVID-19 studies, we introduce the BEN-

182

Angiotensin-converting	enzyme	2	(ACE2)	as	a	SARS-CoV-2	receptor

 	 	 	 	 	 	 	 	

Span Semantic Type Name Semantic Type Name Semantic Type

CUI:	C0960880

NAME:	Angiotensin-converting	enzyme	2

SEMANTIC	TYPE:	T116 	 	 	 	

Mention
Embedding

Cosine
Similarity

CUI:	C1422064

NAME:	ACE2	Gene 	 	 	 	 	

SEMANTIC	TYPE:	T028 	 	 	 	 T116 T028 T005 T192

CORD-19
Corpus

SimString

Labelled
CORD-19

Corpus

NER Model

UMLS
Knowledgebase

Entity Linking
Model

BENNERD WEB
INTERFACE

Articles
(Unlabelled)

Angiotensin-converting	enzyme	2	(ACE2)	as	a	SARS-CoV-2	receptor

BERT

Mention
Embedding

Mention
Classifier

Mention
Encoder

BERT BERT BERT

CANDIDATE GENERATION MODEL

e1 e2 ekCandidate
Generation

Ranking

Text

CANDIDATE GENERATION MODEL

NER MODEL

Text

Entity Linking System

Semi-supervised Learning

Figure 1: Workflow of BENNERD System

NERD system that finds nested named entities and
links them to a UMLS knowledge base (KB). BEN-
NERD mainly comprises two platforms: a web in-
terface and a back-end server. The overall workflow
of the BENNERD system is illustrated in Figure 1.

2.1 BENNERD Web Interface

The user interface of our BENNERD system is a
web application with input panel, load a sample tab,
annotation tab, gear box tab, and .TXT and .ANN
tabs. Figure 2 shows an users’ input interface of
BENNERD. For a given text from users or loading
a sample text from a sample list, the annotation tab
will show the annotations with the text based on
best NER- and EL-based training model. Figure 3
shows an example of text annotation based on the
BENNERD’s NER model. Different colors rep-
resent different entity types and, when the cursor
floats over a coloured box representing an entity

above text, the corresponding concept unique iden-
tifier (CUI) on the UMLS is shown. Figure 3 also
shows an example where entity mention SARS-
CoV-2 links to its corresponding CUI. Users can
save the machine readable text in txt format and
annotation files in the ann format where the ann
annotation file provides standoff annotation output
in brat (Stenetorp et al., 2012)2 format.

2.1.1 Data Flow of Web Interface

We provide a quick inside look of our BENNERD
web interface (BWI). The data flow of BWI is pre-
sented as follows:

Server-side initialization (a) The BWI config-
uration, concept embeddings, and NER and EL
models are loaded (b) GENIA sentence splitter and
BERT basic tokenizer instances are initialized (c)

2https://brat.nlplab.org

183

Figure 2: BENNERD Users’ Input Interface

Figure 3: Entity Annotation and Linking with BEN-
NERD

Concept embeddings are indexed by Faiss (Johnson
et al., 2019)

When a text is submitted (a) The text is split
into sentences and tokens (b) Token and sentence
standoffs are identified (c) NER model is run on to-
kenized sentences (d) EL model is run on the result
(e) The identified token spans are translated into
text standoffs (f) The identified concepts’ names
are looked up in the UMLS database (g) A brat
document is created (h) The brat document is trans-
lated into JSON, and sent to the client side (i) The
brat visualizer renders the document

2.2 BENNERD Back-end

The BENNERD back-end implements a pipeline
of tools (e.g., NER, EL), following the data flow
described in Section 2.1.1. This section provides
implementation details of our back-end modules
for NER and EL.

2.2.1 Neural Named Entity Recognition
We build the mention detection, a.k.a NER, based
on the BERT model (Devlin et al., 2019). The layer
receives subword sequences and assigns contextual
representations to the subwords via BERT. We de-
note a sentence by S = (x1, ..., xn), where xi is
the i-th word, and xi consists of si subwords. This

layer assigns a vector vi,j to the j-th subword of the
i-th word. Then, we generate the vector embedding
vi for each word xi by computing the unweighted
average of its subword embeddings vi,j . We gen-
erate mention candidates based on the same idea
as the span-based model (Lee et al., 2017; Sohrab
and Miwa, 2018; Sohrab et al., 2019a,b), in which
all continuous word sequences are generated given
a maximal size Lx (span width). The representa-
tion xb,e ∈ Rdx for the span from the b-th word to
the e-th word in a sentence is calculated from the
embeddings of the first word, the last word, and
the weighted average of all words in the span as
follows:

xb,e =

[
vb;

e∑

i=b

αb,e,ivi;ve

]
, (1)

where αb,e,i denotes the attention value of the i-th
word in a span from the b-th word to the e-th word,
and [; ;] denotes concatenation.

2.2.2 Entity Linking
In our EL component, for every mention span xb,e

of a concept in a document, we are supposed to
identify its ID in the target KB.3 Let us call the ID
a concept unique identifier (CUI). The input is all
predicted mention spans M = {m1,m2, . . . ,mn},
where mi denotes the i-th mention and n denotes
the total number of predicted mentions. The list of
entity mentions {mi}i=1,...,n needs to be mapped
to a list of corresponding CUIs {ci}i=1,...,n. We
decompose EL into two subtasks: candidate gener-
ation and candidate ranking.

Candidate Generation To find a list of candi-
date entities in KB to link with a given mention,
we build a candidate generation layer adapting a
dual-encoders model (Gillick et al., 2019). Instead
of normalizing entity definition to disambiguate
entities, we simply normalize the semantic types in
both mention and entity sides from UMLS.

The representation of a mention m in a document
by the semantic type tm, can be denoted as:

vm = [wm; tm] , (2)

where tm ∈ Rdtm is the mention type embedding.
For the entity (concept) side with semantic type
information, the representation ae, and its entity
type embedding te ∈ Rdte can be computed as:

ve = [ae; te] . (3)
3We used the UMLS KB in the experiments.

184

We use cosine similarity to compute the similarity
score between a mention m and an entity e and
feed it into a linear layer (LL) to transform the
score into an unbounded logit as:

sim (m, e) = cos (vm,ve) , (4)

score (m, e) = LL(sim (m, e)). (5)

We employ the in-batch random negatives tech-
nique as described in the previous work (Gillick
et al., 2019). For evaluating the performance of the
model during training, we use the in-batch recall@1
metric (Gillick et al., 2019) on the development set
to track and save the best model.

We calculate the embedding of each detected
mention from the mention detection layer and each
of all entities in KB and then using an approximate
nearest neighbor search algorithm in Faiss (John-
son et al., 2019) to retrieve the top k entities as
candidates for the ranking layer.

Candidate Ranking The cosine similarity score
in the candidate generation is insufficient to dis-
ambiguate the entities in which the correct entity
should be assigned the highest score which is com-
parable from the k candidate entities. We employed
a fully-connected neural network model to aim at
ranking the entity candidate list to select the best
entity linked to the mention. Given a mention m
and a set of candidate entities {e1, e2, ..., ek}, we
concatenate the embedding of m in Equation (2)
with the embedding of each entity ei in Equation (3)
to form a vector vm,ei . Then the vector vm,ei is fed
into a LL to compute the ranking score:

score(m, ei) = LL(vm,ei). (6)

The model is then trained using a softmax loss
to maximize the score of the correct entity com-
pared with other incorrect entities retrieved from
the trained candidate generation model.

3 Experimental Settings

In this section, we evaluate our toolkit on CORD-
NER and CORD-NERD datasets.

3.1 CORD-NER Dataset

We carry out our experiments on CORD-NER,
a distant or weak supervision-based large-scale
dataset that includes 29,500 documents, 2,533,485
sentences, and 10,388,642 mentions. In our exper-
iment, CORD-NER covers 63 fine-grained entity

types4. CORD-NER mainly supports four sources
including 18 biomedical entity types5, 18 general
entity types6, knowledge base entity types, and
nine7 seed-guided new entity types. We split the
CORD-NER dataset into three subsets: train, de-
velopment, and test, which respectively contain
20,000, 4,500, and 5,000 documents.

3.2 CORD-NERD Dataset

CORD-NER dataset comprises only NER task. To
solve the EL task, we expand this dataset by lever-
aging a CUI for each mention in the CORD-NER
dataset, we call this CORD-NERD dataset. We
use the most recent UMLS version 2020AA re-
lease that includes coronavirus-related concepts.
To create CORD-NERD dataset, we use a dictio-
nary matching approach based on exact match us-
ing UMLS KB. CORD-NERD includes 10,470,248
mentions, among which 6,794,126 and 3,676,122
mentions are respectively present and absent in
the UMLS. Therefore, the entity coverage ratio of
CORD-NERD over the UMLS is 64.89%. We an-
notate the entity mentions that are not found in the
UMLS with CUI LESS. To evaluate the EL perfor-
mances on CORD-NERD, 302,166 mentions are as-
signed for 5,000 test set, we call this UMLS-based
test set. The train and development sets of CORD-
NERD dataset, we simply calls UMLS-based train-
and UMLS-based dev-set respectively. Besides, we
assigned a biologist to annotate 1,000 random sen-
tences based on chemical, disease, and gene types
to create a manually annotated test set. This test
set includes 311 disease mentions for the NER task
and 946 mentions8 with their corresponding CUIs
for the EL task.

3.3 Data Prepossessing

Each text and the corresponding annotation file
are processed by BERT’s basic tokenizer. After
tokenization, each text and its corresponding anno-
tation file was directly passed to the deep neural
approach for mention detection and classification.

4In the original CORD-NER paper (Xuan et al., 2020b),
the authors reported 75 fine-grained entity types, but we found
only 63 types.

5https://uofi.app.box.com/s/
k8pw7d5kozzpoum2jwfaqdaey1oij93x/file/
637866394186

6https://spacy.io/api/annotation#
named-entities

7Coronavirus, Viral Protein, Livestock, Wildlife, Evolu-
tion, Physical Science, Substrate, Material, Immune Response

8Among them, 38, 311, and 597 mentions are of chemical,
disease, and gene entity types respectively.

185

Model Gene Chemical Disease
P R F P R F P R F (%)

SciSpacy(BIONLP13CG) 91.48 82.06 86.51 64.66 39.81 49.28 8.11 2.75 4.11
SciSpacy(BC5CDR) - - - 86.97 51.86 64.69 80.31 59.65 68.46
CORD-NER System 82.14 74.68 72.23 82.93 75.22 78.89 75.73 68.42 71.89

Table 1: Performance comparison of baseline systems on three biomedical entity types in CORD-NER corpus.

Model Development set Test set
P R F P R F (%)

BENNERD + ClinicalCovid BERT (CCB) 84.62 86.43 85.52 82.83 83.23 83.03
BENNERD + SciBERT 84.03 87.05 85.51 82.16 83.81 82.98
BENNERD + Covid BERT Base 78.31 66.80 72.10 77.44 66.80 71.73

Table 2: NER Performances using different pre-trained BERT models.

Model Gene Chemical Disease
P R F P R F P R F (%)

BENNERD + CCB 76.07 74.83 75.45 83.55 84.60 84.07 84.85 84.99 84.92

Table 3: Performance comparison of BENNERD on three major biomedical entity types in CORD-NER corpus.
CCB denotes ClinicalCovid BERT.

Model P R F (%)
SciSpacy(BC5CDR) 36.01 56.27 43.91
BENNERD 49.16 47.27 48.20

Table 4: Performance comparison of BENNERD with
pre-trained SciSpacy over the disease entity types on
the manually annotated test set.

4 Results

4.1 NER Performances on Baseline Model

Table 1 shows the performance of SciSpacy on
CORD-NER dataset. In this table, the results are
based on randomly picked 1,000 manually anno-
tated sentences as the test set.

4.2 NER Performances on BENNERD Model

Table 2 shows the performance comparison of our
BENNERD with different pre-trained BERT mod-
els based on our test set. Since the manually an-
notated CORD-NER test set is not publicly avail-
able, we cannot directly compare our system per-
formance. Instead, in Table 3, we show the per-
formance of gene, chemical, and disease based on
our UMLS-based test set. Besides, in Table 4, we
also show the NER performances comparison of
BENNERD with BC5CDR corpus-based SciSpacy
model on the manually annotated disease entities.

4.3 Candidate Ranking Performance

As we are the first to perform EL task on CORD-19
dataset, we present different scenarios to evaluate
our candidate ranking performance. The results
of EL are depicted in Table 5. In this table, we
evaluate our candidate ranking performances based
on two experiment settings. In setting1, we train
the CUIs based on manually annotated MedMen-
tion (Murty et al., 2018) dataset. In setting2, the
BENNERD model is trained on automatically an-
notated CORD-NERD dataset. Table 5 also shows
that our BENNERD model with setting2 is outper-
formed in compare to setting1 in every cases in
terms of accuracy@(1, 10, 20, 30, 40, 50). Table 6
shows the EL performance on the manually anno-
tated test set. In this table, it also shows that our
system with setting2 is outperformed in compare
to setting1. Besides, we also evaluate the manually
annotated test set simply with string matching ap-
proach where the results of the top 10, 20, 30, 40 or
50 predictions for a gold candidate are unchanged.

4.4 Performances on COVID-19 Entity Types

Finally, in Table 7, we show the performance of
nine new entity types discussed in Section 3.1 re-
lated to COVID-19 studies, which may benefit re-
search on COVID-19 virus, spreading mechanism,
and potential vaccines.

186

Model UMLS-based Test set
A@1 A@10 A@20 A@30 A@40 A@50 (%)

BENNERD + NER’s Pred. + Setting1 27.61 44.56 49.74 51.88 53.08 54.19
BENNERD + Gold NEs + Setting1 29.78 48.33 53.89 56.22 57.53 58.74
BENNERD + NER’s TP + Setting1 30.31 48.91 54.60 56.95 58.27 59.49
BENNERD + NER’s Pred. + Setting2 47.46 64.32 67.70 69.87 71.12 72.07
BENNERD + Gold NEs + Setting2 50.73 69.31 73.10 75.58 77.03 78.13
BENNERD + NER’s TP + Setting2 53.90 73.06 76.90 79.36 80.79 81.87

Table 5: EL performance on test set. We report Accuracy@n, where n = 1, 10, 20, 30, 40, 50. Accuracy@1, gold
candidate was ranked highest. Accuracy@{10, 20, 30, 40, 50} indicates, gold candidate was in top 10, 20, 30,
40 or in 50 predictions of the ranker. Pred., NEs, and TP refers to predictions, named entities, and true positive
respectively. Setting1 and 2 denotes model is trained on MEDMention and CORD-NERD datasets respectively.

Model Manually Annotated Test set
A@1 A@10 A@20 A@30 A@40 A@50 (%)

BENNERD + Setting1 24.27 42.95 47.07 48.81 50.00 50.92
BENNERD + Setting2 31.84 50.25 54.53 56.87 58.39 60.12
BENNERD + String Matching 30.21 41.00 41.00 41.00 41.00 41.00

Table 6: EL performance on our manually annotated test set.

Model UMLS-based Test set
P R F (%)

Coronovirus 98.46 98.94 98.70
Viral Protein 89.39 91.09 90.23
Livestock 96.67 97.26 96.96
Wildlife 98.43 97.56 97.99
Evolution 97.16 98.46 97.80
Physical Science 96.80 93.08 94.90
Substrate 95.99 98.46 97.21
Material 94.80 90.46 92.58
Immune Response 97.29 99.42 98.35

Table 7: Performances on nine types of COVID-19

5 Related Work

To facilitate the biomedical text mining research on
COVID-19, recently a few works have reported to
address text mining tasks. Xuan et al. (2020b) cre-
ated CORD-NER dataset with distant or weak su-
pervision and reported first NER performances on
different NER models. Motivated by this work, we
presented a first web-based toolkit that addresses
both NER and EL. In addition, we also extend the
CORD-NER dataset to solve EL task.

Xuan et al. (2020a) created EvidenceMiner sys-
tem that retrieves sentence-level textual evidence
from CORD-NER dataset. Tonia et al. (2020)
developed an NLP pipeline to extract drug and

vaccine information about SARS-CoV-2 and other
viruses to help biomedical experts to easily track
the latest scientific publications. To the best of our
knowledge, this work is our first effort to solve both
NER and EL models in a pipeline manner.

6 Conclusion

We presented the BENNERD system for entity
linking, hoping that we can bring insights for the
COVID-19 studies on making scientific discoveries.
To the best of our knowledge, BENNERD repre-
sents the first web-based workflow of NER and EL
for NLP research that addresses CORD-19 dataset
that leads to create CORD-NERD dataset to facili-
tate COVID-19 work. The online system is avail-
able for meeting real-time extraction for end users.
The BENNERD system is continually evolving; we
will continue to improve the system as well as to im-
plement new functions such as relation extraction
to further facilitate COVID-19 research. We re-
fer to visit https://aistairc.github.io/BENNERD/ to
know more about BENNERD and CORD-NERD.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. This work is based on results ob-
tained from a project commissioned by the Pub-
lic/Private R&D Investment Strategic Expansion
PrograM (PRISM).

187

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Daniel Gillick, Sayali Kulkarni, Larry Lansing,
Alessandro Presta, Jason Baldridge, Eugene Ie, and
Diego Garcia-Olano. 2019. Learning dense repre-
sentations for entity retrieval. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 528–537, Hong
Kong, China. Association for Computational Lin-
guistics.

J. Johnson, M. Douze, and H. Jégou. 2019. Billion-
scale similarity search with GPUs. IEEE Transac-
tions on Big Data.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Shikhar Murty, Patrick Verga, Luke Vilnis, Irena
Radovanovic, and Andrew McCallum. 2018. Hier-
archical losses and new resources for fine-grained
entity typing and linking. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
97–109.

Mohammad Golam Sohrab and Makoto Miwa. 2018.
Deep exhaustive model for nested named entity
recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2843–2849, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Mohammad Golam Sohrab, Minh Thang Pham,
Makoto Miwa, and Hiroya Takamura. 2019a. A neu-
ral pipeline approach for the pharmaconer shared
task using contextual exhaustive models. In Pro-
ceedings of The 5th Workshop on BioNLP Open
Shared Tasks, pages 47–55.

Mohammad Golam Sohrab, Pham Minh Thang, and
Makoto Miwa. 2019b. A generic neural exhaustive
approach for entity recognition and sensitive span
detect. In Proceedings of the Iberian Languages
Evaluation Forum (IberLEF 2019), pages 735–743,
Span. IberLEF 2019.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,

pages 102–107, Avignon, France. Association for
Computational Linguistics.

Korves Tonia, Peterson Matthew, Garay Christopher,
Read Tom, Chang Wenling, Bartlett Marta, Quat-
trochi Lauren, and Hirschman Lynette. 2020. Nlp
for extracting covid-19 drug and vaccine infor-
mation from scientific literature. In Proceedings
of the 28th Conference on Intelligent Systems for
Moleculer Biology.

Wang Xuan, Liu Weili, Chauhan Aabhas, Guan
Yingjun, and Han Jiawei. 2020a. Automatic textual
evidence mining in COVID-19 literature. 2020 In-
telligent Systems for Molecular Biology (ISMB’20).

Wang Xuan, Song Xiangchen, Li Bangzheng, Guan
Yingjun, and Han Jiawei. 2020b. Comprehensive
named entity recognition on CORD-19 with distant
or weak supervision. 2020 Intelligent Systems for
Molecular Biology (ISMB’20).

188

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 189–196
November 16-20, 2020. c©2020 Association for Computational Linguistics

RoFT: A Tool for Evaluating
Human Detection of Machine-Generated Text

Liam Dugan*, Daphne Ippolito*, Arun Kirubarajan*, Chris Callison-Burch
University of Pennsylvania

{ldugan, daphnei, kiruba, ccb}@seas.upenn.edu

Abstract

In recent years, large neural networks for nat-
ural language generation (NLG) have made
leaps and bounds in their ability to generate
fluent text. However, the tasks of evaluating
quality differences between NLG systems and
understanding how humans perceive the gener-
ated text remain both crucial and difficult. In
this system demonstration, we present Real or
Fake Text (RoFT), a website that tackles both
of these challenges by inviting users to try their
hand at detecting machine-generated text in a
variety of domains. We introduce a novel eval-
uation task based on detecting the boundary
at which a text passage that starts off human-
written transitions to being machine-generated.
We show preliminary results of using RoFT to
evaluate detection of machine-generated news
articles.

