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Abstract

Multi-source neural machine translation aims to translate from parallel sources of informa-
tion (e.g. languages, images, etc.) to a single target language, which has shown better per-
formance than most one-to-one systems. Despite the remarkable success of existing models,
they usually neglect the fact that multiple source inputs may have inconsistencies. Such dif-
ferences might bring noise to the task and limit the performance of existing multi-source NMT
approaches due to their indiscriminate usage of input sources for target word predictions. In this
paper, we attempt to leverage the potential complementary information among distinct sources
and alleviate the occasional conflicts of them. To accomplish that, we propose a source invari-
ance network to learn the invariant information of parallel sources. Such network can be easily
integrated with multi-encoder based multi-source NMT methods (e.g. multi-encoder RNN and
transformer) to enhance the translation results. Extensive experiments on two multi-source trans-
lation tasks demonstrate that the proposed approach not only achieves clear gains in translation
quality but also captures implicit invariance between different sources.

1 Introduction

Neural machine translation (NMT) systems in general translate one source language to a target lan-
guage. Various one-to-one attentional encoder-decoder architectures (Bahdanau et al., 2014; Luong et
al., 2015b; Vaswani et al., 2017) were designed to learn word and structure mappings including forma-
tions, grammatical correspondences between source and target languages.

Recently, multi-source NMT (Zoph and Knight, 2016), which simultaneously takes multiple different
languages (Dabre et al., 2017; Libovicky et al., 2018; Currey and Heafield, 2018) as input when trans-
lating to another one, is emerging. Its intuitive idea is ambiguity between one source language and the
target language could be reduced by another source language via the “triangulation” proposed by (Kay,
2000). For example, it is hard to tell who was with a telescope by the ambiguous English sentence in
Figure 1 (a). But it could be more easily to be translated to Spanish if provided with the corresponding
Chinese phrase “#, i 1§ 2 12 4%”, which corresponds to “I see through a telescope” in English. Besides,
the complementary source could be extended to non-language input such as images, also known as multi-
modal NMT (Libovicky and Helcl, 2017; Elliott et al., 2017). It takes an image with description in source
languages, that is then translated into a target language. The images are expected to provide additional
signals for better translations, which abides by similar assumptions in multi-source NMT with different
languages. A specific instance is illustrated in Figure 1 (b). In this paper, we consider general multi-
source NMT which contains more than one source as input. Our proposed model could be naturally
adapted to these two specific sub-tasks, namely multi-lingual translation and multi-modal translation.
For simplicity and convenience to describe, we use multi-source NMT to denote both tasks.
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(a) English  Chinese > Spanish

- a b
I'saw someone on the hill with a telescope. 5 4 aiguien en la montaiia a través S S _ ( ; o :‘=$( ) e
Joif i R E L A A de un telescopio. ource Chunese : Jf xf 7/ N 2( * : bt
(b) English  Picture —> Target English ', this is a big dog : There comes the bus
TR | 4 | ’
Source Spanish : este es un perro grande : Llega el bus

A woman on the floor e
covered in cake .

une femme sur le sol couverte de
gdteau .

Figure 2: Examples of (a) multi-lingual transla-

. . L tion and (b) multi-modal translation.
Figure 1: specific translation instances.

The existing approaches for multi-source NMT mainly adopt multi-encoder-single-decoder as a
paradigm, where multiple encoders extract features of different sources, and the single decoder jointly
use the learnt sources’ representations to predict the target words. They have already shown better per-
formance than most one-to-one systems (Zoph and Knight, 2016; Junczys-Dowmunt and Grundkiewicz,
2018). Despite the remarkable success of existing methods, they usually neglect the fact that parallel
corpus in multiple sources may have inconsistencies, which might derive noise to confuse the decoding
process and cause unsatisfactory translation results. Take multi-lingual translation as an example, two
inconsistent cases are exhibited in Figure 2. The target English sentence “this is a big dog” only requires
simple sequential translation process from Chinese but necessary inversions from Spanish. However, this
kind of pattern is not always true and an opposite case is shown in Figure 2 (b). The analogous cases
also could happen in multi-modal NMT since images might contain noisy information brought by image
background, rotation and scaling, etc. Even with attention mechanisms, we find the conflicts may limit
the performance of existing approaches due to their indiscriminate usage of input sources. We will verify
our findings in the experiment section (refer to Section 6.2).