1 Introduction

Despite considerable advancements in building nat-
ural language generation (NLG) systems that can
output extremely fluent English text, there is still
not very much understanding of how humans per-
ceive machine-generated text. Such an understand-
ing is crucial for the evaluation of the improve-
ments in NLG systems and for the analysis of the
societal ramifications of machine-generated text as
it becomes increasingly easy to produce.

When evaluating NLG systems, it is considered
standard practice to ask evaluators to rate generated
text on criteria such as fluency, naturalness, or rel-
evance to a prompt on a Likert scale (van der Lee
et al., 2019). Preference studies, where a rater is
shown two generated excerpts and asked which one
they prefer, are also common. Some recent work
has focused on the detection problem: how capable
humans are at distinguishing textual excerpts gen-

∗Authors listed alphabetically contributed equally.

sentence
seems
sense

make

think

human

just

tex
t

article

seem

word

odd
one

wordsplace
makes

way

name

rest

�rst

use

weird

last

write
top
ic

much

�t

said

context

person

so
un
d

used

style

part looks

w
ill

two

short
news

sa
y

end

many

little

change

See
ms

instead

cansure

story

well

now

sounding

long

might

Sounds

without

natural

follow

�ow

earlier

feel

feels

put

content

Just
right

details

know

newtitle

bit

response

prompt

repeating

really

seemed

come

black

mis
take

anything
numbers

even

get

usage

subject

kind
full

repetitive

obituary

formal

New

mention

ones

already

lot

says

leadfact

simple

related

job

common

shorter

repeated

whole

page

unnatural

clear

state

guess

see

statem
ent

line

address

though
t

goes

believe

made

choice

appear

actually

read

error

st
ar
te
d

point testing

no
th
in
g

Repetition

writer

quite

worded
author

detailed

good

strangely

placed

generate

others

discussing

awkward

York

w
ordy

facts

starts

marks

thing

along

format

in
co
ns
ist
en
t

enough

letters

home

wrote

doesnt

location

saying

work

time

Weird

order

easily

stop

someone

usually

sudden

back

sin
ce

tense

using
answer

high

wedding

market

start

completely

year

abrupt

appeared

caps

mark
gibberish

public

ye
ar
s

prior

today

relevant

personal

number

another

products

except
got

also

attention

ba
d

general

done

ma
tch

repetition

John

mean

look

describe

nowhere

repeat

logical

comes

things

maybe

missin
g

understand

imagine

collage

always

bone

never

giv
es

event

w
an
t

may

told

tone

Machine

goal

bet
ter

million

conversation

ended

political

proper

jump

First

still

reference

yesterday

though

grammatically

gi
ve
n

Maybe

half

city

explained

relation

analysis

appears

preceding

brief

ga
ve

main

various

el
se

type

ring

succinct

com
pany

o�er

appropriate

coherent

magazine

Museu
m

pretty

percent

similar

website

direct

felt

copy

veers

dance

value

cars

abruptly

share

give

score

book

jobs

correct

due

next

reader
family

around

di�erently

making program

w
om

en

anyone

War

Earlier

quote

focus

quotes

major

shi�

changes

sounded

co
m
m
as

East

lack

phrases

opinion

husband

Punc
tuatio

n

help

ro
bo
tic

contains

improper

getting

ty
po

problem

straight

dropped

car

talk

unity

w
ee
k

�ve

original

talks

break

totally

State

Secretary

United

game

research

re
du
nd
an
t

media

report

references

comma

came

us
es

headline

Looks

Topic

switch
ed

adjectives

initial

Writing

tied

Repeated

April

friends

explain

phrasing

prices

�awless

writes

feet

suspicious

quick

complex

intelligence

voter

level

funny

charged

don’t

abbreviations

past

run-on

team

�ght

terrorism

Olympic

NYT

excerpt

basem
ent

misspelled

character

Na
tio
na
l

cho
sen

certainly

sti�

recite

suppression

according

detail

top

site

date

photographed

issue

furniture

oriented

hear

factor

international

R48
minimize

arranged

include

pressure

pa
ra
gr
ap
h

touch

abuzz

unique

means

lived

o�
cial

expectService

sta�

CFDA

care

obituaries

President

copy/paste

smooth

check

citation

WWD

meaning

currently

br
in
g

pickle

men

large

reasons
slightly

Also

shi�e
d

telling

four

Humans

longe
r

Friday

regular

dramatic

stats

deceased

early

Bad

throw
n

high
er

contradicts

remember

Dri�

dollar

Repeating

agoschool

Double

1st

pr
es
en
ce

easy

revealed
veered

un
�n
ish
ed

crime

movie

Dave

fo
rm

spacing

mechine

Makes

unusualdoesn’t

Incoherent

refer

referring

ca
pi
tal

support

take

typical situation

possible

murder

machines

art

close

bot

case

going

piece

keeps

mob

councilman

integrity

link

William

humans

isolated

passage

Steven

day

contain

November

compared

Ben

isn
’t

Incoherency

issued

ve
rsi
on

double

oddly

overly

hit

pulled

NASA

later

incoherent

opinions

reviewmeant

�rm

danced

individuals

faile
d

info

forced

G
O
O
D

money

actual

shows

death

States

Com
plete

reason

able

larger

rise

despite

W
illiams

continued

dashes

er
ro
rs

returned

randomly

ex
hi
bi
t

LEGENTHALDIANS

power

fo
rw
ar
d

enforcem
ent

br
id
eg
ro
om

away

repeatation

judge

law

degrees

sit

ri�

Center

Playboy

Island

Park

calculated

discuss

economy

BORISSA

respect

interest

speak

message

giving

road

working

relate

group

protection

grammer

May

student

wording

nest

refuge

PC
B

However

strictly

air

ball

Cl
os
in
g

Devils

nonsense

NEC

Leag
ue

great

thinking

near

store

rather

France

City

bo
ys

moral

mother

o�en

armor

Baker

idea

box

turning

pace

tie

board

military

big

do
ub
t

typ
in
g

history

east

fed

le�

w
ho
se Bush

cut

police

heard

Middle
Su
dd
en

�uent

criminal

died

post

ri
gi
d

point
s

man

nam
es

accountant

several

posthum
ous

BETTER

LaGuardia

Fiorello

Scotland

bi
lli
on

waiter

Galleries

formerly

dunk

Separately

gotten

show

coherence

Highway

Hospital

gurgling

entire

brew

gi�

7th

extol

normally

Bishop

denmark

Murphy

ownds

nineteenth

christians

vague

ambiguous

intellect
hyphen

poor

speaks

Excessive

Cleese

Style

Barrym
ore

extreme

formality

Sim
pl
e

unclear

Monday

June

no-no

London

bed

o�ce

rupees

Construction

buildingpeacefully

naturally

500,000

Rockville

ast
eri
sk

Diocese
stroke

Centre

Impro
per

yes

following

Aged

absolutely

�ags

con
text

uall
y

terms

disabilities

Americans

underside

Doesn’t

yards

less

lie

damage

permanent

decorated

guerrilla

diverse

Morton

memorial

�ghter

kindly

suitcase

co
m
m
en
t

happy

requ
est

Opening

expands

guesisng

base

beneath

pronoun

Johnson’s

open

Kevin

Eric

tag

deck

Maas

joined

Chicago Pennie

uncomfort

partner

Henry

Skywalker

studied

ba
nj
o

horn

French

cra�

wish

ONLINE

Muslim

majority

India's

Kash
mir

Jammu

technical

Aristide

ludicrous

develop

mistaken

Haitian

violence

approaching

chain

hardware

qualify

Lyman

jumps

Serbian

spring

fears

he
ig
ht
en

plot

Department

determined

exposure

persons

Bl
ac
k

term

mission

conjugating

Memorials

Jud
i's

davis.guthrie@gmail.com

maiden

appreciated

reconnaissance

counter-drug

Cromwell's

Army

cleanest

produce

arrived

search

o�
cers

Colombian

soldiers

plane

converted

3-point

picky

likely

digestible

fragment

retired

length

Clear

Area

stations

design

helped

ille
gall

y

il-legally

competitive

coo
per

atin
g

labo
rato

ries

virology

Leading

W.H.O

hanging

players

development

reduced

brings

Lower

Side

months

elections

enacted

unilaterally

amendments

national

deviate

O.K

Perhaps

containing

Dece

taxes

expense

Slightly

unconnected

sad

quantity

in
co
ng
ru
ou
s

shopping

declined

income

O
perating

choreography

Bernardo

Wunderbar

require

okay

probably

ob
ses
sio
n

weight-loss

farfetched

tsunami

mystery

suicide

Qaeda

caused

anonymity

bristling

Providence

th
ro
ws

free

play

seconds

granddaughter

Shor

Toots

saloonkeeper

renowned

bombings

Afghanistan-Pakistan

girl

re
le
va
nc
e

se
nd

Get

misspelling

accept

listed

selections

M
issing

Run-on

rational

actions

Captions

honestly

ready

region

vocative

It’s

Israeli

Palestinians

three

eyes

Ware

lucky

alto

blunt

times

saxophones

sweating

stepped

dwindled

Falmouth

lobster

rolls

Two

together

relates

Chase

classi�cations

ra
te
r

verbatim

fair

caregivers

email

gone

spied

Small

breach

rare

stating

precedents

authority

diversion

arugula

ser
vic
e

third

bass
ist

ah
ea
d

aware

setting

ave

ea
t

veering

fun

orzo

tu
na

roll

river

Free

torts

ed
uc
at
io
n

tow
ard

Fi
tc
hb
ur
g

m
ar
ath
on

stripping

mad

usual

discovering

Ro
ug
e

jungles

Weather

spa
m

hyphenated

dry

real

sister

au
di
en
ce

ex
te
nd
in
g

W
ashington

Rice

trip

Thursday

handling

trials

best

Joel

must

PR
OP
LE
M
S

we
dd
in
gs

core

Inevitable

rules

plan

reiterated

feed

pr
oc
es
s

calls

Rothwax

Believe

run

le
av
e

let

Kim

Jong

credentials

Depp

cav
ed

talked

Even

texts

member

br
ok
en

runs

till

tarot

�uid

veto

hid

Bl
oc
k

bills

total

ear

M
cC
oy

units

cast

so
lem
n

oath

vote

lied

speci�c

putting

Boca

regularly

co
m
pa
ri
so
n

Tells

boat

need

in
fo
rm
al

gu
es
si
ng

turns

fake

scored

Law
rence

pure

tend G
er
m
an

PhD seals

cold

list

entity

Facts

Jewry

bl
ea
k

Lo
uis

bigger

For
me
r

fo
rm
a

fail

Iraq

Inc

glare

room

Murano

vic
e

chief

pr
od
uc
t

Kolb

5-
ye
ar

wor
ks

stare

fal
l

TH
REA

TS

bio

be
at

ways

dr
a�

God

Paul

NBA

invest

scope

via

note

age

visas

pl
ac
es

Pass

Felt

playe
r

Lack

DMV

walk

likes

far

eight

Da
rr
yl

orbit

crew

West

bu
sin
es
sDoe

rr

guy's

dead

clip

sort

sea

days

Kelly

souls

raise

cash

Lots

Fair

frills

tell

can‘t

guns

I’ll

Hills

50's

gem

seen

sides

child

Wild

dash

gear

cope

N.J

inch

code

local

bids

abut

Sosa

tr
a

YES

whenever

vibes

loses

li�ed

rates

ru
n-
up

span

late

low

head

steel

race

bee

Easy

Goer

It‘s

bill

fan

add

�le

ever

silk

nee

deal

bits

lurid

setlimp

son

joy

male

taste

sites

wait

loss

sent

N
onsense

kept

�ll

six

so
ut
h

Figure 1: A word cloud of common words that annota-
tors used to describe why they thought sentences were
machine-generated.

erated by a system from those written by another
human (Ippolito et al., 2020; Zellers et al., 2019).

However, due to the prohibitive cost of running
human evaluation studies, most prior work in this
area has been rather limited in scope. For example,
analyses usually show results on only a single cate-
gory of text (news articles, stories, webtext, etc.).
This could be problematic since different domains
have different levels of named entities, world facts,
narrative coherence, and other properties that im-
pact the success of NLG systems. In addition, most
papers only evaluate on a very limited selection of
decoding strategy hyperparameters. Holtzman et al.
(2019) and Ippolito et al. (2020) both show that
the decoding strategy chosen at inference time can
have a significant impact on the quality of gener-
ated text.

In this work, we introduce the Real or Fake Text
(RoFT) system, a novel application for simultane-
ously collecting quality annotations of machine-
generated text while allowing the public to as-
sess and improve their skill at detecting machine-
generated text.

189

In RoFT, we propose to use the task of detect-
ing when text is machine-generated as a quality
criterion for comparing NLG systems. Following
Ippolito et al. (2020), we make the counterintuitive
assumption that the worse annotators are at detect-
ing that text is machine-generated, the better we
can say that the NLG system is at generating text.

In RoFT’s detection task, annotators are shown a
passage of text one sentence at a time. The first sev-
eral sentences are from a real human-written text
source and the next several sentences are a machine-
generated continuation. The user’s goal is to guess
where the boundary is. When they think that a sen-
tence is machine-generated, they are asked to give
an explanation for their choice. Afterwards the true
boundary is revealed.

In the remainder of this paper, we discuss why
we think this task is interesting from a research per-
spective and describe the technical details behind
our implementation. We show preliminary results
that showcase the types of analyses that are possi-
ble with the collected data, and finally we discuss
plans for future work.

The RoFT website is located at http://www.

roft.io/. The source code is available un-
der an MIT License at https://github.com/

kirubarajan/roft.

2 Research Motivations

The purpose behind RoFT is to collect annotations
on the scale needed to probe the quality of text
generated under a variety of NLG conditions and
systems. In this section, we describe three research
questions we aim to answer using RoFT data.

2.1 Length Threshold for Detection

State-of-the-art generative models tend to produce
text that is locally fluent but lacking in long-term
structure or coherence. Intuition suggests that flu-
ent NLG systems ought to produce text that is high
quality for long durations (measured in number of
sentences). As such, we are interested in using the
the boundary detection task—whether annotators
can detect the boundary between human-written
text and a machine-generated continuation—as a
comparison method for NLG systems. We hypoth-
esize that for better quality systems, the generated
text will be able to fool humans for more sentences.

2.2 Text Genre/Style

Generative language models have now been trained
and fine-tuned on a great diversity of genres and
styles of text, from Reddit posts (Keskar et al.,
2019) and short stories (Fan et al., 2018) to
Wikipedia (Liu et al., 2018) and news articles
(Zellers et al., 2019). Each of these datasets has
its own distinct challenges for generation; for ex-
ample, in the story domain it is acceptable for a
generator to make up facts while this would be un-
acceptable in a Wikipedia article. We are interested
in how these differences might impact the ability
of humans to detect machine-generated text.

2.3 Reasons Text is Low Quality

A study by van der Lee et al. (2019) found that
less than 3% of recent papers on NLG ask for free-
text comments when performing human evalua-
tions. And yet, understanding why humans think
text is low quality can be very important for diag-
nosing problems in NLG systems (Reiter and Belz,
2009). Therefore, the RoFT platform collects free-
form textual explanations from our annotators on
their decisions. Such data, though inevitably noisy,
could provide insights into the types of errors that
NLG systems introduce, the types of errors humans
are sensitive to, and even the types of errors human-
written corpora contain (when a rater inadvertently
predicts that a human-written sentence is machine-
generated).

2.4 Human Factor

The boundary detection task posed by RoFT is an
artificial one. We do not expect that real-world
uses of machine-generated text would involve such
a tidy split of prompt sentences followed by a
machine-generated continuation. However, we be-
lieve that even an artificial framing such as RoFT’s
has both the potential to educate the public on what
to look for in machine-generated text and give re-
searchers insights into how humans perceive and
react to such text. We are particularly interested
in how annotators may or may not improve over
time and in what ways their respective demograph-
ics (for example, paid crowd worker vs. university
student) impact their detection skill.

3 System Overview

This section gives an overview of RoFT’s design,
including the task that annotators are asked to com-
plete and methods for encouraging organic traffic.

190

3.1 Task Definition

The RoFT annotation task is posed as a game.
Users first choose which category they would like
to play in (where different categories correspond
to different text domains or NLG systems). The
“game” then consists of a series of rounds. Each
round starts with the user being presented a single
sentence that is guaranteed to be human-written.
For example, this might be the first sentence of a
New York Times article. Afterwards, users may
select to display more sentences, one at a time. At
each step, they must decide if they believe that the
most recent sentence is still written by a human.
When the user decides they are confident that a ma-
chine has written the most recent sentence (i.e. they
have found the “boundary sentence”), the round
ends. The user is then asked to provide a natural
language explanation of what prompted their deci-
sion. In essence, the annotators’ goal is to identify
the exact sentence where a machine “takes over”
and the text is no longer human-written. Figure 2
gives screenshots of the flow of a single round.

3.2 Implementation

The RoFT annotation website is designed to col-
lect data needed to answer a variety of research
questions, including those posed in Section 2. In
particular, our system stores detailed metadata for
each annotation. These include the order in which
a user completed annotations, the type of user ac-
count associated with each annotation (e.g. paid
worker or organic traffic), the NLG system used to
produce each generation, and the amount of time
each annotation took. The system was developed
in Python using the Django Framework and a SQL
database. The use of a relational database enables
sophisticated queries to be made on the collected
annotations for analysis. We plan to make dumps
of the database available to other researchers to
further promote research into the evaluation of gen-
erated text.

3.3 Gamification

Since the cost of collecting human annotations via
a crowd platform such as Amazon Mechanical Turk
can be prohibitively expensive for large studies, we
aimed to build the RoFT website in a manner that
would encourage sustained participation without
the need for a financial incentive.

Each user has a Profile page (shown in Figure 3)
where they can see statistics on the total number of

(a) The user is shown an initial sentence and then one sentence of continuation
at a time. At each step, the user decides if the latest sentence is human-written
or machine-generated and presses the appropriate button.

(b) When the user decides that the most recent sentence is machine-generated,
they are asked to provide an explanation for their decision.

(c) The true boundary is then revealed. In this case, the user would be alerted
that they received 5 points since they guessed the boundary correctly.

Figure 2: The user interface for annotation.

191

Figure 3: A user’s profile page.

annotations they have done, how many points they
have earned, and how many questions they have an-
swered perfectly. There is also a leaderboard where
users can check how their point count compares to
other raters. The leaderboard encourages users to
do more annotations, since this is the only way to
move up on the rankings.

We received unsolicited compliments from our
initial annotators such as “Interesting, fun task” and
“Really convincing passages.” We intend to add fur-
ther gamification elements, including leaderboards
broken down by text domain, comprehensive statis-
tics on user progress and skill, and the ability to see
and up-vote the free-text comments of other users.

3.4 Generations

We ultimately plan to use RoFT to study differences
in detection performance across a variety of NLG
systems and text domains. The initial version of
RoFT includes two complementary categories of
text: news and fictional stories. Users have the
option to choose which category they would like to
annotate.

For the news category, prompts are drawn from
the New York Times Annotated Corpus (Sandhaus,
2008) and are truncated to between 1 and 10 sen-
tences long. GROVER (Zellers et al., 2019) is then
conditioned on these starting sentences and asked
to complete the article. Finally, the outputs from
GROVER are truncated so that the sum total num-
ber of sentences for each example is 10.

The data on fictional stories was prepared simi-
larly except that the Reddit Writing Prompts dataset
(Fan et al., 2018) was used for the prompts, and the
GPT-2 XL model (Radford et al., 2019) was used
for generation.

Each category contains over 1,500 examples,
where for each example the number of human-
written context sentences as well as the values of
the decoding strategy hyperparameters were cho-
sen randomly. For our initial seeding of data, Nu-
cleus sampling (Holtzman et al., 2019) was used for
all decoding, where the p hyperparameter, which
controls the diversity of the generated text, was
randomly selected to be anywhere from p = 0
(argmax) to p = 1.0 (full random sampling).

4 Case Study

To show the efficacy of RoFT as an evaluation
tool, we present a case study from our initial pilot
of over 3000 annotations of generations from the
news article domain.

4.1 Data Collection

While our eventual hope is for the RoFT website
to have enough organic traffic for useful data to be
collected, for the purposes of this study, two hun-
dred Amazon Mechanical Turk workers were paid
to complete 10 annotations each on the website.
In total, we collected 3244 annotations (7.9% of
annotators continued past the minimum of 10 ques-
tions they were required to do to get paid). 10% of
examples the crowd workers saw were designated
attention check questions in which the prompt ex-
plicitly stated they should select “human-written”
at every step. About 25% of crowd workers failed
this check, and after filtering out these annotators,
we were left with a total of 1848 high-quality an-
notations, which we will refer to as the filtered
annotation set.

4.2 Inter-Annotator Agreement

There were 768 examples which had at least two
crowd workers provide annotations for them (645
of which had at least three annotations provided).
This led to 6,115 instances of pairs of annota-
tions on the same examples. Of these, 18.3% pre-
dicted the exact same sentence as the boundary,
and 28.4%, predicted boundaries at most one sen-
tence apart from each other. When considering
only the filtered annotation set, there were 2,064
pairs of annotations. Of these, 18.6% predicted the
exact same sentence as the boundary, and 28.3%
predicted boundaries at most one sentence apart
from each other.

192

Figure 4: A histogram of the filtered annotation set
grouped by the distance (in number of sentences) be-
tween the sentence selected by the annotator and the
true boundary sentence.

4.3 Evaluation Measures
We consider three methods for evaluating annotator
ability.

4.3.1 Accuracy
Among annotators that passed our attention check,
15.8% of the filtered annotations correctly identi-
fied the exact boundary between machine and gen-
erated text. Additionally, the average annotation
from our filtered set was 1.989 sentences after the
true boundary. This is consistent with our intuition,
namely that current state-of-the-art NLG systems
are capable of fooling humans but typically only
for one or two sentences.

4.3.2 Distance from Boundary
In Figure 4, we show a histogram of our filtered
annotation set grouped by the distance each anno-
tation was away from the true boundary.1 If anno-
tators are selecting sentences at random, we would
expect this distribution to be symmetric about 0.
However, the observed distribution is significantly
asymmetric, with the left tail (composed of anno-
tators picking human-written sentences) dropping
off precipitously while the right tail (composed
of machine-generated sentences) decreases more
linearly. This asymmetry indicates that our anno-
tators are successfully picking up on clues in the

1As a note, values closer to zero in our histogram are more
likely by construction as there are more opportunities for these
distances to be selected. For example, a distance of -9 is
only possible if the generation boundary is at the 10th sen-
tence, while a distance of 0 is possible in every configuration.
This does not affect our expectation that the distribution be
symmetric if annotators are selecting at random.

generated text, and thus the sentence-by-sentence
structure of the RoFT experiment is an effective
way to evaluate text. These preliminary results
bode well for future large-scale use of the tool.

4.3.3 Points Awarded
While accuracy may be a simple and intuitive met-
ric for assessing performance, it is sub-optimal for
our purposes as it does not give partial credit for
guesses that are after the boundary, despite such
guesses being successful identifications of gener-
ated text. Average distance (in sentences) from
boundary is not sufficient either, as it does not
weight all guesses before the boundary equally neg-
atively and thus over-penalizes too-early annota-
tions on examples with late-occurring boundaries.

To combat these issues, we developed a point
system to better capture annotator ability. After
each annotation, a user is assigned points based on
their performance: 5 points for guessing exactly on
the boundary and a linearly decreasing number of
points for each sentence beyond the boundary. No
points are awarded for guesses that appear before
the boundary. We use the average points per anno-
tation as our metric for the experiments shown in
Figure 5.

4.4 Skill Range of Annotators

There was a significant range in detection ability
across the crowd workers. The top 5% of the fil-
tered worker pool earned an average of 3.34 points
per annotations while the bottom 5% earned an av-
erage of 0.35. Since it is difficult to separate out the
influence of inherent skill from that of misaligned
incentives (AMT workers were paid for comple-
tion, not correctness), more research is necessary
to understand differences in annotator ability.

4.5 Impact of Decoding Strategy

During our small-scale case study, we did not see
a noticeable correlation between the values of the
Nucleus Sampling (Holtzman et al., 2019) hyper-
parameter p and the detection accuracy of humans
as reported in Figure 5b. This is likely due to the
low number of annotations per value of p (n=180)
and we hope to run a more comprehensive version
of this experiment with more data in the future.

4.6 Impact of Revealing the Boundary

As part of the gamification aspect of the RoFT plat-
form, we reveal the true boundary to our annotators
after every annotation they complete. This feature

193

0 2 4 6 8
Index of Annotation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Po
in

ts

Average Points over time

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Value of p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Po
in

ts

Average Points per p value

(b)

Figure 5: In (a) we show the average number of points (Section 4.3) received per annotation in the filtered annota-
tion set grouped by the temporal order in which they were shown to the annotators 0 (first) to 9 (last). In (b) we
show average number of points received per item in the filtered annotation for each values of p used for decoding.
Error bars are standard deviation. No statistically significant trends were observed in this preliminary study.

adds a level of interactivity to the process and is
crucial for ensuring that the RoFT experiment is
enjoyable and appeals to the general public. To bet-
ter understand how this decision affected annotator
skill, we analyzed if our annotators got more accu-
rate as they did more annotations. Figure 5a shows
that over a session of 10 annotations, annotators ex-
hibit little to no improvement at the annotation task
over time. Future studies using the RoFT platform
will further investigate if human annotators can be
trained to detect generated text over long periods
of time and multiple gameplay sessions.

4.7 Free-form Comments

Our proposed annotation system allows annotators
to provide a natural language explanation of why
they made a particular decision (e.g. classifying a
sentence as human-written or machine-generated).
Due to minimal oversight, many annotators re-used
or copy/pasted their comments across annotations.
Filtering for duplicates, we collected over 1200
unique comments, out of around 3000 annotations.
Manual inspection shows that many annotations re-
lied on similar clues such as: problems with entail-
ment, formatting (i.e. punctuation), and repetition.
These responses can be used to inform future im-
provements to existing NLG systems and decoding
strategies. Additionally, it is possible to use data
mining techniques to extract an error taxonomy
from the provided natural langauge description of
errors.

Sample Annotation

Seems like a conversational statement that doesnt logi-
cally follow from a book title reference

not relevant to preceding sentences

I don’t think that a human would write about tarot cards
in an obituary and it says obituaries plural.

The sentence is too short and simple, sweating
computerized.

First time I heard of dinosaur-eating mammals

The sentence is left hanging.

Repeated the second line again and To is written as TO

Table 1: Examples of explanations crowd workers
gave for why they thought a sentence was machine-
generated.

5 Related Work

Nearly all papers in NLG do some form of human
evaluation, usually using Amazon Mechanical Turk
(van der Lee et al., 2019). Typically the interfaces
for these evaluations are simple web forms. van der
Lee et al. (2019) offers a survey of many of these
methods. Custom-designed websites for collecting
or displaying human evaluations of generated text
have become increasingly prominent in the open-
ended dialog domain, with ChatEval (Sedoc et al.,
2019) and ConvAI (Pavlopoulos et al., 2019) being
two examples.

However, RoFT was primarily influenced by
other “real or fake” websites that attempt to
gamify the detection task, such as http://www.

194

whichfaceisreal.com/ for generated face im-
ages and https://faketrump.ai/ for generated
Tweets. Our task is similar to the one used for hu-
man evaluation in Ippolito et al. (2020), except in
their task the text shown to raters was either entirely
human-written or entirely machine-generated.

The boundary detection task we propose was
inspired by the Dialog Breakdown Detection Chal-
lenge (Higashinaka et al., 2016), in which the goal
is to automatically detect the first system utterance
in a conversation between a human and a chatbot
system that causes a dialogue breakdown.

6 Conclusion and Future Work

In this work, we have introduced RoFT and have
shown how it can be used to collect annotations
on how well human raters can tell when an arti-
cle transitions from being human-written to being
machine-generated.

Ultimately, we plan to use RoFT to conduct a
large-scale systematic study of the impact of de-
coding strategy, fine-tuning dataset, prompt genre,
and other factors on the detectability of machine-
generated text. We also intend to collect and release
a large dataset of natural language explanations for
why humans think text is machine-generated. We
hope that these will provide insights into problems
with the human-written text we use as prompts and
into the types of errors that NLG systems make.

Such a study will require tens of thousands of
human annotations. We hope that by gamifying the
annotation process and encouraging organic traffic
to the website, we can ultimately bypass the need
for crowd workers who, since they are paid by the
annotation, are disincentivized from taking the time
to provide high quality annotations.

We believe that RoFT provides a powerful tool
for understanding the strengths and limitations of a
great variety of NLG systems, and we look forward
to working with researchers interested in testing
out their own model outputs within the RoFT eval-
uation framework.

Acknowledgements

This research is based upon work supported in
part by the DARPA KAIROS Program (contract
FA8750-19-2-1004), the DARPA LwLL Program
(contract FA8750-19-2-0201), and the IARPA BET-
TER Program (contract 2019-19051600004). Ap-
proved for Public Release, Distribution Unlimited.
The views and conclusions contained herein are

those of the authors and should not be interpreted
as necessarily representing the official policies, ei-
ther expressed or implied, of DARPA, IARPA, or
the U.S. Government. The RoFT website is also
supported by a grant from the Google Cloud Plat-
form research credits program.

We thank the members of our lab for their feed-
back on the design of the RoFT user interface.

References
Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-

erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898.

Ryuichiro Higashinaka, Kotaro Funakoshi, Yuka
Kobayashi, and Michimasa Inaba. 2016. The dia-
logue breakdown detection challenge: Task descrip-
tion, datasets, and evaluation metrics. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
3146–3150.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic detec-
tion of generated text is easiest when humans are
fooled. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1808–1822.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. SalesForce Einstein.ai blog.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating wikipedia by summariz-
ing long sequences. In International Conference on
Learning Representations.

John Pavlopoulos, Nithum Thain, Lucas Dixon, and
Ion Androutsopoulos. 2019. Convai at semeval-
2019 task 6: Offensive language identification and
categorization with perspective and bert. In Proceed-
ings of the 13th International Workshop on Semantic
Evaluation, pages 571–576.

195

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Ehud Reiter and Anja Belz. 2009. An investigation into
the validity of some metrics for automatically evalu-
ating natural language generation systems. Compu-
tational Linguistics, 35(4):529–558.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

João Sedoc, Daphne Ippolito, Arun Kirubarajan, Jai
Thirani, Lyle Ungar, and Chris Callison-Burch.
2019. ChatEval: A tool for chatbot evaluation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (Demonstrations), pages 60–65,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In Advances in Neural Information Process-
ing Systems, pages 9054–9065.

196

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 197–204
November 16-20, 2020. c©2020 Association for Computational Linguistics

A Data-Centric Framework for Composable NLP Workflows

Zhengzhong Liu1,2,*, Guanxiong Ding2, Avinash Bukkittu2, Mansi Gupta2, Pengzhi Gao2, Atif Ahmed2,

Shikun Zhang1, Xin Gao1,2, Swapnil Singhavi2, Linwei Li1, Wei Wei1, Zecong Hu1, Haoran Shi1, Xiaodan Liang3,

Teruko Mitamura1, Eric P. Xing1,2, and Zhiting Hu1,4

1Carnegie Mellon University 2Petuum Inc. 3Sun Yat-sen University 4UC San Diego
*hectorzliu@gmail.com

Abstract

Empirical natural language processing (NLP)
systems in application domains (e.g., health-
care, finance, education) involve interoper-
ation among multiple components, ranging
from data ingestion, human annotation, to text
retrieval, analysis, generation, and visualiza-
tion. We establish a unified open-source frame-
work to support fast development of such so-
phisticated NLP workflows in a composable
manner. The framework introduces a uniform
data representation to encode heterogeneous
results by a wide range of NLP tasks. It offers
a large repository of processors for NLP tasks,
visualization, and annotation, which can be
easily assembled with full interoperability un-
der the unified representation. The highly ex-
tensible framework allows plugging in custom
processors from external off-the-shelf NLP
and deep learning libraries. The whole frame-
work is delivered through two modularized
yet integratable open-source projects, namely
Forte1 (for workflow infrastructure and NLP
function processors) and Stave2 (for user inter-
action, visualization, and annotation).

1 Introduction

Natural language processing (NLP) techniques are
playing an increasingly central role in industrial
applications. A real-world NLP system involves a
wide range of NLP tasks that interoperate with each
other and interact with users to accomplish com-
plex workflows. For example, in an assistive med-
ical system for diagnosis (Figure 4), diverse text
analysis tasks (e.g., named entity recognition, rela-
tion extraction, entity coreference) are performed
to extract key information (e.g., symptoms, treat-
ment history) from clinical notes and link to knowl-
edge bases; a medical practitioner could select any

1https://github.com/asyml/forte
2https://github.com/asyml/stave

extracted entity to retrieve similar past cases for
reference; text generation techniques are used to
produce summaries from diverse sources.

To develop domain-specific NLP systems fast, it
is highly desirable to have a unified open-source
framework that supports: (1) seamless integration
and interoperation across NLP functions ranging
from text analysis to retrieval to generation; (2)
rich user interaction for data visualization and an-
notation; (3) extensible plug-ins for customized
components; and (4) highly reusable components.

A wealth of NLP toolkits exist (§4), such
as spaCy (Honnibal and Montani, 2017),
DKPro (Eckart de Castilho and Gurevych, 2014),
CoreNLP (Manning et al., 2014), for pipelining
multiple NLP functions; BRAT (Stenetorp et al.,
2012) and YEDDA (Yang et al., 2018) for anno-
tating certain types of data. None of them have
addressed all the desiderata uniformly. Combining
them for a complete workflow requires non-trivial
effort and expertise (e.g., ad-hoc gluing code),
posing challenges for maintenance and upgrading.

We introduce a new unified framework to sup-
port complex NLP workflows that involve text data
ingestion, analysis, retrieval, generation, visualiza-
tion, and annotation. The framework provides an
infrastructure to simply plug in arbitrary NLP func-
tions and offers pre-built and reusable components
to build desired workflows. Importantly, the frame-
work is designed to be extensible, allowing users to
write custom components (e.g., specialized annota-
tion interfaces) or wrap other existing libraries (e.g.,
Hu et al., 2019; Wolf et al., 2019) easily.

The framework’s design is founded on a data-
centric perspective. We design a universal text data
representation that can encode diverse input/output
formats of various NLP tasks uniformly. Each com-
ponent (“processor”) in the workflow fetches rele-
vant parts of data as inputs, and passes its results
to subsequent processors by adding the results to

197

Workflow Example

Tensorflow/Pytorch/Texar … Spacy/AllenNLP/Stanza/NLTK ...

Infrastructure
Universal Data Representation

Data Representation

Markup Management

Data APIs

Markup Type Enforcement

Auto Batching

IO and Serialization

Training Control

Vocabulary Handling

Workflow Control

…

…
…

NER

Tokenizer

Sentence Segmenter

POS Tagger

Dependency Parser

Elastic Search Indexer/Retriever

Chunker

Sentiment Analyzer

Semantic Role Labeler

Machine Translation

GPT2 Text Generator

BERT RerankerBERT Indexer/Retriever

Table-to-Text Generator

Relation ExtractorEntity Coreferencer

Text Embedder

Entity Linker Multi
Document

Viewer

…
Plugin

System

Single
Document

Viewer

x

Add
Edit

Delete

Relation Extractor Entity LinkerText Embedder NER

Data flows in a
unified format

Retrieval

x

Analysis

Text Generation
x

Q
A B
C D

?

x

Knowledge
Graph Viewer

Processors

Figure 1: Stack of the data-centric framework for NLP workflows, including workflow infrastructure, and proces-
sors for NLP tasks and interactions (e.g., visualization, annotation). Different processors are composed together
with the infrastructure APIs to form an arbitrary complex workflow. The example workflow transforms an unstruc-
tured text corpus into a knowledge graph through a series of NLP functions.

the data flow (Figure 1). In this way, different pro-
cessors are properly decoupled, and each is imple-
mented with a uniform interface without the need
of accommodating other processors. Visualization
and annotation are also abstracted as standalone
components based on the data representation.

We demonstrate two case studies on using the
framework to build a sophisticated assistive medi-
cal workflow and a neural-symbolic hybrid chatbot.

2 Data-Centric NLP Framework

Figure 1 shows the stack of the framework, con-
sisting of several major parts: (1) We first intro-
duce the underlying infrastructure (§2.1), in par-
ticular, a universal representation scheme for het-
erogeneous NLP data. The highly-organized uni-
fied representation plays a key role in supporting
composable NLP workflows, which differentiates
our framework from prominent toolkits such as
CoreNLP (Manning et al., 2014), spaCy (Honnibal
and Montani, 2017), and AllenNLP (Gardner et al.,
2018). We then introduce a range of functionali-
ties that enable the convenient use of the symbolic
data/features in neural modeling, which are not
available in traditional NLP workflow toolkits such
as DKPro (Eckart de Castilho and Gurevych, 2014).
(2) §2.2 describes how processors for various NLP

tasks can be developed with a uniform interface,
and can be simply plugged into a complex work-
flow. (3) finally, the human interaction part offers
rich composable processors for visualization, anno-
tation, and other forms of interactions.

2.1 Infrastructure
2.1.1 Universal Data Representation
NLP data primarily consists of two parts: the raw
text source and the structured markups on top of it
(see Figure 3 for an example). The markups repre-
sent the information overlaid on the text, such as
part-of-speech tags, named entity mentions, depen-
dency links, and so forth. NLP tasks are to produce
desired text or markups as output, based on vastly
different input information and structures,

To enable full interoperation among distinct
tasks, we summarize the underlying commonalities
between the myriad formats across different NLP
tasks, and develop a universal data representation
encapsulating information uniformly. The represen-
tation scheme defines a small number of template
data types with high-level abstraction, which can
be further extended to encode domain-specific data.

Template data types: We generalize the previ-
ous UIMA representation scheme (Götz and Suhre,
2004) to cover the majority of common NLP

198

Figure 2: Top Left: A dependency parser processor that calls a neural model and save the results; Top Right: A re-
lation extractor can use the same model architecture. Bottom Left: A pipeline can be constructed by simply adding
processors. Bottom Right: Example data types offered by the framework or customized by users. Relation and
Dependency both extends Link. Definition of dependency is done through a simple JSON configuration.

markups. This results in three template data types,
each of which contains a couple of attributes.

• Span contains two integer attributes, begin and
end, to denote the offsets of a piece of text. This
type can mark tokens, entity mentions, and etc.
• Link defines a pair of (parent, child) which are

pointers to other markups, to mark dependency
arcs, semantic roles, entity relations, etc.
• Group has a members attribute, which is a col-

lection of markups. This type can mark corefer-
ence clusters, topical clusters, etc.

Extended data types: In order to encode more
specific information, each of the template data
types can be extended by adding new attributes. For
example, the framework offers over 20 extended
types for commonly used NLP concepts, such as
Token and EntityMention. Moreover, users
can easily add custom data types through sim-
ple JSON definitions (Figure 2) to fulfill specific
needs, such as MedicalEntity that extends
EntityMention with more attributes like pa-
tient IDs. Once a new data type is defined, rich
data operations (e.g., structured access) as below
are automatically enabled for the new type.

Flexible Data Sources: Modern NLP systems
face challenges imposed by the volume, veracity

and velocity of data. To cope with these, the sys-
tem is designed with customizable and flexible data
sources that embrace technologies such as Index-
ing (e.g. Elastic Search (Elastic.co)), Databases
(e.g. Sqlite), Vector Storage (e.g. Faiss (Johnson
et al., 2017)). Users are free to implement flexible
“Reader” interface to ingest any source of data.

2.1.2 Facilitation for Neural Modeling
The framework provides extensive functionalities
for effortless integration of the above symbolic data
representation with tensor-based neural modeling.

Neural representations. All data types are as-
sociated with an optional embedding attribute to
store continuous neural representations. Hence,
users can easily access and manipulate the embed-
dings of arbitrary markups (e.g., entity, relation) ex-
tracted from neural models like word2vec (Mikolov
et al., 2013) and BERT (Devlin et al., 2019). The
system also supports fast embedding indexing and
lookup with embedding storage systems such as
Faiss (Johnson et al., 2017).

Rich data operations: auto-batching, struc-
tured access, etc. Unified data representation
enables a rich array of operations to support dif-
ferent data usage, allowing users to access any in-
formation in a structured manner. Figure 2 (top

199

left) shows API calls that get all dependency links
in a sentence. Utilities such as auto-batching and
auto-padding help aggregates relevant information
(e.g., event embeddings) from individual data in-
stances into tensors, which are particularly useful
for neural modeling on GPUs.