In this paper, we attempt to take advantage of the potential complementary information among multiple
sources and alleviate the serendipitous conflicts of them. We accomplish it by proposing a component
named Source Invariance Network (SIN) for multi-encoder based multi-source NMT approaches. SIN
separates the invariant information of parallel input sources from their individual representations. The
learnt invariant representations could be utilized into decoding processing to enhance the translation
quality. SIN is easily integrated with popular multi-encoder based multi-source NMT frameworks such
as RNN-based and transformer-based approaches. Experiments on both multi-lingual and multi-modal
translation tasks demonstrate the effectiveness of SIN. Our contributions can be summarized as follows,

e To the best of our knowledge, we are the first considering the problem of learning invariance of
multi-source translation to address the occasional conflicts among different parallel input sources.

e We devise the source invariance network to automatically separate the invariant information of
parallel input sources and leverage such component to enhance two prevail multi-encoder based
multi-source NMT frameworks.

e We verify the performance of our model on both multi-lingual and multi-modal NMT tasks. Exten-
sive experimental results show that our SIN can provide large-margin improvements on both tasks
and the invariant information between different sources are encouragingly learnt by our model.

2 Related work

Multi-lingual Machine Translation Multilingual machine translation addresses the machine transla-
tion between multiple source and target languages, which contains one-to-many (one-source-to-many-
target), many-to-many, many-to-one approaches. (Dong et al., 2015) combines a single encoder with
multiple attentional decoders for one-to-many translation, based on which (Wang et al., 2018) have pro-
posed three strategies to improve the performance. (Luong et al., 2015a) combined multiple encoders and
decoders, one encoder for each source language and one decoder for each target language respectively,
for many-to-many translation. Based on that, (Firat et al., 2016) devised a sharing attention mechanism
while (Lu et al., 2018) incorporated an explicit neural interlingua into such multilingual encoder-decoder.
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Afterwards, (Ha et al., 2016) and (Johnson et al., 2017) proposed one universal encoder and decoder to
take place of multiple encoders and decoders. (Blackwood et al., 2018) devised a task-specific atten-
tion mechanism to improve the translation quality. In addition, (Sen et al., 2019) considered unsuper-
vised multilingual NMT by utilizing a shared encoder and some language-specific decoders. As regard
to many-to-one translation, RNN-based (Zoph and Knight, 2016) and Transformer-based multi-source
translation (Junczys-Dowmunt and Grundkiewicz, 2018) are two multi-encoder methods.

Multi-modal Machine Translation Multi-modal have been extensively studied due to multi-modal
MT shared tasks (Specia et al., 2016; Elliott et al., 2017; Barrault et al., 2018). Prior to the shared
tasks, (Hitschler et al., 2016) proposed a phrase-based statistical MT model (PBSMT) to generate trans-
lation candidates and re-rank them with image features. Afterwards, RNN-based architectures have been
adopted in multi-modal machine translation (Elliott et al., 2015). Based on such framework, (Libovicky
and Helcl, 2017) devised attention mechanism to improve the translation while (Caglayan et al., 2016)
leveraged spatial visual features to a separate visual attention mechanism. Apart from that, (Calixto et
al., 2019) incorporated image features through latent variables. (Libovicky et al., 2018) adopted multi-
source Transformer with different input combination strategies.

To the best of our knowledge, previous methods did not consider the conflicts among various input
sources. We are the first to consider this problem in multi-source translation and learn the invariance to
improve the translation quality.