Neural-symbolic hybrid modeling. Unified
data representations and rich data operations make
it convenient to support hybrid modeling using both
neural and symbolic features. Take retrieval for ex-
ample, the framework offers retrieval processors
(§2.2) that retrieve a coarse-grained candidate set
with symbolic features (e.g., TF.IDF) first, and then
refine the results with more expensive embedding-
based re-ranking (Nogueira and Cho, 2019). Like-
wise, fast embedding based search is facilitated
with the Faiss library (Johnson et al., 2017).

Shared modeling approaches. The uniform
input/output representation for NLP tasks makes
it easy to share the modeling approaches across
diverse tasks. For example, similar to Jiang et al.
(2020), all tasks involving the Span and Link
data types as outputs (e.g., dependency parsing,
relation extraction, coreference resolution) can po-
tentially use the exact same neural network archi-
tecture for modeling. Further with the standardized
APIs of our framework, users can spawn models
for all such tasks using the same code with mini-
mal edits. Top right of Figure 2 shows an example
where the same relation extractor is implemented
with dependency parser for a new task, and the only
difference lies in accessing different data features.

2.2 Processors
Universal data representation enables a uniform in-
terface to build processors for different NLP tasks.
Most notably, interoperation across processors sup-
ported by the system abstraction allows each pro-
cessor to interacts with each other via the data flow.

Each processor takes uniformly represented data
as inputs and performs arbitrary actions on them.
A processor can edit text source (e.g., language
generation), add additional markups (e.g., entity
detection), or produce side effects (e.g., writing
data to disk). Top left of Figure 2 shows the com-
mon structure of a processor, that fetches relevant
information from the data pack with high-level
APIs, performs operations such as neural model
inference, writes results back to the data pack and
pass them over to subsequent processors. Top right
shows the simple API used for plugging processors

into the workflow.
A comprehensive repository of pre-built pro-

cessors. With the standardized concept-level APIs
for NLP data management, users can easily de-
velop any desired processors. One can wrap exist-
ing models from external libraries by conforming
to the simple interfaces. Moreover, we offer a large
set of pre-built processors for various NLP tasks,
ranging from text retrieval, to analysis and genera-
tion. Figure 1 lists a subset of processors.

2.3 Visualization, Annotation, & Interaction
The interfaces for visualization and annotation are
implemented as standalone components and de-
signed for different data types.

Single document viewer. We provide a single
document interface (Figure 3) that renders the tem-
plate types. For example, Spans are shown by col-
ored highlights, Links are shown as connectors be-
tween the spans. A user can create new spans, add
links, create groups, or edit the attributes through
intuitive interfaces.

Multi document viewer. Stave currently sup-
ports a two-document interface. Users can create
links across documents. The bottom of Figure 3
shows an example of annotating event coreference.
The system is suggesting an event coreference pair
and asking for the annotator’s decision.

Customization with plugins. While default
interfaces support a wide range of tasks, users can
create customized interfaces to meet more specific
needs. We build a system that can quickly incor-
porate independently-developed plugins, such as a
plugin for answering multiple-choice questions, or
a dialogue interface for chat-bots. Some pre-built
plugins are showcased in Figure 4. Additionally,
the layout can be customized to display specific
UI elements, allowing for greater flexibility to use
plugins together.

Human-machine collaboration. Universal
data representation across all modules not only
enhances interoperation between components, but
also allows machines and humans to collaborate
in a workflow. Human-interactive components can
be integrated at any part of the workflow for visu-
alization/reviewing to produce a downstream sys-
tem that combines the advantages of humans and
machines. Machine-assisted annotation can be un-
dertaken straightforwardly: the annotation system
simply ingests the data produced by a back-end
processor (Figure 3).

200

Figure 3: Top: Screenshot of the single doc interface shows predicates, entity mentions and semantic role links
of one sentence. A new link is being created from “bring” to “Sharm Ei-eikh”. Bottom: Screenshot of the two
document interface for annotating event coreference. The system is suggesting a potential coreference pair. The
interfaces are rendered based on the data types. Users can customize the interface to use different UI components.

3 Case Studies

3.1 A Clinical Information Workflow
We demonstrate an information system for clinical
diagnosis analysis, retrieval, and user interaction.
Figure 4 shows an overview of the system. To build
the workflow, we first define domain-specific data
types, such as Clinical Entity Mention,
via JSON config files as shown in Figure 2. We then
develop processors for text processing: (1) we cre-
ate an LSTM-based clinical NER processor (Boag
et al., 2015), a Span-Relation model based relation
extraction processor (He et al., 2018), and a coref-
erence processor with the End-to-End model (Lee
et al., 2017) to extract key information; (2) we
build a report generation processor following Li
et al. (2019) with extracted mentions and relations;
(3) we build a simple keyword based dialogue sys-
tem for user to interact using natural languages.
The whole workflow is implemented with minimal
engineering effort. For example, the workflow is
assembled with just 20 lines of code; and the IE
processors are implemented with around 50 lines
of code by reusing libraries and models.

3.2 A ChatBot Workflow
The case study considers the scenario where we
have a corpus of movie reviews in English to an-
swer complex queries (e.g., “movies with a pos-
itive sentiment starring by a certain actor”) by a

German user. The iterative workflow consists of
a review retrieval processor based on the hybrid
symbolic-neural feature modeling (§2.1.2), an NER
processor (Gardner et al., 2018) to find actors and
movies from the retrieved reviews, a sentiment pro-
cessor (Hutto and Gilbert, 2014) for sentence polar-
ity, and an English-German translation processor.

4 Related Work

The framework shares some characteristics with
UIMA (Götz and Suhre, 2004) backed sys-
tems, such as DKPro (Eckart de Castilho and
Gurevych, 2014), ClearTK (Bethard et al., 2014)
and cTakes (Khalifa and Meystre, 2015). There
are NLP toolboxes like NLTK (Bird and Loper,
2016) and AllenNLP (Gardner et al., 2018), Glu-
onNLP (Guo et al., 2019), NLP pipelines like Stan-
ford CoreNLP (Manning et al., 2014), SpaCy (Hon-
nibal and Montani, 2017), and Illinois Cura-
tor (Clarke et al., 2012). As in §2.2, our system de-
velops a convenient scaffold and provides a rich set
of utilities to reconcile the benefits of symbolic data
system, neural modeling, and human interaction,
making it suit for building complex workflows.

Compared to open-source text annotation toolk-
its, such as Protégé Knowtator (Ogren, 2006),
BRAT (Stenetorp et al., 2012), Anafora (Chen and
Styler, 2013), GATE (Cunningham et al., 2013),
WebAnno (Castilho, 2016), and YEDDA (Yang
et al., 2018), our system provides a more flexi-

201

Figure 4: A system for diagnosis analysis and retrieval from clinical notes. The data-centric approach makes it easy
to assemble a variety of components and UI elements. Example text was obtained from UNC School of Medicine.

ble experience with customizable plug-ins, extend-
able data types, and full-fledged NLP support. The
Prodigy tool by spaCy is not open-source and sup-
ports only pre-defined annotation tasks like NER.

5 Conclusions and Future Work

We present a data-centric framework for building
complex NLP workflows with heterogeneous mod-

ules. We will continue to improve the framework
on other advanced functionalities, such as multi-
task learning, joint inference, data augmentation,
and provide a broader arsenal of processors to help
build better NLP solutions and other data science
workflows. We also plan to further facilitate work-
flow development by providing more flexible and
robust data management processors.

202

References
Steven Bethard, Philip Ogren, and Lee Becker. 2014.

Cleartk 2.0: Design patterns for machine learn-
ing in uima. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’14), pages 3289–3293, Reykjavik,
Iceland. European Language Resources Association
(ELRA).

Steven Bird and Edward Loper. 2016. NLTK : The nat-
ural language toolkit. In Proceedings of the ACL-02
Workshop on Effective tools and methodologies for
teaching natural language processing and computa-
tional linguistics-Volume 1, March, pages 63–70.

William Boag, Kevin Wacome, Tristan Naumann, and
Anna Rumshisky. 2015. CliNER: A Lightweight
Tool for Clinical Named Entity Recognition. In
AMIA Joint Summits on Clinical Research Informat-
ics.

Richard Eckart De Castilho. 2016. A Web-based Tool
for the Integrated Annotation of Semantic and Syn-
tactic Structures. In Proceedings of the Workshop on
Language Technology Resources and Tools for Digi-
tal Humanities (LT4DH), pages 76–84.

Wei-te Chen and Will Styler. 2013. Anafora : A Web-
based General Purpose Annotation Tool. In Pro-
ceedings of the NAACL HLT 2013 Demonstration
Session, June, pages 14–19.

James Clarke, Vivek Srikumar, Mark Sammons, and
Dan Roth. 2012. An NLP curator (or: How I learned
to stop worrying and love NLP pipelines). Pro-
ceedings of the 8th International Conference on Lan-
guage Resources and Evaluation, LREC 2012, pages
3276–3283.

Hamish Cunningham, Valentin Tablan, Angus Roberts,
and Kalina Bontcheva. 2013. Getting More Out of
Biomedical Documents with GATE ’ s Full Lifecy-
cle Open Source Text Analytics. PLOS Computa-
tional Biology, 9(2).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable NLP com-
ponents for building shareable analysis pipelines. In
Proceedings of the Workshop on Open Infrastruc-
tures and Analysis Frameworks for HLT, pages 1–.

Elastic.co. Elasticsearch.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A Deep Semantic Natural Language Pro-
cessing Platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6.

T. Götz and O. Suhre. 2004. Design and implementa-
tion of the UIMA common analysis system. IBM
Systems Journal, 43(3):476–789.

Jian Guo, He He, Tong He, Leonard Lausen, Mu Li,
Haibin Lin, Xingjian Shi, Chenguang Wang, Jun-
yuan Xie, Sheng Zha, Aston Zhang, Hang Zhang,
Zhi Zhang, Zhongyue Zhang, and Shuai Zheng.
2019. GluonCV and GluonNLP: Deep Learning in
Computer Vision and Natural Language Processing.
Technical report.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly Predicting Predicates and Ar-
guments in Neural Semantic Role Labeling. In ACL
2018.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing.

Zhiting Hu, Haoran Shi, Bowen Tan, Wentao Wang,
Zichao Yang, Tiancheng Zhao, Junxian He, Lianhui
Qin, Di Wang, et al. 2019. Texar: A modularized,
versatile, and extensible toolkit for text generation.
In ACL 2019, System Demonstrations.

Clayton J. Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In ICWSM.

Zhengbao Jiang, Wei Xu, Jun Araki, and Graham Neu-
big. 2020. Generalizing Natural Language Analy-
sis through Span-relation Representations. Techni-
cal report.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Abdulrahman Khalifa and Stephane Meystre. 2015.
Adapting existing natural language processing re-
sources for cardiovascular risk factors identification
in clinical notes. Journal of Biomedical Informatics,
58S.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end Neural Coreference Reso-
lution. In EMNLP 2017.

Christy Y Li, Xiaodan Liang, Zhiting Hu, and Eric P
Xing. 2019. Knowledge-driven Encode, Retrieve,
Paraphrase for Medical Image Report Generation.
In AAAI 2019.

203

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR, abs/1301.3781.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage
re-ranking with bert. ArXiv, abs/1901.04085.

Philip V Ogren. 2006. Knowtator : A Protégé plug-in
for annotated corpus construction. In Proceedings
of the Human Language Technology Conference of
the NAACL, June, pages 273–275.

Pontus Stenetorp, Sampo Pyysalo, and Goran Topi.

2012. BRAT : a Web-based Tool for NLP-Assisted
Text Annotation. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 102–107.

UNC School of Medicine. History and Physical Exam-
ination Examples 5.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, pages
arXiv–1910.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. YEDDA : A Lightweight Collaborative
Text Span Annotation Tool. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics-System Demonstrations, pages
31–36.

204

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 205–215
November 16-20, 2020. c©2020 Association for Computational Linguistics

CoRefi: A Crowd Sourcing Suite for Coreference Annotation

Aaron Bornstein1,2 Arie Cattan1 Ido Dagan1

1Computer Science Department, Bar Ilan University, Ramat-Gan, Israel
2Microsoft Corporation, Tel-Aviv, Israel

abornst@microsoft.com arie.cattan@gmail.com dagan@cs.biu.ac.il

Abstract

Coreference annotation is an important, yet ex-
pensive and time consuming, task, which of-
ten involved expert annotators trained on com-
plex decision guidelines. To enable cheaper
and more efficient annotation, we present
COREFI, a web-based coreference annotation
suite, oriented for crowdsourcing. Beyond the
core coreference annotation tool, COREFI pro-
vides guided onboarding for the task as well
as a novel algorithm for a reviewing phase.
COREFI is open source and directly embeds
into any website, including popular crowd-
sourcing platforms.

COREFI Demo: aka.ms/corefi Video
Tour: aka.ms/corefivideo Github Repo:
https://github.com/aribornstein/

corefi

1 Introduction

Coreference resolution is the task of clustering tex-
tual expressions (mentions) that refer to the same
concept in a described scenario. This challenging
task has been mostly investigated within a single
document scope, seeing great research progress
in recent years. The rather under-explored cross-
document coreference setting is even more chal-
lenging. For example, consider the following sen-
tences originating in two different documents in
the standard cross-document coreference dataset
ECB+ (Cybulska and Vossen, 2014):

1. A man suspected of shooting three people at an
accounting firm where he had worked ...

2. A gunman shot three people at a suburban
Detroit office building Monday morning.

Recognizing that both sentences refer to the same
event (“shooting”,“shot”) at the same location
(“accounting firm”, “Detroit office”) can be very
useful for downstream tasks, particularly across

Figure 1: COREFI’s end-to-end annotation process

documents, such as multi-document summariza-
tion (Falke et al., 2017; Liao et al., 2018) or multi-
hop question answering (Dhingra et al., 2018;
Wang et al., 2019).

High-quality annotated datasets are valuable to
develop efficient models. While Ontonotes (Prad-
han et al., 2012) provides a useful dataset for
generic single-document coreference resolution,
large-scale datasets are lacking for cross-document
coreference (Cybulska and Vossen, 2014; Minard
et al., 2016; Vossen et al., 2018) or for targeted do-
mains, such as medical (Nguyen et al., 2011). Due
to the complexity of the coreference task, existing
datasets have been annotated mostly by linguistic
experts, incurring high costs and limiting annota-
tion scale.

Aiming to address the cost and scalability issues
in coreference annotation, we present COREFI, an
embeddable web-component tool suite that sup-
ports an end-to-end crowdsourcing process (Fig-
ure 1), while providing several contributions over
earlier annotation tools (Section 4). COREFI in-
cludes an automated onboarding training phase,
familiarizing annotators with the tool functional-
ity and the task decision guidelines. Then, actual
annotation is performed through a simple-to-use
and efficient interface, providing quick keyboard
operations. Notably, COREFI provides a reviewing
mode, by which an additional annotator reviews
and improves the output of an earlier annotation.
This mode is enabled by a non-trivial algorithm,
that seamlessly integrates reviewing of an earlier

205

annotation into the progressive construction of the
reviewer’s annotation.

By open sourcing COREFI, we hope to facilitate
the creation of large-scale coreference datasets, es-
pecially for the cross-document setting, at modest
cost while maintaining quality.

2 The COREFI Annotation Tool

COREFI provides a suite for annotating single and
cross-document coreference, designed to embed
into crowdsourcing environments. Since corefer-
ence annotation is an involved and complex task,
we target a controlled crowdsourcing setup, as pro-
posed by Roit et al. (2020). This setup consists
of selecting designated promising crowd work-
ers, identified in preliminary trap-tasks, and then
quickly training them for the target task and testing
their performance. This yields a pool of reliable
lightly trained annotators, who perform the actual
annotation of the dataset.

COREFI supports both the annotator training (on-
boarding) and annotation production phases, as
illustrated in Figure 1. The training phase (Sec-
tion 2.4) consists of two crowdsourcing tasks, first
teaching the tool’s functionality and then practic-
ing guided annotation, interactively learning basics
of the annotation guidelines. The annotation pro-
duction phase also consists of two crowdsourcing
tasks: first-round coreference annotation, providing
a user-friendly interface designed to reduce anno-
tation time (Section 2.2), and a novel reviewing
task, in which an additional annotator reviews and
improves the initial annotation (Section 2.3).

2.1 Design Choices

Our first major design choice regards the annota-
tion flow. As elaborated in Section 4, two different
coreference annotation flows were prominent in
prior work. The local pair-based approach aims at
annotation simplicity, often motivated by a crowd-
sourcing setting. Here, an annotator has to decide
for a pair of mentions whether they corefer or not,
or to proactively find such pairs of corefering men-
tions. Since coreference is annotated at the level
mention pairs, it might require, in the worst case,
comparing a mention to all other mentions in the
text.

In the cluster-based flow, annotators assign men-
tions to coreference clusters. Here, a mention
needs to be compared only against the clusters ac-
cumulated so far, or otherwise be defined as start-

ing a new cluster. Indeed, the number of coref-
erence clusters is often substantially lower than
the number of mentions, particularly in the cross-
document setting, where the same content gets re-
peated across the multiple texts. For example, in
the most popular dataset for cross-document coref-
erence, ECB+ (Cybulska and Vossen, 2014), the
number of clusters is about one third of the number
of mentions (15122 mentions split into 4965 coref-
erence clusters, including singletons). In COREFI,
we adopt the cluster-based approach since we aim
at exhaustive coreference annotation across docu-
ments, whose complexity would become too high
under the pairwise approach. At the same time, we
simplify the annotation process and functionality,
making it crowdsourceable.

Our second design choice regards detecting re-
ferring mentions in text. As elaborated in Sec-
tion 4, coreference annotation tools, particularly
cluster-based (e.g. (Reiter, 2018; Oberle, 2018)),
often require annotators to first detect the target
mentions before annotating them for coreference.
Conversely, recent local pair-based decision tools
(Chamberlain et al., 2016; Li et al., 2020) delegate
mention extraction to a preprocessing phase, pre-
senting coreference annotators with pre-determined
mentions. This simplifies the task and allows an-
notators to focus their attention on the coreference
decisions.

As we target exhaustive crowdsourced corefer-
ence annotation, we chose to follow this recent
facilitating approach. In addition to the input texts,
COREFI takes as input an annotation of the targeted
mentions, while optionally allowing annotators to
fix this mention annotation. In our tool suite, we fol-
lowed the approach of Prodigy,1 where corpus de-
velopers may implement their own automated (non-
overlapping) mention extraction recipes, or use a
separate manual annotation tool for mention anno-
tation, according to their desired mention detection
guidelines (which often vary across projects). The
resulting mentions can then be fed into COREFI

for coreference annotation. We provide an example
mention extraction recipe that detects as mentions
common nouns, proper nouns, pronouns, and verbs
(for event coreference). Such mention detection is
consistent with approaches that consider reduced
mention spans, mostly pertaining to syntactic heads
or named entity spans (O’Gorman et al., 2016).

1https://prodi.gy/

206

2.2 Annotation

Figure 2 shows the annotation interface of COREFI.
As initialization, the first candidate mention is

automatically assigned to the first coreference clus-
ter, which is placed in the “cluster bank”, appear-
ing at the bottom of the screen ((3) in Figure 2).
In this bank, each cluster is labeled by the text
of its first mention. The annotator is then shown
the subsequent mentions, one at a time, with the
current mention to assign underlined in purple (2).
For each mention, the annotator decides whether
to accept it as a valid mention (doing nothing) or
to modify its span (easily highlighting the correct
span and pressing the ‘F’ key, for “Fix”). Similarly,
the annotator may introduce a new span, missing
from the input. To simplify annotation, the tool
allows only non-overlapping spans.

The annotator then makes a coreference decision,
by assigning the current mention to a new or exist-
ing cluster. An existing cluster can be rapidly se-
lected either by selecting it in the cluster bank or by
selecting one of its previously-assigned mentions in
the text. Once a cluster is selected, it is highlighted
in blue along with all its previous text mentions
((3) and (1) in the figure). Rather than assigning
mentions to clusters through a slower drag and
drop interface (Reiter, 2018; Oberle, 2018) or but-
tons (Girardi et al., 2014; Aralikatte and Søgaard,
2020), annotation is driven primarily by faster key-
board operations, such as SPACE (assign to an exist-
ing cluster) and CTRL+SPACE (new cluster), with
quick navigation through arrow keys and mouse
clicks.

At any point, the annotator can re-assign a previ-
ously assigned mention to another cluster or view
any cluster mentions. COREFI supports an unlim-
ited number of documents to be annotated, pre-
sented sequentially in a configurable order. Finally,
COREFI guarantees exhaustive annotation by al-
lowing task submission only once all candidate
mentions are processed.

2.3 Reviewing

To promote annotation quality, annotation projects
typically rely on multiple annotations per item.
One approach for doing that involves collecting
such annotations in parallel and then merging them
in some way, such as simple or sophisticated voting
(Hovy et al., 2013). Another approach is sequen-
tial, where one or more annotations are collected
initially, and are then manually consolidated by

an additional, possibly more reliable, annotator (a
“consolidator” or “reviewer”) (Roit et al., 2020).

In our case, coreference annotation is addressed
as a global clustering task, where an annotator gen-
erates a complete clustering configuration for the
input text(s). Automatically merging such mul-
tiple clustering configurations, where cluster as-
signments are mutually dependent, might become
unreliable. Therefore, in COREFI we follow the
sequential manual reviewing approach. To that
end, we introduce a novel reviewing task, which
receives as input a previously annotated clustering
configuration and allows an additional annotator to
review and improve it.

The reviewing task follows the same flow of
the annotation task, making it trivial to learn for
annotators that already experienced with COREFI

annotation. At each step, the reviewer is presented
with the next mention in the reviewed configuration,
and may first decide to modify its span. Next, the
reviewer has to decide on cluster assignment for the
current mention. The only difference at this point is
that the reviewer is presented with candidate cluster
assignments which reflect the original annotator
assignment (as explained below), displayed just
above the cluster bank (Figure 3).

In fact, it is not trivial to reflect the cluster assign-
ment by the original annotator to the reviewer, since
that assignment has to be mapped to the current
clustering configuration of the reviewer. Ambiguity
may arise, resulting in multiple candidate clusters,
since an early cluster modification by the reviewer
can impact the interpretation of downstream cluster
assignments in the original annotation.

To illustrate this issue, consider reviewing a clus-
ter assigned by the original annotator, consisting of
three mentions, {A,B,C}. When presented with
the mention A, the reviewer agrees that it starts a
new cluster. Then, when reaching B, the reviewer
is presented with {A} as B’s original cluster as-
signment. Suppose the reviewer disagrees with the
annotator that A and B corefer and decides to as-
sign B to a new cluster. Now, when reviewing the
mention C, it is no longer clear whether to attribute
C’s original assignment to {A} or {B}. Hence, the
reviewing tool presents both {A} and {B} as can-
didate clusters that reflect the original annotator’s
assignment. The reviewer may then choose either
of them, or override the original annotation alto-
gether and make a different assignment. Similar
ambiguities arise when the reviewer splits an origi-

207

Figure 2: Annotation Interface of COREFI, presenting text and mentions from the ECB+ dataset, used in our pilot
study (Section 3). The current mention to assign is underlined in purple (2). The selected cluster is highlighted in
blue in the cluster bank (3), along with its mentions in the text (1).

nal mention span and assigns its parts to separate
clusters.

To address this challenge, we formulate an algo-
rithm that maps an original cluster assignment to
a set of candidate clusters in the current clustering
configuration of the reviewer. Generally speaking,
the algorithm considers the cluster to which the
current mention was assigned in the original an-
notation, and tracks all earlier token positions in
that cluster. These token positions are then mapped
back to clusters in the current reviewer’s clustering
configuration, which become the candidate clusters
presented to the reviewer. The algorithm pseu-
docode is presented in Appendix A, along with a
comprehensive example of its application.

2.4 Onboarding
In the proposed controlled crowdsourcing scheme
of Roit et al. (2020), annotators were trained in
an “offline” manner, reading slides and receiving
individual feedback. We propose augmenting this
phase with automated training, delivered through
two crowdsourcing tasks, described below.

2.4.1 Walk-through Tutorial
During this task, a trainee is walked through the
core concepts and functionality of COREFI, such
as the “current mention” and the “cluster bank”
(Figure 2), and through the annotation operations.
These functionalities are presented through a series
of intuitive dialogues. To ensure that each feature
is correctly understood, the user is instructed to
actively perform each operation before continuing
to the next (see Appendix B).

2.4.2 Guided Annotation

After acclimating with COREFI’s features, users are
familiarized with the coreference decision guide-
lines through a guided annotation task, practicing
annotation while receiving automated guiding feed-
back. If an annotation error is made, the trainee
is notified with a pre-prepared custom response,
which guides to the correct decision before allow-
ing to proceed. Additionally, following certain de-
cisions, specific important guidelines can be com-
municated (see Appendix C for examples).

The content of the guided annotation task and
the automated responses are easily configurable
using a simple JSON configuration schema. This
allows tailoring them when applying COREFI for
different datasets and annotation guidelines.

Augmenting the controlled crowdsourcing
scheme (Roit et al., 2020) with automated train-
ing provides key benefits. First, since feedback is
automated, the amount of required personalized
manual feedback is reduced. Second, annotators
benefit from an immediate response for each deci-
sion, allowing them to understand their mistakes
earlier and improve in real time. We suggest that,
for optimal learning of annotation guidelines, these
benefits should be coupled with the additional train-
ing means of controlled crowdsourcing. These in-
clude the provision of guideline slides, for learning
and later for reference, and some personalized man-
ual feedback during the training phase.

208

Figure 3: Reviewing interface of COREFI. Candidate clusters found by the reviewing algorithm are shown in
purple.

2.5 Implementation Benefits

COREFI was developed using the web component
standard and the VUE.JS framework.2 allowing, it
to easily embed into any website, including crowd-
sourcing platforms. Additionally, COREFI pro-
vides output in the standard CoNLL coreference
annotation format, enabling training state of the art
models and scoring with the official coreference
scorer (Pradhan et al., 2014). All COREFI features
are easily configurable with HTML encoded JSON
and support any UTF-8 encoded language.

3 Pilot Study

To further assess COREFI’s effectiveness in a
crowdsourcing environment, we performed a small-
scale trial on Amazon Mechanical Turk, employ-
ing 5 annotators, focusing on the coreference an-
notation functionality (rather than mention valida-
tion). To allow objective assessment of annotation
quality, we experimented with replicating corefer-
ence annotations from the ECB+ dataset (Cybulska
and Vossen, 2014), the commonly used dataset for
cross-document coreference over English news arti-
cles (Cybulska and Vossen, 2015; Yang et al., 2015;
Choubey and Huang, 2017; Kenyon-Dean et al.,
2018; Barhom et al., 2019; Cattan et al., 2020). Ac-
cordingly, we considered the ECB+ gold mentions
as input, requesting crowdworkers to assign them
to coreference clusters. Focusing on the controlled
crowdsourcing setting, we hired five annotators that
were previously selected for annotation by Roit
et al. (2020).

On-boarding Annotators were given COREFI’s
walk-through tutorial and guided annotation tasks,

2https://vuejs.org/

adapted to the ECB+ guidelines and applied to a
part of an ECB+ subtopic (cluster of documents).
These two tasks took altogether 11 minutes on av-
erage to complete, at a rate of $1.5 a task. Next,
workers were asked to annotate an entire ECB+
subtopic (through the actual annotation task). We
provided them manual feedback for their mistakes,
which consumed 30-40 minutes of researcher time
per trained annotator.

Annotation After training, we paid workers $8
to annotate two additional subtopics in full (of
about 150 and 200 mentions; in ECB+ only a few
sentences are annotated per document, and these
were presented for annotation). Each subtopic took
27 minutes on average to annotate, corresponding
to an annotation rate of ~400 mentions per hour.

Table 1 presents the performance (F1) of each of
the annotators, compared to the ECB+ gold annota-
tions, averaged over the two subtopics. The results
are reported using the common evaluation metrics
for coreference resolution: MUC (Vilain et al.,
1995), B3 (Bagga and Baldwin, 1998), CEAFe
(Luo, 2005), and CoNLL — the average of the
three metrics. Considering the decision volume
and complexity, as well as the limited training (not
providing guideline slides and a single practice
round), we find that these results support COREFI’s
effectiveness for crowdsourcing.3 As previously
mentioned, we expect that annotation quality may
be further improved in an actual dataset creation

3There are no comparable annotator performance evalua-
tions in the literature. Ontonotes (Pradhan et al., 2012) reports
an inter-annotator agreement for experts of 0.87 MUC scores,
but these seem to include mention span decisions. The creators
of ECB+ (Cybulska and Vossen, 2014) use a different method-
ology to calculate inter-annotator agreement, not applicable
for our setting, reporting a Kappa score of 0.76.

209

MUC B3 CEAFe CoNLL

A1 94.0 85.0 77.8 85.6
A2 94.8 91.2 85.4 90.5
A3 95.2 90.2 84.7 90.0
A4 94.8 86.9 76.0 85.9
A5 92.1 82.5 75.7 83.4

Table 1: F1 results of 5 annotators on 2 ECB+
subtopics.

MUC B3 CEAFe CoNLL

A1 87.0 69.1 62.6 72.9
R1 91.9 80.4 79.8 80.0
R2 88.0 73.4 73.3 78.2

A5 87.0 79.0 62.5 76.2
R1 92.9 87.3 73.0 84.4
R2 90.0 86.2 63.0 79.7

Table 2: F1 results of the reviewing trial.

project, by providing additional guided tasks, an-
notation guidelines slides, and additional manual
feedback.

Reviewing For the reviewing trial, the two best
annotators, A2 and A3, were selected as R1 and
R2. Two additional annotators (A1 and A5) were
each assigned a new unique subtopic, which was
then reviewed by both R1 and R2. Table 2 presents
the reviewing results, showing consistent improve-
ments after reviewing and assessing the ease of
using the reviewing functionality.

4 Related work

As mentioned in Section 2, prior tools for corefer-
ence annotation are based on two prominent work-
flows: pair-based, treating coreference as a pair-
wise annotation decision, and cluster-based, in
which mentions are assigned to clusters. While
targeting simplicity, only two pair-based tools sup-
ported crowdsourcing annotation, yet they were
not applied for producing exhaustively annotated
daasets: Phrase Detective (Chamberlain et al.,
2016), which was employed in a web-based game
setting, and (Li et al., 2020), which was applied in
an active learning environment.

Pair-based tools differ in their annotation ap-
proaches. In certain tools, such as BRAT (Stenetorp
et al., 2012), Glozz (Widlöcher and Mathet, 2012),
Analec (Landragin et al., 2012), and MMAX2
(Kopeć, 2014), the annotator first determines men-
tion span boundaries and then links a pair of men-

tions. Other Pair-based tools (Chamberlain et al.,
2016; Li et al., 2020) either provide annotators a
single (pre-determined) mention, asking to find a
coreferring antecedent, or provide a pair of men-
tions, asking to judge whether the two corefer. No-
tably, pair-based tools are less effective for exhaus-
tive coreference annotation, for two reasons. First,
they require comparing each mention to all other
mentions, rather than to already constructed clus-
ters. Second, local pairwise decisions lack aware-
ness of previous cluster assignments, which might
hurt annotation quality.

Cluster-based tools, including Cromer (Girardi
et al., 2014), Model based annotation tool (Ara-
likatte and Søgaard, 2020), CorefAnnotator (Reiter,
2018), and SACR (Oberle, 2018), ask annotators
to first detect mention spans and then cluster them,
thus complicating the overall task without allowing
the delegation of mention detection to a prepro-
cessing phase. Such a method does not guaran-
tee exhaustive annotation, since annotators may
miss some mentions. With respect to operation ef-
ficiency, mentions are often linked to clusters via
somewhat slow operations, such as drag-and-drop
or selection from a drop-down list, in comparison
to the fast keyboard operations in COREFI.

Notably, to the best of our knowledge, COREFI

is the first cluster-based crowdsourcing tool that
provides an end-to-end annotation suite, includ-
ing automated onboarding tasks and exhaustive
reviewing, the latter enabled by our novel review-
ing algorithm. Furthermore, it is the first tool that
was developed using the WebComponent standard,
embeddable in any website.

5 Conclusion

In this paper, we aim to facilitate crowdsourced
creation of needed large-scale coreference datasets,
in both the within- and the cross-document setting.
Our comprehensive end-to-end tool suite, COREFI,
enables high quality and fairly cheap crowdsourc-
ing of exhaustive coreference annotation in various
domains and languages. Our experiments demon-
strate that COREFI’s automatic onboarding is effec-
tive at augmenting Roit et al. (2020)’s controlled
crowdsourcing. COREFI provides the first review-
ing algorithm and implementation for cluster-based
coreference annotation. Overall, we demonstrated
that non-expert annotators can be trained to effec-
tively perform and review coreference annotations,
allowing for cost-effective annotation efforts.

210

Acknowledgments

The work described herein was supported in part
by grants from Intel Labs, Facebook, the Israel
Science Foundation grant 1951/17, the Israeli Min-
istry of Science and Technology and the German
Research Foundation through the German-Israeli
Project Cooperation (DIP, grant DA 1600/1-1).

In addition to the support above, we would like
to thank Uri Fried, Ayal Klein, Paul Roit, Amir
Cohen, Sharon Oren, Chris Noring, Asaf Amrami,
Ori Shapira, Daniela Stepanov, Ori Ernst, Yehudit
Meged, Valentina Pyatkin, Moshe Uzan, and Ofer
Sabo for their support with architecture, design and
crowdsourcing.

References
Rahul Aralikatte and Anders Søgaard. 2020. Model-

based annotation of coreference. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 74–79, Marseille, France. European
Language Resources Association.

Amit Bagga and Breck Baldwin. 1998. Entity-
based cross-document coreferencing using the vec-
tor space model. In COLING 1998 Volume 1: The
17th International Conference on Computational
Linguistics.

Shany Barhom, Vered Shwartz, Alon Eirew, Michael
Bugert, Nils Reimers, and Ido Dagan. 2019. Re-
visiting joint modeling of cross-document entity and
event coreference resolution. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4179–4189, Florence,
Italy. Association for Computational Linguistics.

Arie Cattan, Alon Eirew, Gabriel Stanovsky, Man-
dar Joshi, and I. Dagan. 2020. Streamlining cross-
document coreference resolution: Evaluation and
modeling. ArXiv, abs/2009.11032.

Jon Chamberlain, Massimo Poesio, and Udo Kr-
uschwitz. 2016. Phrase detectives corpus 1.0 crowd-
sourced anaphoric coreference. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 2039–
2046, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Prafulla Kumar Choubey and Ruihong Huang. 2017.
Event coreference resolution by iteratively unfold-
ing inter-dependencies among events. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2124–2133,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Agata Cybulska and Piek Vossen. 2014. Using a
sledgehammer to crack a nut? lexical diversity and

event coreference resolution. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014), pages 4545–
4552, Reykjavik, Iceland. European Languages Re-
sources Association (ELRA).

Agata Cybulska and Piek Vossen. 2015. Translating
granularity of event slots into features for event
coreference resolution. In Proceedings of the The
3rd Workshop on EVENTS: Definition, Detection,
Coreference, and Representation, pages 1–10, Den-
ver, Colorado. Association for Computational Lin-
guistics.

Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William Co-
hen, and Ruslan Salakhutdinov. 2018. Neural mod-
els for reasoning over multiple mentions using coref-
erence. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 42–48,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tobias Falke, Christian M. Meyer, and Iryna Gurevych.
2017. Concept-map-based multi-document summa-
rization using concept coreference resolution and
global importance optimization. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 801–811, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Christian Girardi, Manuela Speranza, Rachele Sprug-
noli, and Sara Tonelli. 2014. CROMER: a tool for
cross-document event and entity coreference. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014), pages 3204–3208, Reykjavik, Iceland. Euro-
pean Languages Resources Association (ELRA).

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1120–1130, Atlanta, Georgia.
Association for Computational Linguistics.

Kian Kenyon-Dean, Jackie Chi Kit Cheung, and Doina
Precup. 2018. Resolving event coreference with
supervised representation learning and clustering-
oriented regularization. In Proceedings of the
Seventh Joint Conference on Lexical and Com-
putational Semantics, pages 1–10, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Mateusz Kopeć. 2014. MMAX2 for coreference anno-
tation. In Proceedings of the Demonstrations at the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 93–
96, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

211

Frédéric Landragin, Thierry Poibeau, and Bernard Vic-
torri. 2012. ANALEC: a new tool for the dynamic
annotation of textual data. In Proceedings of the
Eighth International Conference on Language Re-
sources and Evaluation (LREC-2012), pages 357–
362, Istanbul, Turkey. European Languages Re-
sources Association (ELRA).

Belinda Z. Li, Gabriel Stanovsky, and Luke Zettle-
moyer. 2020. Active learning for coreference resolu-
tion using discrete annotation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 8320–8331, Online. As-
sociation for Computational Linguistics.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract meaning representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178–1190, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25–32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Anne-Lyse Minard, Manuela Speranza, Ruben Urizar,
Begoña Altuna, Marieke van Erp, Anneleen Schoen,
and Chantal van Son. 2016. MEANTIME, the
NewsReader multilingual event and time corpus.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016), pages 4417–4422, Portorož, Slovenia. Euro-
pean Language Resources Association (ELRA).

Ngan Nguyen, Jin-Dong Kim, and Jun’ichi Tsujii.
2011. Overview of BioNLP 2011 protein corefer-
ence shared task. In Proceedings of BioNLP Shared
Task 2011 Workshop, pages 74–82, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Bruno Oberle. 2018. SACR: A drag-and-drop based
tool for coreference annotation. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC-2018), Miyazaki,
Japan. European Languages Resources Association
(ELRA).

Tim O’Gorman, Kristin Wright-Bettner, and Martha
Palmer. 2016. Richer event description: Integrating
event coreference with temporal, causal and bridg-
ing annotation. In Proceedings of the 2nd Work-
shop on Computing News Storylines (CNS 2016),
pages 47–56, Austin, Texas. Association for Com-
putational Linguistics.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted men-
tions: A reference implementation. In Proceed-
ings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Pa-
pers), pages 30–35, Baltimore, Maryland. Associa-
tion for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, pages
1–40, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Nils Reiter. 2018. CorefAnnotator - A New Annotation
Tool for Entity References. In Abstracts of EADH:
Data in the Digital Humanities.

Paul Roit, Ayal Klein, Daniela Stepanov, Jonathan
Mamou, Julian Michael, Gabriel Stanovsky, Luke
Zettlemoyer, and Ido Dagan. 2020. Controlled
crowdsourcing for high-quality QA-SRL annotation.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7008–7013, Online. Association for Computational
Linguistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Sixth Mes-
sage Understanding Conference (MUC-6): Proceed-
ings of a Conference Held in Columbia, Maryland,
November 6-8, 1995.

Piek Vossen, Filip Ilievski, Marten Postma, and Roxane
Segers. 2018. Don’t annotate, but validate: a data-
to-text method for capturing event data. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC-2018),
Miyazaki, Japan. European Languages Resources
Association (ELRA).

Haoyu Wang, Mo Yu, Xiaoxiao Guo, Rajarshi Das,
Wenhan Xiong, and Tian Gao. 2019. Do multi-hop
readers dream of reasoning chains? In Proceedings
of the 2nd Workshop on Machine Reading for Ques-
tion Answering, pages 91–97, Hong Kong, China.
Association for Computational Linguistics.

Antoine Widlöcher and Yann Mathet. 2012. The glozz
platform: A corpus annotation and mining tool. In
Proceedings of the 2012 ACM Symposium on Docu-
ment Engineering, DocEng ’12, page 171–180, New
York, NY, USA. Association for Computing Machin-
ery.

Bishan Yang, Claire Cardie, and Peter Frazier. 2015. A
hierarchical distance-dependent Bayesian model for
event coreference resolution. Transactions of the As-
sociation for Computational Linguistics, 3:517–528.

212

A Reviewing Algorithm

Algorithm 1 implements the mechanism to find
potential clusters given the initial annotation and
previous reviewing modifications.

Algorithm 1: Reviewing Algorithm
Input: M : Stack of mentions with their

initial clustering assignment
Output: R: Reviewed Assignment

1 Ant← CreateAntecedentMapping(M)
2 T2C: Map of token to cluster ID
3 while M not empty do
4 // Set reviewer span

5 Sp′ ← ReviewSpan(M.top())
6 while M.top().end ≤ Sp′.end do
7 M.pop()
8 end
9 if M.top().start ≤ Sp′.end then

10 popSplitPush(M,Sp′)
11 end

12 // Set reviewer cluster

13 C ← getCandidates(Sp′, Ant, T2C)
14 cluster ← selectCluster(C)
15 T2C.update(Sp′, cluster)
16 R.push(Sp′, cluster)
17 end

To support span modification, we build two main
data structures at the token level (lines 1 and 2).
Given the original annotation M , we build a static
mapping Ant (line 1), where each single token is
associated with all tokens from previous mentions
that belong to the same coreference cluster. T2C
is a growing mapping that will keep track of the
reviewer decisions.

After the initialization phase, the reviewer is
shown all the annotator mentions in a sequential
order. For each presented mention, the reviewer
first decides whether to agree or to modify the men-
tion span boundaries (line 5). Future mentions in
the stack M that are fully covered by the reviewed
span need to be removed (lines 6-8). The reviewer
may also split the current mention or partially cover
next mentions (line 9-11).

In order to find the potential coreference clusters
(line 13), we first use Ant to retrieve the antecedent
tokens in the original annotation, for each single
token in the reviewed span Sp′. Then, we use
the reviewer mapping T2C for each antecedent
tokens to identify the possible cluster(s) that will

be displayed to the reviewer (Figure 3). Given
the coreference decision (assigning to an existing
cluster or to a new one) of the reviewer (line 14),
we update the reviewer mapping T2C (line 15) and
coreference assignments (line 16).

Table 3 illustrates the reviewing decision step by
step, given an initial annotation that incorrectly
assigned the following gold clustered mentions
{{Bank of America, bank, BoA} {American}}
into one coreference cluster {Bank of America,
American bank, BoA}.

B Tutorial

Figure 4 and 5 demonstrate notifications that ex-
plains conceptual aspect of COREFI. Figure 4 ex-
plains what the current mention to assign is where
as Figure 5 explains what clusters are and how to
manage them in the cluster bank. Figure 6 demon-
strates a more interactive tutorial prompt. It shows
how to make an active coreference decision with
the keyboard and encourages the trainee to exper-
iment with in the confines of the tutorial environ-
ment to familiarize themselves with the feature.

Figure 4: Example of the tutorial explaining the current
mention.

Figure 5: Example of the tutorial explaining the cluster
bank.

213

Mention Stack Annotator Candidates Reviewer Decision Explanation
1 [Bank Of America, American bank, BoA] {Bank of America} 3 The reviewer agrees that Bank of America is the

start of a new cluster

2 [American bank, BoA] {Bank of America} Split American bank into two mentions Two mentions are created, American and bank.
The reviewer will next determine the cluster as-
signment of American.

3 [American bank, BoA] {Bank of America} Assign American to a new cluster The reviewer is shown {Bank of America} as the
candidate cluster since the token American was
assigned with Bank of America by the annotator.

4 [bank, BoA] {Bank of America}, {American} Assign bank to the {Bank of America} The reviewer is shown both {Bank of America}
and {American} as candidate clusters for bank.
Now, the reviewer decides to assign bank to the
{Bank of America} cluster.

5 [BoA] {{Bank of America, bank}, {American}} Assign BoA to cluster {Bank of America, bank} The reviewer is shown two candidate clusters
{Bank of America, bank} and {American} which
correspond to the clusters that include the an-
tecedent tokens of {BoA} initially assigned by
the annotator (Bank of America, American bank,
BoA).

Table 3: Examples of reviewing assignment, the initial clustering assignment is [(Bank of America, American
bank, BoA] and the reviewer modifies into [(Bank of America, bank, BoA), (American)]

Figure 6: Example of the tutorial explaining the cluster
assignment operation.

C Guided Annotation

Figure 7 demonstrates the guided experience of
the on-boarding flow of COREFI. In Figure 7, the
trainee is learning the nuances of coreference and
makes the mistake of attempting to assign the men-
tion name to the same cluster as another mention
with the exact same expression. However, in con-
text the name event mention expressed by the cur-
rent mention does not refer to the selected cluster.
The current mention refers to the naming of the Dr.
Regina Benjamin as U.S Surgeon General where
as the selected cluster refers to the event of nam-
ing Dr. Sanjay Gupta to Surgeon General. Since,
the correct decision is subtle the user receives a
toast informing them that Words can have the same
meaning but not corefer. This toast helps to guide
the annotator to the correct decision and reinforces

the coreference guidelines. As the trainee is famil-
iarized with the subtleties of coreference they are
less likely to make similar mistakes during annota-
tion of the real dataset.

214

Figure 7: Example of an automatic feedback during the guided annotation.

215

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 216–226
November 16-20, 2020. c©2020 Association for Computational Linguistics

Langsmith: An Interactive Academic Text Revision System

Takumi Ito∗,1,2 , Tatsuki Kuribayashi∗,1,2, Masatoshi Hidaka∗,3,
Jun Suzuki1,4, and Kentaro Inui1,4

1Tohoku University 2Langsmith Inc. 3Edge Intelligence Systems Inc. 4RIKEN
{t-ito, kuribayashi, jun.suzuki, inui}@ecei.tohoku.ac.jp

hidaka@edgeintelligence.jp

Abstract

Despite the current diversity and inclusion
initiatives in the academic community, re-
searchers with a non-native command of En-
glish still face significant obstacles when writ-
ing papers in English. This paper presents
the Langsmith editor, which assists inexpe-
rienced, non-native researchers to write En-
glish papers, especially in the natural lan-
guage processing (NLP) field. Our system
can suggest fluent, academic-style sentences
to writers based on their rough, incomplete
phrases or sentences. The system also en-
courages interaction between human writers
and the computerized revision system. The
experimental results demonstrated that Lang-
smith helps non-native English-speaker stu-
dents write papers in English. The system is
available at https://emnlp-demo.editor.
langsmith.co.jp/.

1 Introduction

Currently, diversity and inclusion in the natural
language processing (NLP) community are encour-
aged. In fact, at the latest NLP conference at the
time of writing1, papers were submitted from more
than 50 countries. However, one obstacle can limit
this diversity: The papers must be written in En-
glish. Writing papers in English can be a daunt-
ing task, especially for inexperienced, non-native
speakers. These writers often struggle to put their
ideas into words.

To address this problem, we built the Langsmith
editor, an assistance system for writing NLP papers
in English.2 The main feature in Langsmith is a
revision function, which suggests fluent, academic-

∗ The authors contributed equally
1The 58th Annual Meeting of the Association for Compu-

tational Linguistics
2See https://www.youtube.com/channel/

UCjHeZPe0tT6bWxVVvum1bFQ for the screencast.

We observed significant differences
in the results between A and B.

We saw difference in the results
between A and B.

• We observed significant differences
in the results between A and B.

• We noticed a slight difference in the
results between A and B.

• We also saw a difference in the
results between A and B

Please rephrase the words around saw.

The first one is exactly what I was trying to say!

Okay. Is there anything you’d like to write?

request

select

suggest
diverse

candidates

human revision
system

Langsmith

Figure 1: An overview of interactively writing texts
with a revision system.

style sentences based on writers’ rough, incom-
plete drafts.

The drafts might be so rough that it becomes
challenging to understand the user’s intended mean-
ing to use as inputs. In addition, several potentially
plausible revisions can exist for the drafts, espe-
cially when the input draft is incomplete.

Based on such difficulties, our system provides
two ways for users to customize the revision: the
users can (i) request specific revisions, and (ii) se-
lect a suitable revision from diverse candidates (Fig-
ure 1). In particular, the request stage allows users
to specify the parts that require intensive revision.

Our experiments demonstrate the effectiveness
of our system. Specifically, students whose first
language is Japanese, which differs greatly from
English, managed to write better drafts when work-
ing with Langsmith.

Langsmith has other assistance features as well,
such as text completion with a neural language

216

Figure 2: Screenshot of Langsmith. The revision feature suggests various revisions for the input “Grammar
error correction (GEC) () of automatically correcting errors made by a human writer in text.” The characters
highlighted in green are added to the original sentence, and the red points indicate tracked deletions.

model. Furthermore, the communication between
the server and the web frontend is achieved via a
protocol specialized in writing software called the
Text Editing Assistance Smartness Protocol for Nat-
ural Language (TEASPN) (Hagiwara et al., 2019).
We hope that our system will help the NLP com-
munity and researchers, especially those lacking a
native command of English.3

2 Related work

2.1 Natural language processing for
academic writing

Academic writing assistance has gained consider-
able attention in NLP (Wu et al., 2010; Yimam
et al., 2020; Lee and Webster, 2012), and several
shared tasks have been organized (Dale and Kil-
garriff, 2011; Daudaravičius, 2015). These tasks
focus on polishing texts in already published ar-
ticles or documents near completion. In contrast,
this study focuses on revising texts in the earlier
stages of writing (e.g., first drafts), where inexpe-
rienced, non-native authors might even struggle to
convey their ideas accurately.

Ito et al. (2019) introduced a dataset and models
for revising early-stage drafts, and the 1-to-N na-
ture of the revisions was pointed out. We tackled
this difficulty by designing an overall demonstra-
tion system, including a user interface.

2.2 Writing assistance tools

Error checkers. Grammar/spelling checkers are
typical writing assistance tools. Some highlight er-
rors (e.g., Write&Improve4), while others suggest

3This paper was also written using Langsmith.
4writeandimprove.com

corrections (e.g., Grammarly5, LanguageTool6,
Ginger7, and LinggleWrite; see Tsai et al. (2020))
for writers.

Langsmith has a revision feature (Ito et al.,
2019), as well as a grammar/spelling checker. The
revision feature suggests better versions of poor
written phrases or sentences in terms of fluency
and style, whereas error checkers are typically de-
signed to correct apparent errors only. In addition,
Langsmith is specialized for the NLP domain and
enables domain-specific revisions, such as correct-
ing technical terms.

Text completion. Completing a text is another
typical feature in writing assistance applications
(WriteAhead8, Write With Transformer9, and Smart
Compose; see Chen, Mia Xu and Lee, Benjamin
N. and Bansal, Gagan and Cao, Yuan and Zhang,
Shuyuan and Lu, Justin and Tsay, Jackie and Wang,
Yinan and Dai, Andrew M. and Chen, Zhifeng and
Sohn, Timothy and Wu, Yonghui (2019)). Our
system also has a completion feature, which is spe-
cialized in academic writing (e.g., completing a
text based on a section name).

3 The Langsmith editor

3.1 Overview

This section presents Langsmith, a web-based text
editor for academic writing assistance (Figure 2).
The system has the following three features: (i)
text revision, (ii) text completion, and (iii) a gram-

5https://www.grammarly.com
6https://languagetool.org
7https://www.gingersoftware.com
8writeahead.nlpweb.org
9https://transformer.huggingface.co

217

matical/spelling error checker. These features are
activated when users select a text span, type a word,
or push a special key.

As a case study, this work focuses on paper writ-
ing in the NLP domain. Thus, each assistance
feature is specialized in the NLP domain. The fol-
lowing sections explain the details of each feature.

3.2 Revision feature

The revision feature, the main feature of Langsmith,
suggests better sentences in terms of fluency and
style for a given draft sentence (Figure 2). This
feature is activated when the user selects a sentence
or smaller unit.

Writers sometimes struggle to put their ideas
into words. Thus, the input draft for the revision
systems can be incomplete, or less informative.
Based on such a challenging situation, we examine
the REQUEST and SELECT framework to help users
discover sentences that better match what the user
wanted to write.

REQUEST stage. Langsmith provides two ways
for users to request a specific revision, which can
prevent unnecessary revisions being provided to
the user.

First, users can specify where the system should
intensively revise a text.10 That is, when a part
of a sentence is selected, the system intensively
rephrases the words around the selected part.11 Fig-
ure 3 demonstrates the change of the revision fo-
cus, depending on the selected text span. Note that
controlling the revision focus was not explored in
the original sentence-level revision task (Ito et al.,
2019). This feature is also inspired by Grangier
and Auli (2018).

Second, users can insert placeholder symbols,
“()”, at specific points in a sentence. The sys-
tem revises the sentence by replacing the symbol
with an appropriate expression regarding its con-
text. The input for the revision in Figure 2 also
has the placeholder symbol. Here, for example,
the symbol is replaced with “the task.” This fea-
ture is inspired by Zhu et al. (2019); Donahue et al.
(2020); Ito et al. (2019).

SELECT stage. The system provides several re-
visions (Figure 2). Note that there is typically more

10The system performs sentence-level revisions. Hence the
users are instructed to select the non-sentence-crossing area.

11We allow the system to correct the parts outside the se-
lected span because sometimes the revision for a specific part
requires another adjustment for the other parts.

(a) Revisions focusing on This formulation · · · and output.

(b) Revisions focusing on promote.

(c) Revisions focusing on human–computer interaction.

Figure 3: The focus of the revision depends on the parts
selected by users.

than one plausible revision in terms of fluency
and style, in contrast to correcting surface-level
errors (Napoles et al., 2017).

The diversity of the output revisions is encour-
aged using diverse beam search (Vijayakumar et al.,
2018). In addition, these revisions are ordered by a
language model that is fine-tuned for NLP papers.
That is, revisions with lower perplexity are listed
in the upper part of the suggestion box. Further-
more, the revisions are highlighted in colors, which
makes it easier to distinguish the characteristics of
each revision.

Implementation. We trained a revision model
using LightConv (Wu et al., 2019) implemented in
Fairseq (Ott et al., 2019). The revision model gen-
erates a sentence based on a given input sentence.
The model was trained on a slightly modified ver-
sion of the synthetic training data used in Ito et al.

218

Figure 4: An example of the completion feature. These
suggestions are conditioned by the left context, section
name (Related work) and the paper title (Better Models
for Grammatical Error Correction.)

Figure 5: The interface of the error correction feature.
Errors are automatically highlighted with a red line.
The corrections are suggested when the user hovers
over the highlighted words.

(2019). As an example of these modifications, syn-
thetic edit marks were added for a subset of the
training data. These marks were attached to a part
of the input sentence that has many edits compared
to its reference.12 Thus, the marks can provide
a hint for the system to determine where to edit.
When using Langsmith, the marks are attached
to the span selected by the users. The system is
expected to intensively revise the wording in the
specified span. Details are in Appendix A.

3.3 Other features

Completion feature. When the user presses the
Tab key, the completion feature generates plausi-
ble preceding phrases from the cursor point (Fig-
ure 4). This feature can consider the paper title and
section name as well as the text to the left of the
cursor.

We used GPT-2 small (117M) (Radford et al.,
2019) fine-tuned on the papers collected from the
ACL Anthology13. Paper titles and section names
were concatenated at the beginning of the corre-
sponding paragraphs in the fine-tuning data. De-

12Special symbols are attached at the beginning and the end
of the specific subsequence.

13https://www.aclweb.org/anthology

tails are in Appendix B.

Error correction feature. We used Language-
Tool,14 an open-source grammatical/spelling error
correction tool. Each time the text changes, this
feature is called upon. The detected errors are
then automatically highlighted with red lines (Fig-
ure 5).The corrections are listed when the user hov-
ers over the highlighted words.

3.4 Protocol
Langsmith was developed based on the TEA-
SPN Software Development Kit (Hagiwara et al.,
2019).15 TEASPN defines a set of APIs for writing
software (e.g., text editors) to communicate with
servers that implement NLP technologies (e.g., re-
vision model). We extended the protocol to con-
vey title and section information in the completion
feature. Since Langsmith is a browser-based tool
and frequently communicates with a web server
running models, we used WebSocket to achieve
smooth communication.

4 Experiments and results

We demonstrate the effectiveness of human–
machine interactions in revising drafts imple-
mented in our system. We also check whether
the REQUEST stage in the revision feature works
adequately.

4.1 On the revised draft quality
Settings. We suppose a situation where a per-
son writes a draft in their native language (non-
English language), translates it to English, and
then revises it further to create an English-language
draft. In order to simulate this situation, we first
collected Japanese-language version of the abstract
sections from eight Japanese peer-reviewed jour-
nals.16 Then, the abstracts were translated into
English with an off-the-shelf translation system17.
We considered the translated abstracts as first drafts.
The task is to revise the first drafts. Expert transla-
tors created reference final drafts from the Japanese
versions of the drafts.18 We evaluated the quality
of the revised versions by comparing them with the
corresponding final drafts.

14https://github.com/languagetool-org/
languagetool/releases/tag/v3.2

15https://github.com/teaspn/teaspn-sdk
16We used the journals accepted at https://www.anlp.

jp/en/index.html.
17https://translate.google.co.jp
18We used https://www.ulatus.com/.

219

Condition BLEURT

HUMAN&MACHINE -0.45
HUMAN-ONLY -0.51
MACHINE-ONLY -0.51

First drafts -0.70

Table 1: Comparison of the revision quality. The scores
are averaged over the corresponding revisions. Higher
scores indicate that the drafts are closer to the final
drafts.

We compared three versions of revised drafts to
evaluate the effectiveness of Langsmith:

• one fully and automatically revised by Lang-
smith (MACHINE-ONLY revision)
• one revised by a human writer without Lang-

smith (HUMAN-ONLY revision), and
• one revised by a human writer us-

ing assistance features in Langsmith
(HUMAN&MACHINE revision).

The following paragraphs explain how we obtained
the above three versions of the revisions. Ap-
pendix C shows the statistics of the drafts.

MACHINE-ONLY revision. We automatically
applied the revision feature to the drafts (each sen-
tence) without the REQUEST and Select stages. For
each sentence, the revision with the highest gener-
ation probability was selected.19 We created one
MACHINE-ONLY revision for each first draft.

HUMAN-ONLY revision. Human writers revise
a given first draft. The writers can only access to
the error correction feature. This setting simulates
the situations that writers typically face.

HUMAN&MACHINE revision. Human writers
revise a given first draft with full access to the
Langsmith features.

Human writers. We asked 16 undergraduate and
master’s students at an NLP laboratory to revise
the first drafts in terms of fluency and style. The
students were Japanese natives, representatives of
the inexperienced researchers in a country where
the spoken language is considerably different from
English. Each participant revised two different first
drafts, one with the HUMAN-ONLY setting and the
other one with the HUMAN&MACHINE setting.

19The hyperparameters for decoding revisions were the
same as the revision feature in Langsmith. Re-ranking with
the language model was also employed.

Q. Strongly
agree

Slightly
agree

Slightly
disagree

Strongly
disagree

(I) 87.5 12.5 0 0
(II) 50.0 50.0 0 0
(III) 62.5 31.3 6.3 0
(IV) 12.5 50.0 31.3 6.3
(V) 75.0 12.5 6.3 6.3
(VI) 43.8 43.8 12.5 0

Table 2: Results of the user study about (I)-(VI). The
scores denote the percentage of the participants who
chose the option.

Half of the participants first revised a draft
with the HUMAN-ONLY setting, and then revised
another draft with the HUMAN&MACHINE set-
ting; the other half performed the same task in
the opposite order. Ultimately, we collected two
HUMAN&MACHINE revisions and two HUMAN-
ONLY revisions for each first draft.

Comparison and results. We compared the
quality of the three versions of the revised drafts:
MACHINE-ONLY revision, HUMAN-ONLY revi-
sion, and HUMAN&MACHINE revision. We com-
pared the revised drafts with their corresponding
final draft using BLEURT (Sellam et al., 2020),
the state-of-the-art automatic evaluation metric for
natural language generation tasks. Details of the
evaluation procedure is shown in Appendix D. Note
that the score is not in the range [0, 1], and a higher
score means that the revision is closer to the final
draft. Table 1 shows that HUMAN&MACHINE re-
visions were significantly better20 than MACHINE-
ONLY and HUMAN-ONLY revisions. The results
suggest the effectiveness of human–machine inter-
action achieved in Langsmith. Since this experi-
ment was relatively small in scale and only used
an automatic evaluation metric, we will conduct a
larger-scale experiment with human evaluations in
the future.

4.2 User study
After the experiments outlined in Section 4.1, we
asked the participants about the usability of Lang-
smith. The 16 participants were instructed to eval-
uate the following statements:

(I) Langsmith was more helpful than the Baseline
environment for the revision task.

20We applied a bootstrap hypothesis test (Koehn, 2004), and
the score of HUMAN&MACHINE was significantly higher than
the HUMAN-ONLY and MACHINE-ONLY scores (p < 0.05).

220

Feature percentage

revision 100
completion 31.3
correction 62.5

Table 3: Results of the user study about helpful fea-
tures. The scores denote the percentage of the partici-
pants who chose the feature (multiple choice question).

(II) Comparing the text written by the two envi-
ronments, the text written with Langsmith was
better.

(III) The feature of specifying where to intensively
revise was helpful.

(IV) The placeholder feature in the revision feature
was helpful.

(V) Providing more than one output from the revi-
sion feature was helpful.

(VI) Providing more than one output from the com-
pletion feature was helpful.

The participants evaluated the statements (I)-(VI)
on a four-point scale: (a) strongly agree, (b) slightly
agree, (c) slightly disagree, and (d) strongly dis-
agree. In addition, the participants answered
whether each feature was helpful in writing.

Results. Tables 2 and 3 show the results of our
user study. From the responses to (I) and (II), we
observed that the users were satisfied with the writ-
ing experience with Langsmith. The responses to
(III), (IV), and (V) support the idea that our RE-
QUEST and SELECT stages are helpful. Here, using
the place holders was relatively not helpful. The
responses to (VI) also suggest that showing several
candidates does not bother the users. Table 3 dis-
plays the result of whether each feature was helpful
in writing. The result indicates that the revision fea-
ture was the most useful for creating drafts using
the implemented features.

4.3 Sanity check of the REQUEST stage

Finally, we checked the validity of our method to
control the revision based on the selected part of
the sentence (Figure 3).

Settings. We randomly collected 1,000 sentences
from the first drafts created with the translation
system. In each sentence with T tokens x =
(w1, · · · , wT), we randomly inserted edit marks
to specify a certain span s = (i, j) in x (1 ≤ i <
j ≤ T, 1 ≤ j − i ≤ 5). Specifically, special to-

kens were inserted before wi and after wj in x. We
denote the input sentence with these edit marks as
xedit. We then obtained 10-best outputs of the revi-
sion system (yedit

1 , · · · , yedit
10) for each xedit. Here,

these output sentences were generated through the
diverse beam search with the same settings as the
revision feature in Langsmith. We calculated the
following score for each input sentence and its re-
visions:

r = |{yedit
k | xi:j ∈ ngram(yedit

k), 1 ≤ k ≤ 10}|
where xi:j denotes the subsequence (wi, · · · , wj)
in x. The function ngram(·) returns a set of all the
n-grams of a given sequence. A lower r indicates
that the subsequence specified with the edit marks
are more frequently rephrased.

We also obtained a score r′ for each x. r′ was
calculated using the input without the edit marks x
and its 10-best outputs yk. We compared r and r′

for each x.

Results. We observed that r frequently21 had
lower values than r′. That is, a certain subsequence
was more rephrased by the revision system when
it had the edit marks than when it did not. These
results validate our approach of controlling the revi-
sion focus, which is implemented in the REQUEST

stage of the revision feature.

5 Conclusions

We have presented Langsmith, an academic writing
assistance system. Langsmith provides a writing
environment, in which human writers use several
assistance features to improve the quality of texts.
Our experiments suggest that our system is useful
for inexperienced, non-native writers in revising
English-language papers. We are aware that our
experimental settings were not fully well-designed
(e.g., we had only Japanese participants, and no
human evaluation). We will evaluate Langsmith
in more sophisticated settings. We hope that our
system contributes to breaking language barriers in
the academic community.

Acknowledgement

We are grateful to Ana Brassard for her feedback on
English. We also appreciate the participants of our
user studies. This work was supported by Grant-in-
Aid for JSPS Fellows Grant Number JP20J22697.

21We conducted the one-side sign test. The difference is
significant with p ≤ 0.05.

221

References
Chen, Mia Xu and Lee, Benjamin N. and Bansal,

Gagan and Cao, Yuan and Zhang, Shuyuan and Lu,
Justin and Tsay, Jackie and Wang, Yinan and Dai,
Andrew M. and Chen, Zhifeng and Sohn, Timothy
and Wu, Yonghui. 2019. Gmail smart compose:
Real-time assisted writing. In Proceedings of the
25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Miningg (KDD’19),
page 2287–2295.

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The HOO 2011 pilot shared task. In Proceed-
ings of the 13th European Workshop on Natural Lan-
guage Generation (ENLG 2011), pages 242–249.

Vidas Daudaravičius. 2015. Automated evaluation of
scientific writing: AESW shared task proposal. In
Proceedings of the Tenth Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA 2015), pages 56–63.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2020),
pages 2492–2501. Association for Computational
Linguistics.

David Grangier and Michael Auli. 2018. QuickEdit:
Editing text & translations by crossing words out.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL 2018), pages 272–282.

Masato Hagiwara, Takumi Ito, Tatsuki Kuribayashi,
Jun Suzuki, and Kentaro Inui. 2019. TEASPN:
Framework and protocol for integrated writing as-
sistance environments. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint
Conference on Natural Language Processing: Sys-
tem Demonstrations (EMNLP-IJCNLP 2019), pages
229–234.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The Curious Case of Neural
Text Degeneration. In Proceedings of the 8th Inter-
national Conference on Learning Representations
(ICLR 2020).

Takumi Ito, Tatsuki Kuribayashi, Hayato Kobayashi,
Ana Brassard, Masato Hagiwara, Jun Suzuki, and
Kentaro Inui. 2019. Diamonds in the rough: Gen-
erating fluent sentences from early-stage drafts for
academic writing assistance. In Proceedings of the
12th International Conference on Natural Language
Generation (INLG 2019), pages 40–53.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2004), pages
388–395.

John Lee and Jonathan Webster. 2012. A corpus of tex-
tual revisions in second language writing. In Pro-
ceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2012),
pages 248–252.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and
benchmark for grammatical error correction. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL 2017), pages 229–234.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Sys-
tem Demonstrations (NAACL 2019), pages 48–53.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2020), pages 7881–7892.

Chung-Ting Tsai, Jhih-Jie Chen, Ching-Yu Yang, and
Jason S. Chang. 2020. LinggleWrite: a coaching
system for essay writing. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations (ACL
2020), pages 127–133.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2018. Diverse Beam
Search: Decoding Diverse Solutions from Neural
Sequence Models. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence
(AAAI 2018), pages 7371–7379.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. arXiv preprint arXiv:1910.03771.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay Less Attention with
Lightweight and Dynamic Convolutions. In Pro-
ceedings of the 7th International Conference on
Learning Representations (ICLR 2019).

Jian-Cheng Wu, Yu-Chia Chang, Teruko Mitamura,
and Jason S. Chang. 2010. Automatic Collocation
Suggestion in Academic Writing. In Proceedings
of the 48th Annual Meeting of the Association for
Computational Linguistics Conference Short Papers
(ACL 2010), pages 115–119.

222

Seid Muhie Yimam, Gopalakrishnan Venkatesh, John
Lee, and Chris Biemann. 2020. Automatic compila-
tion of resources for academic writing and evaluat-
ing with informal word identification and paraphras-
ing system. In Proceedings of the 12th Language
Resources and Evaluation Conference (LREC 2020),
pages 5896–5904.

Wanrong Zhu, Zhiting Hu, and Eric Xing. 2019. Text
Infilling. arXiv preprint arXiv:1901.00158.

223

A Details on revision model

Data. We trained the revision model using the
slightly modified version of the synthetic training
data introduced in Ito et al. (2019). They created
several types of synthetic training data with several
noising methods; (i) heuristic noising method, (i)
grammatical error generation, (iii) style removal,
and (iv) entailed sentence generation. We used the
data created by the heuristic noising method, style
removal, and the entailed sentence generation for
training the revision model. Note that we did not
use the data generated by the grammatical error
generation because grammatical error correction
feature was implemented separately from the revi-
sion feature in Langsmith.

We attached the edit marks to the subpart of
the training data generated by the style removal
method. Let x1:N = (x1, x2, · · · , xN) and y1:T =
(y1, y1, · · · , yM) be an input sentence with N to-
kens and its revision with M tokens, respectively.
Here x was the synthetic draft sentence generated
by the style removal method from y. The training
dataset consists of the pairs of (x, y).

For each (x, y), we first determined if each word
in x was rewritten compared to y. We assumed that
a token xi ∈ x was rewritten if a token with the
same lemma as xi was not in {yj |max(0, i− 3) ≤
j ≤ min(M, i+3)}. Here we obtained a sequence
c ∈ {0, 1}N , where each element ci corresponds
to whether the token xi was rewritten or not. If xi
was written in y, ci is 1; otherwise ci is 0. Then,
we defined a score r(c) for each (x, y) as follows:

r(c) =

∑N
i=1 ci
|c|

where | · | returns the length of the vector. If r(c) >
0.4, we did not attach the edit marks.

When r(c) ≤ 0.4, we obtained a span s = (a, b)
for x and c as follows:

argmax
(a,b)∈S

b∑

i=a

c′i −
a−1∑

i=0

c′i −
N+1∑

i=b+1

c′i

where c′i =

10 (ci = 1)

0 (i = 0, N + 1)

−1 (otherwise)

S = {(a, b) | a, b ∈ 1, · · · , N, a ≤ b}
Based on the obtained s = (a, b), we inserted <?
before the token xa, and ?> after the token xb. We
included the data with special symbols added by
such a procedure in the training data.

When the users select a subsequence of a sen-
tence in Langsmith, the edit marks are attached to
the input sentence. For example, if the user selects
a span “promote” in the sentence “This formulation
of the input and output promotes human-computer
interaction.”, the input to the revision feature is
formatted as follows: This formulation of
the input and output <? promotes
?> human-computer interaction.

Model. Table 4 shows the hyperparameters of
the revision model. In the decoding phase, we
used the diverse beam search (Vijayakumar et al.,
2018). Beam size is set to 15. The diverse beam
group and the diverse beam strength are 15 and 1.0,
respectively.

Specifically, we first obtained top-15 hypothe-
ses, and then these hypotheses were re-ranked by
the language model. Here, the language model
considers 20 tokens in the left context and 20 to-
kens in the right context beyond the sentence. We
excluded the hypotheses with a perplexity greater
than 1.3 times the perplexity of the input. We fi-
nally showed the top-8 revisions re-ranked to the
users. The language model used for re-ranking
is the same as the model used for the completion
feature (Appendix B).

B Details on completion model

Data. We collected 234,830 PDFs of the papers
published in ACL Anthology by 2019. We used
GROBID22 for extracting the text information from
the PDF files. The training data is formatted as
shown in Table 5. The title name is omitted with
20% probability. The order of the sections in the
same paper was shuffled.

Model. We used a pre-trained GPT-2 small
(117M). Table 6 shows the hyperparameters for
fine-tuning the pre-trained GPT-2. We used an im-
plementation in Transformers (Wolf et al., 2019).
We used nucleus sampling (Holtzman et al., 2020)
with p = 0.97 to generate the texts.

C Statistics of the drafts

Table 7 shows the statistics of the drafts collected
in Section 4. The column “word type” shows the
number of types of the tokens used in the drafts.

22https://github.com/kermitt2/grobid

224

Fairseq model architecture lightconv iwslt de en

Optimizer

algorithm Adam
learning rate 5e-4
adam epsilon 1e-08
adam betas (0.9, 0.98)
weight decay 0.0001
clip norm 0.0

Learning rate scheduler

type inverse sqrt
warmup updates 4000
warmup init lrarning rate 1e-7
min learning rate 1e-9

Training
batch size 24,000 tokens
updates 1,050,530 steps

Table 4: Hyperparameters of the revision feature.

@ Title @

* Section name
Texts in the section
· · ·

* Section name
Texts in the section
〈|endoftext|〉

@ Title (of another paper) @
· · ·

Table 5: The format of the training data for the comple-
tion model.

D Details on the evaluation in Section 4.1

We used BLEURT-Base with 128 max tokens.23

BLEURT is designed to evaluate the similarity of a
given sentence pair. Thus, we first split each draft
into sentences, and each sentence in first drafts
is aligned with the most similar sentence in the
corresponding final draft. Sentence splitting and
sentence alignment is achieved by spaCy.24 Note
that the references has been created so that the sen-
tence separation does not change from the original
first draft. Finally, we calculate each sentence pair
with BLEURT, and averaged the results.

23https://storage.googleapis.com/
bleurt-oss/bleurt-base-128.zip

24Sentence similarity is computed using cosine similarity of
average word vectors. We used spaCy’s en core web lg
model.

225

Model architecture gpt2

Optimizer

algorithm Adam
learning rate 5e-5
adam epsilon 1e-8
adam betas (0.9, 0.999)
weight decay 0.0
clip norm 1.0

Learning rate scheduler

type linear
warmup updates 0
max learning rate 5e-5
total epochs (just used for scheduling) 100

Training
batch size 262,144 tokens
updates 138,300 steps

Table 6: Hyperparameters for fine-tuning LMs.

drafts length word types

Final drafts (reference) 199 ± 52 108 ± 17
HUMAN&MACHINE 192 ± 40 101 ± 17
HUMAN-ONLY 192 ± 43 100 ± 16
MACHINE-ONLY 199 ± 58 105 ± 22
First drafts 202 ± 56 104 ± 22

Table 7: Statistics of the drafts. The scores are averaged over the drafts. The values following “±” denote the
standard deviation of the scores.

226

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 227–233
November 16-20, 2020. c©2020 Association for Computational Linguistics

IsOBS: An Information System for Oracle Bone Script

Xu Han∗ , Yuzhuo Bai∗, Keyue Qiu∗, Zhiyuan Liu† , Maosong Sun
State Key Lab on Intelligent Technology and Systems,

Institute for Artificial Intelligence,
Department of Computer Science and Technology, Tsinghua University, Beijing, China

{hanxu17,byz18,qky18}@mails.tsinghua.edu.cn
{liuzy,sms}@mail.tsinghua.edu.cn

Abstract

Oracle bone script (OBS) is the earliest known
ancient Chinese writing system and the ances-
tor of modern Chinese. As the Chinese writ-
ing system is the oldest continuously-used sys-
tem in the world, the study of OBS plays an
important role in both linguistic and histori-
cal research. In order to utilize advanced ma-
chine learning methods to automatically pro-
cess OBS, we construct an information sys-
tem for OBS (IsOBS) to symbolize, serial-
ize, and store OBS data at the character-level,
based on efficient databases and retrieval mod-
ules. Moreover, we also apply few-shot learn-
ing methods to build an effective OBS charac-
ter recognition module, which can recognize
a large number of OBS characters (especially
those characters with a handful of examples)
and make the system easy to use. The demo
system of IsOBS can be found from http:

//isobs.thunlp.org/. In the future, we
will add more OBS data to the system, and
hopefully our IsOBS can support further ef-
forts in automatically processing OBS and ad-
vance the scientific progress in this field.

1 Introduction

Oracle bone script (OBS) refers to characters
carved on animal bones or turtle plastrons. To
research OBS is important for both Chinese lin-
guistic and historical research: (1) As shown in
Figure 1, OBS is the direct ancestor of modern Chi-
nese and closely related to other languages in East
Asia (Xueqin, 2002). Analysis and understanding
of OBS is vital for studying the etymology and his-
torical evolution of Chinese as well as other East
Asian languages. (2) As shown in Figure 2, on one
OBS document carved on one animal bone or tur-
tle plastron, the number of characters ranges from
fewer than ten to more than one hundred. Besides,

∗ indicates equal contribution
† Corresponding author

as OBS is used for divination in ancient China,
these documents cover a variety of topics, includ-
ing war, ceremonial sacrifice, agriculture, as well as
births, illnesses, and deaths of royal members (Flad
et al., 2008). Therefore, OBS documents constitute
the earliest Chinese textual corpora, and to ana-
lyze and understand OBS is of great significance to
historical research.

Considering that it is often sophisticated and
time-consuming to manually process ancient lan-
guages, some efforts have been devoted to utilizing
machine learning techniques in this field. In order
to detect and recognize ancient characters, Ander-
son and Levoy (2002); Rothacker et al. (2015);
Mousavi and Lyashenko (2017); Rahma et al.
(2017); Yamauchi et al. (2018) utilize computer vi-
sion techniques to visualize Cuneiform tablets and
recognize Cuneiform characters, Franken and van
Gemert (2013); Nederhof (2015); Iglesias-Franjo
and Vilares (2016) apply similar techniques to rec-
ognize Egyptian hieroglyphs. For understanding
the ancient text, Snyder et al. (2010) first show
the feasibility of automatically deciphering a dead
language by designing a Bayesian model to match
the alphabet with non-parallel data. Then, Berg-
Kirkpatrick and Klein (2011) propose a more effec-
tive decipherment approach and achieve promising
results. Pourdamghani and Knight (2017) adopt a
method similar to non-parallel machine translation
(Mukherjee et al., 2018; Lample et al., 2018) to
decipher related languages, which further inspires
Luo et al. (2019) to propose a novel neural ap-
proach for automatic decipherment of Ugaritic and
Linear B. Doostmohammadi and Nassajian (2019);
Bernier-Colborne et al. (2019) explore to learn lan-
guage models for Cuneiform Text.

These previous efforts have inspired us to ap-
ply machine learning methods to the task of pro-
cessing OBS. However, there are still three main
challenges:

227

Ḙ泷
222BC1300BC 1046BC 771BC 220AD475BC

�

Figure 1: The historical evolution of the character “horse” from OBS to modern Chinese.

Figure 2: An example of an OBS document used in
divination.

(1) Different from those ancient Greek and Cen-
tral Asian scripts, in which letters are mainly used
to constitute words and sentences, OBS is hiero-
glyphic and does not have any delimiter to mark
word boundaries. This challenge also exists in mod-
ern Chinese scenarios. (2) Although OBS is the
origin of modern Chinese, it is quite different from
modern Chinese characters. Typically, one OBS
character may have different glyphs. Moreover,
there are many compound OBS characters corre-
sponding to multiple modern Chinese words. (3)
There still lacks an effective and stable system to
symbolize and serialize OBS data. Most OBS data
is stored in the form of unserialized bone/plastron
photos, which cannot support either recognizing
characters or understanding text.

The above three challenges make it difficult to
use existing machine learning methods for under-
standing OBS, and the third one is the most crucial.
To this end, we construct an information system
for OBS (IsOBS) to symbolize and serialize OBS
data at the character-level, so that we can utilize
machine learning methods to process OBS in the fu-

ture: (1) We construct an OBS character database,
where each character is matched to correspond-
ing modern Chinese character (if it has been deci-
phered) and incorporates a variety of its glyphs. (2)
We construct an OBS document database, which
stores more than 5, 000 OBS documents. We also
split the images of these documents into character
images, and use these character images to construct
both the OBS and corresponding modern Chinese
character sequences for each document. (3) We
also implement a character recognition module for
OBS characters based on few-shot learning models,
considering there are only a handful of examples
for each OBS character. Based on the character
recognition module, we construct an information
retrieval module for searching in character and doc-
ument databases.

The databases, character recognition module,
and retrieval module of IsOBS provide an effec-
tive and efficient approach to symbolize, serialize,
and store the data of OBS. We believe IsOBS can
serve as a footstone to support further research
(especially character recognition and language un-
derstranding) on automatically processing OBS in
the future.

2 Application Scenarios

As mentioned before, IsOBS is designed for sym-
bolizing, serializing, and storing the OBS data.
Hence, the application scenarios of IsOBS mainly
focus on constructing databases for both OBS char-
acters and documents, as well as implementing
character recognition and retrieval modules for data
search.

2.1 Character Database for OBS
In IsOBS, we construct a database to store OBS
characters. For each OBS character, both its corre-
sponding modern Chinese character (just for those
OBS characters that have been deciphered) and
glyph set will be stored. As shown in Figure 3,
users can input a modern Chinese character to

228

Figure 3: The example of the character database in
IsOBS. Users input a modern Chinese character
and get its corresponding 19 glyphs.

Figure 4: The example of the document database in
IsOBS. Users input an identity number and get its
corresponding document.

search for all glyphs of its corresponding OBS
character. For those OBS characters that have no
corresponding modern Chinese characters, we pro-
vide interfaces to utilize our character recognition
module to search them. We will later introduce this
part in more details.

2.2 Document Database for OBS

Besides the character database, we also construct
a document database to store OBS documents. As
shown in Figure 4, for each document in the doc-
ument database, we store the image of its original
animal bones or turtle plastrons, and both the OBS
and modern Chinese character sequences of this
document. By querying the specific identity num-

Figure 5: The example of the character recognition
module in IsOBS. Users either write by hand or
upload a glyph and get possible matches.

ber designated by official collections, users can
retrieve the corresponding OBS document from
our database. In addition, we also align the char-
acter database with the document database, thus
when users input one modern Chinese character to
retrieve OBS glyphs, the documents mentioning
this character can also be retrieved.

2.3 Character Recognition and Information
Retrieval Modules

Since OBS characters are hieroglyphs and the
character-glyph mappings are quite complex, the
character recognition module is thus designed to
deal with these complex mappings of input glyph
images to their OBS characters. As shown in Fig-
ure 5, after we input the handwritten glyph image
of the character, the character recognition mod-
ule returns several latent matching pairs of OBS
characters and their corresponding modern Chinese
characters. Users can select one matching result
for the next search. We also provide other com-
monly used retrieval methods (e.g. index retrieval),
which is helpful for users to quickly find characters
and documents in our system to conduct further
research.

3 System Framework and Details

In this section, we mainly focus on introducing the
overall framework and details of our system, espe-
cially introducing how to construct OBS databases
and build the character recognition module. The
overall framework of IsOBS including all databases
and modules is shown in Figure 6.

3.1 OBS Databases

Our databases are constructed from two well-
known collections. One is the collection of OBS
rubbings and standardized characters compiled by
experts in Chinese Academy of Social Sciences
(CASS) (Moruo and Houxuan, 1982), and the

229

Name Number of Classes Number of Samples Description

oracle300 353 11586 Classes with more than 20 examples
oracle600 617 15638 Classes with more than 12 examples
oracle1600 1621 20420 Classes with more than 2 examples

Table 1: The statistics of different dataset with different character sets.

揕

Char DB

Doc DB

Բҁ5҂ᨭ̺̺̺̺ݳ

… 揕

OCR

Image Chinese Char OBS ID

Figure 6: The overall framework of IsOBS includ-
ing all databases and modules.

other one is the collection of variant written forms
(glyphs) of OBS characters with their correspond-
ing modern Chinese characters (Zhao et al., 2009).

For standardized OBS document collection, our
databases now contain more than 5, 000 items, each
including images of OBS rubbings, correspond-
ing standardized OBS characters and their modern
Chinese characters. Previous database platforms
have not been able to cut out individual characters,
making it difficult to support automatic operations.
While our platform can provide finer-grained oracle
data in a sequential form, which makes it easier for
various electronic systems to conduct operations.

For hand-written OBS character collection, we
obtain 22, 161 oracle character examples in 2, 342
classes, from which we create our dataset for train-
ing and testing our character recognition module.

3.2 Character Recognition Module

In available OBS character data, each character
class usually has just a handful of examples. Due
to the scarcity of OBS data, we adopt few-shot
learning model for our classifier to capture the pat-
terns from small amounts of data. Specifically,
we implement prototypical network (Snell et al.,
2017) for classification, which learns a non-linear
mapping to embed examples into a feature space
where those examples of the same class will cluster
around a single prototype representation, as shown

in Figure 7.
The architecture of the prototypical network is

shown in Figure 8, and we denote the prototypical
network as fφ : RD → RM for simplicity, where φ
is the parameters to be learned by training, D and
M stand for the dimension of the input data and the
dimension of the embedded features respectively.

For each class, the prototype ci is set as the av-
erage of the embeddings of the support set, so
the prototype of the class i can be denoted as
ci =

1
ni

∑ni
j=1 fφ(x), where ni is the number of

samples in the support set of the class.
For each query x, we use fφ to embed the query

instance, then compute the distribution of x by the
softmax of euclidean distances between fφ(x) and
the prototypes of each class, in other words,

pφ(y = i|x) = exp(−d(fφ(x), ck))∑
i′ exp(−d(fφ(x), ci′))

.

Aside from prototypical network, we apply other
neural networks for comparison, and finally select
the most powerful one for our character recognition
module. We adopt relation network (Sung et al.,
2018), which is also an effective model in the area
of few-shot learning, and siamese network (Chopra
et al., 2005), for it is also a widely-used model in
the area of character classification.

4 Experiment and Evaluation

We evaluate different character recognition mod-
els on self-created dataset. The results show
that our implementation of prototypical network
can achieve stable and competitive results. The
datasets and source code can be found from https:

//github.com/thunlp/isobs.

4.1 Dataset
Our newly created dataset is obtained from the col-
lection of hand-written OBS characters mentioned
in 3.1. The whole dataset contains 22, 161 charac-
ter images from 2, 342 classes annotated by experts
in OBS character research, each class refers to a
unique character and is available on our website.

230

Figure 7: Illustration of prototypical network, with the glyph coordinates in space drawn by t-SNE
according to fφ(x).

Figure 8: The architecture of prototypical network.

Each image in the dataset is 110 by 200. Consid-
ering that both the training and test set should not
be empty for each class, our experiment is con-
ducted on part of the dataset, which contains 1, 621
classes and 20, 420 character images. Due to the
lack of enough few-shot training data for certain
classes, we created three datasets as shown in Table
1. Each dataset is partitioned into training examples
and test examples in 3 or 4 to 1 ratio.

4.2 Evaluation Metric

As mentioned above, we use prototypical network
to classify OBS characters. For the training part,
we use typical few-shot learning method to train
the prototypical network. For the evaluation part,
as aiming to evaluate the practicability of the model
as an OBS character classifier, we score our model
by using the top-k accuracy of the whole classifi-
cation over given dataset, rather than common few-
shot learning evaluation. Considering that only the

classes in oracle300 have ample data to do few-
shot training, we use the training set of oracle300
to train our model, and perform classification eval-
uation respectively on oracle300, oracle600 and
oracle1600.

4.3 Neural Network Hyper-Parameters

For the few-shot learning models, in each epoch,
we train 100 steps. In each step, we randomly
select 60 classes for training prototypical network,
while the number of selected classes for relation
network is 5. For each class, there are 5 randomly
chosen support examples and 5 query examples.
The learning rate is set to 0.001 at the beginning,
and decreases by half for every 20 (for prototypical
network) or 100, 000 (for relation network) steps.
For siamese network, the learning rate is set to
0.0001, and weight-decay 0.00001.

4.4 Overall Results

Table 2 shows the overall performance of proto-
typical network on different datasets, and Table
3 shows the performance of different models on
oracle600. From these two tables, we can find that:

(1) Prototypical network performs well on both
oracle300 and oracle600, with the top-10 accuracy
more than 90%.

(2) When generalized to oracle1600, which is
larger and consists classes that contains scanty ex-
amples, our model still reaches 54.4% accuracy,
indicating that our model works in generalized cir-
cumstance. As we just train models on oracle300
i.e, most characters in the test sets are not contained
in the training set, this is a quite difficult scenario.

(3) Prototypical network notably outperforms

231

Dataset hit@1 hit@3 hit@5 hit@10

oracle300 69.4 84.1 88.1 92.3
oracle600 66.0 80.7 85.1 90.0
oracle1600 54.4 69.1 73.8 78.4

Table 2: The result for prototypical network on differ-
ent dataset (%).

the other two models, which might result from the
high-efficiency of few-shot learning on training set
with sparse examples and massive classes, as well
as the transportability of prototypical network to
character classification tasks. Compared to pro-
totypical network, siamese network uses all the
training set to train models, which makes it hard to
converge; relation network works well on training,
but its concatenation and relation modules make
it difficult to transfer from few-shot learning to
character classification task where the number of
examples in each class varies, so the utilization rate
of the extra examples is low.

Considering prototypical network outperforms
other models, our character recognition module is
finally based on prototypical network.

5 Conclusion and Future Work

As to research OBS is important for both Chinese
linguistic and historical research, we thus construct
an information system for OBS and name the sys-
tem IsOBS. IsOBS provides an open digitalized
platform consisting of the OBS databases, the char-
acter recognition module, and the retrieval module.
The experimental results further demonstrate that
our character recognition module based on few-
shot learning models have achieved satisfactory
performance on our self-created hand-written OBS
character dataset.

In the future, we plan to explore the following
directions: (1) to include more OBS document and
character data from collection books into our ex-
isting databases, (2) to employ generative learning
and adversarial algorithms to add more robustness
to our model, and (3) to construct a language model
for ancient languages. We believe that these three
directions will be beneficial for ancient languages
research and support further exploration of utilizing
machine learning for understanding OBS.

Acknowledgments

This work is supported by the National Key Re-
search and Development Program of China (No.

Model hit@1 hit@5 hit@10

Siamese Network 6.1 16.1 25.2
Relation Network 18.1 45.1 57.7
Prototypical Network 66.0 85.1 90.0

Table 3: The result for prototypical network, relation
network, and siamese network on oracle600 (%).

2018YFB1004503), the National Natural Science
Foundation of China (NSFC No. 61732008) and
Beijing Academy of Artificial Intelligence (BAAI).
Bai and Qiu are supported by Tsinghua University
Initiative Scientific Research Program.

References
Sean E. Anderson and Marc Levoy. 2002. Unwrapping

and visualizing cuneiform tablets. IEEE Computer
Graphics and Applications, 22(6):82–88.

Taylor Berg-Kirkpatrick and Dan Klein. 2011. Simple
effective decipherment via combinatorial optimiza-
tion. In Proceedings of EMNLP, pages 313–321.

Gabriel Bernier-Colborne, Cyril Goutte, and Serge
Léger. 2019. Improving cuneiform language identi-
fication with bert. In Proceedings of VarDial, pages
17–25.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Proceedings of
CVPR, pages 539–546.

Ehsan Doostmohammadi and Minoo Nassajian. 2019.
Investigating machine learning methods for lan-
guage and dialect identification of cuneiform texts.
Proceedings of NAACL-HLT, pages 188–193.

Rowan K Flad, Sarah Allan, Rod Campbell, Xingcan
Chen, Lothar von Falkenhausen, Hui Fang, Magnus
Fiskesjö, Zhichun Jing, David N Keightley, Evange-
los Kyriakidis, et al. 2008. Divination and power:
a multiregional view of the development of oracle
bone divination in early china. Current Anthropol-
ogy, 49(3):403–437.

Morris Franken and Jan C van Gemert. 2013. Auto-
matic egyptian hieroglyph recognition by retrieving
images as texts. In Proceedings of MM, pages 765–
768.

Estı́baliz Iglesias-Franjo and Jesús Vilares. 2016.
Searching four-millennia-old documents: A text re-
trieval system for egyptologists. In Proceedings of
LaTeCH, pages 22–31.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2018. Unsupervised ma-
chine translation using monolingual corpora only. In
Proceedings of ICLR.

232

Jiaming Luo, Yuan Cao, and Regina Barzilay. 2019.
Neural decipherment via minimum-cost flow: From
ugaritic to linear b. In Proceedings of ACL, pages
3146–3155.

Guo Moruo and Hu Houxuan. 1982. The collection of
Oracle Bone scripts.

Seyed Muhammad Hossein Mousavi and Vyacheslav
Lyashenko. 2017. Extracting old persian cuneiform
font out of noisy images (handwritten or inscription).
In Proceedings of MVIP, pages 241–246.

Tanmoy Mukherjee, Makoto Yamada, and Timothy
Hospedales. 2018. Learning unsupervised word
translations without adversaries. In Proceedings of
EMNLP, pages 627–632.

Mark-Jan Nederhof. 2015. Ocr of handwritten tran-
scriptions of ancient egyptian hieroglyphic text. Al-
tertumswissenschaften in a Digital Age: Egyptology,
Papyrology and beyond, Leipzig.

Nima Pourdamghani and Kevin Knight. 2017. De-
ciphering related languages. In Proceedings of
EMNLP, pages 2513–2518.

Abdul Monem S Rahma, Ali Adel Saeid, and Muh-
sen J Abdul Hussien. 2017. Recognize assyrian
cuneiform characters by virtual dataset. In Proceed-
ings of ICTA, pages 1–7.

Leonard Rothacker, Denis Fisseler, Gerfrid GW Müller,
Frank Weichert, and Gernot A Fink. 2015. Re-
trieving cuneiform structures in a segmentation-free
word spotting framework. In Proceedings of HIP,
pages 129–136.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In Pro-
ceedings of NIPS, pages 4077–4087.

Benjamin Snyder, Regina Barzilay, and Kevin Knight.
2010. A statistical model for lost language decipher-
ment. In Proceedings of ACL, pages 1048–1057.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,
Philip HS Torr, and Timothy M Hospedales. 2018.
Learning to compare: Relation network for few-shot
learning. In Proceedings of CVPR, pages 1199–
1208.

Li Xueqin. 2002. The xia-shang-zhou chronology
project: methodology and results. East Asian Ar-
chaeology, 4(1):321–333.

Kenji Yamauchi, Hajime Yamamoto, and Wakaha Mori.
2018. Building a handwritten cuneiform character
imageset. In Proceedings of LREC 2018.

Liu Zhao, Hong Biao, and Zhang Xinjun. 2009. The
new collection of Oracle Bone scripts.

233

Author Index

Ahmed, Atif, 197
Alexandersson, Jan, 55
Asai, Akari, 23

Bai, Yuzhuo, 227
Bastings, Jasmijn, 107
Betz, Patrick, 165
Bi, Zhen, 1
Bolukbasi, Tolga, 107
Borchardt, Jonathan, 135
Bornstein, Ari, 205
Brignone, Fabrizio, 77
Broscheit, Samuel, 165
Bukkittu, Avinash, 197

Callison-Burch, Chris, 189
Cattan, Arie, 205
Chakravarti, Rishav, 31
Chaumond, Julien, 38
Chen, Huajun, 1
Chen, Lin, 85
Chen, Mosha, 1
Cho, Kyunghyun, 46
Chu, Cuong Xuan, 100
Cistac, Pierric, 38
Coenen, Andy, 107
Cohen, Doron, 151
Coll Ardanuy, Mariona, 62
Conia, Simone, 77
Contractor, Danish, 151

Dagan, Ido, 205
Dasigi, Pradeep, 127
Davison, Joe, 38
Debut, Lysandre, 38
Delangue, Clement, 38
Deng, Shumin, 1
Deng, Yu, 92
Dibia, Victor, 15
Ding, Guanxiong, 197
Dousti, Mohammad Javad, 144
Drame, Mariama, 38
D’Sa, Ashwin Geet, 55
Dua, Dheeru, 127
Dugan, Liam, 189

Duong, Khoa, 182

Erera, Shai, 151

Fadnis, Kshitij, 151
Fan, Changjie, 85
Ferritto, Anthony, 31
Florian, Radu, 31
Funtowicz, Morgan, 38

Ganhotra, Jatin, 151
Gao, Pengzhi, 197
Gao, Xin, 197
Gardner, Matt, 127
Gehrmann, Sebastian, 107
Gemulla, Rainer, 165
Grigsby, Jake, 119
Gu, Jiatao, 144
Gugger, Sylvain, 38
Gunasekara, Chulaka, 151
Gupta, Mansi, 197
Gurevych, Iryna, 46
Guven, Sinem, 92

Han, Xu, 227
Hearst, Marti, 135
Hidaka, Masatoshi, 216
Hiroya, Takamura, 182
Hope, Tom, 135
Horvitz, Eric, 135
Hosseini, Kasra, 62
Hu, Zecong, 197
Hu, Zhiting, 197
Hu, Zhiwei, 85
Huang, Fei, 1
Huang, Minlie, 85

Inui, Kentaro, 216
Ippolito, Daphne, 189
Ito, Takumi, 216

Jansen, Peter, 70
Jayanthi, Sai Muralidhar, 158
Jernite, Yacine, 38
Jiang, Ellen, 107

235

Jiang, Lin, 85
Jiang, Meng, 92
Jin, Di, 119
Joshi, Sachindra, 151

Kamath, Aishwarya, 46
Kirubarajan, Arun, 189
Klakow, Dietrich, 55
Kochsiek, Adrian, 165
Konopnicki, David, 151
Kuribayashi, Tatsuki, 216

Lastras, Luis, 151
Le Scao, Teven, 38
Lhoest, Quentin, 38
Li, Le, 85
Li, Linwei, 197
Liang, Xiaodan, 197
Liao, Q. Vera, 151
Lifland, Eli, 119
Liu, Zhengzhong, 197
Liu, Zhiyuan, 175, 227
Logan IV, Robert L, 127
Louf, Remi, 38

Ma, Clara, 38
Ma, Xutai, 144
Mahindru, Ruchi, 92
Mao, Xiaoxi, 85
Marasović, Ana, 127
Masami, Ikeda, 182
Mass, Yosi, 151
Matsumoto, Yuji, 23
Mills, Nathaniel, 151
Mitamura, Teruko, 197
Miwa, Makoto, 182
Moi, Anthony, 38
Morris, John, 119
Murdock, J William, 31

Nanni, Federico, 62
Navigli, Roberto, 77
Neubig, Graham, 158
Nguyen, Dat Quoc, 9
Nie, Zhen, 127
Ning, Qiang, 127

Pan, Lin, 31
Pandey, Gaurav, 151
Patel, Siva, 151
Pfeiffer, Jonas, 46
Pino, Juan, 144
Plu, Julien, 38

Portenoy, Jason, 135
Poth, Clifton, 46
Pruthi, Danish, 158
Pushkarna, Mahima, 107

Qi, Fanchao, 175
Qi, Yanjun, 119
Qiu, Keyue, 227

Radebaugh, Carey, 107
Rault, Tim, 38
Razniewski, Simon, 100
Reif, Emily, 107
Reiners, Liane, 55
Roitman, Haggai, 151
Roukos, Salim, 31
Rücklé, Andreas, 46
Ruder, Sebastian, 46
Ruffinelli, Daniel, 165
Ruiter, Dana, 55
Rush, Alexander, 38

Sakuma, Jin, 23
Sanh, Victor, 38
Shen, Canwei, 38
Shi, Haoran, 197
Shindo, Hiroyuki, 23
Shleifer, Sam, 38
Sil, Avi, 31
Singhavi, Swapnil, 197
Sohrab, Mohammad Golam, 182
Sun, Maosong, 175, 227
Suzuki, Jun, 216

Takeda, Hideaki, 23
Takefuji, Yoshiyasu, 23
Tenney, Ian, 107
Topic, Goran, 182
Tuan Nguyen, Anh, 9

Vasan, Kishore, 135
von Platen, Patrick, 38
Vu, Thanh, 9
Vulić, Ivan, 46

Wang, Changhan, 144
Wei, Wei, 197
Weikum, Gerhard, 100
Weld, Daniel, 135
West, Jevin, 135
Wexler, James, 107
Wolf, Moritz, 55
Wolf, Thomas, 38

Wu, Hao, 127
Wu, Lingfei, 92

Xi, Yadong, 85
Xing, Eric, 197

Yamada, Ikuya, 23
Yang, Jiacheng, 1
Yang, Yanhui, 175
Yoo, Jin Yong, 119
Yu, Haiyang, 1
Yu, Wenhao, 92
Yuan, Ann, 107

Zanfardino, Davide, 77
Zeng, Qingkai, 92
Zhang, Lei, 175
Zhang, Ningyu, 1
Zhang, Rongsheng, 85
Zhang, Shikun, 197
Zhang, Wei, 1

	Program
	OpenUE: An Open Toolkit of Universal Extraction from Text
	BERTweet: A pre-trained language model for English Tweets
	NeuralQA: A Usable Library for Question Answering (Contextual Query Expansion + BERT) on Large Datasets
	Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing the Embeddings of Words and Entities from Wikipedia
	ARES: A Reading Comprehension Ensembling Service
	Transformers: State-of-the-Art Natural Language Processing
	AdapterHub: A Framework for Adapting Transformers
	HUMAN: Hierarchical Universal Modular ANnotator
	DeezyMatch: A Flexible Deep Learning Approach to Fuzzy String Matching
	CoSaTa: A Constraint Satisfaction Solver and Interpreted Language for Semi-Structured Tables of Sentences
	InVeRo: Making Semantic Role Labeling Accessible with Intelligible Verbs and Roles
	Youling: an AI-assisted Lyrics Creation System
	A Technical Question Answering System with Transfer Learning
	ENTYFI: A System for Fine-grained Entity Typing in Fictional Texts
	The Language Interpretability Tool: Extensible, Interactive Visualizations and Analysis for NLP Models
	TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP
	Easy, Reproducible and Quality-Controlled Data Collection with CROWDAQ
	SciSight: Combining faceted navigation and research group detection for COVID-19 exploratory scientific search
	SIMULEVAL: An Evaluation Toolkit for Simultaneous Translation
	Agent Assist through Conversation Analysis
	NeuSpell: A Neural Spelling Correction Toolkit
	LibKGE - A knowledge graph embedding library for reproducible research
	WantWords: An Open-source Online Reverse Dictionary System
	BENNERD: A Neural Named Entity Linking System for COVID-19
	RoFT: A Tool for Evaluating Human Detection of Machine-Generated Text
	A Data-Centric Framework for Composable NLP Workflows
	CoRefi: A Crowd Sourcing Suite for Coreference Annotation
	Langsmith: An Interactive Academic Text Revision System
	IsOBS: An Information System for Oracle Bone Script