3 Background

In this section, we introduce two general multi-encoder based multi-source NMT frameworks, namely
RNN-based and Transformer-based approaches. They basically have the same architecture with multiple
encoders and a single decoder corresponding to different sources and one target, respectively.

3.1 RNN-based Multi-source NMT

In RNN-based multi-source NMT, various inputs are firstly encoded by individual encoders. Then, in
the decoding process, e.g. at step t, context vectors c;, c7, ..., ¢l corresponding to N different encoders
are all combined with the decoder hidden state h; to obtain a new state ﬁt, which is further utilized for
the word prediction. For example, (Zoph and Knight, 2016) simply concatenate the context vectors with
decoder hidden state as,

hy = tanh(We[hy, cf, ..., ¢l']). (1)
where W, € RIx(N+1)d p, ety c{V € R% and d represents the dimension of hidden states.

3.2 Transformer-based Multi-source NMT

Another essential multi-encoder based multi-source NMT framework (Junczys-Dowmunt and Grund-
kiewicz, 2018) is built upon Transformer (Vaswani et al., 2017). Compared with RNN-based methods,
the major distinction of transformer-based multi-source NMT is that there are multiple encoder-decoder
attentions, which are connected in series as shown in Figure 4. Each attention layer conducts multi-head
attention by considering the output of the previous attention layer as the “Query” while taking in the
output from the corresponding encoder as “Key” and “Value”, respectively.

4 The Proposed Model

In this section, we detail our Source Invariance Network (SIN). Our SIN is inspired by Domain Separa-
tion Networks (DSN) (Bousmalis et al., 2016), which is used for learning domain-shared representations
in transfer learning field. While in this paper, SIN attempts to learn the invariance among different inputs
in multi-source translation tasks and alleviate the occasional conflicts of inputs.

In this section, we first detail the architecture of our SIN, then illustrate how to integrate it with RNN-
based and Transformer-based multi-source NMT frameworks. Furthermore, we raise a discussion on
how SIN can strengthen the performance on multi-encoder based frameworks.
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Figure 3: The architecture of Source Invariance Network. It takes in the source representation of each
encoder, separating the invariance and variance through invariant and private encoder, respectively.

4.1 Source Invariance Network

The architecture of the proposed SIN is shown in Figure 3, in which h!' and h? denote the corresponding
source representations of two different encoders, respectively. To be noticed, the source representation h
can be generated either from text or images.

For a specific description, we denote E(h, 65) as the invariant encoder in Figure 3, which is a function
parameterized by 6. The invariant encoder maps h! and h? to h! and h? representing the invariant
representations, respectively. Analogously, the private encoder is denoted by E,,, (h, 6,,,) (¢ = 1,2) which
maps the i-th source representation A’ to a new private representation A, . Both E(h, 0,) and E,, (h, 0,)
can be any neural networks and we adopt fully-connected networks in our experiment. Recall that h}
and h? represent invariant representations, we encourage SIN to narrow down the disparity between
hl, and h? by introducing similarity loss (denoted as Lg;;,). In more detail, we adopt maximum mean
discrepancy (MMD), a non-parametric estimate criterion (Gretton et al., 2012) which is defined in terms
of particular function spaces, to measure the correlations among different source representations,

ny ni nz n2 2 ny n2 1
8 1’ k hs 7,7 k hs 7,7 )
Laim =) § +)0S -2 ) ; 2)
nin2
i=1 j=1 =1 j=1 =1 j=1

where the characteristic kernel k(z1, 22) = e‘”zl_Z?HQ/ b is the Gaussian kernel function with bandwidth
parameter b of vector z, and n; = ng representing the number of parallel sources. Note that it can also be
applied in the case of more than two sources by computing pairwise MMD. Furthermore, recall that h}
and h}ol represent invariant and private representation split from source representation h', we encourage
SIN to learn orthogonality between the invariant and private representation of each input. So we adopt
the difference loss following (Bousmalis et al., 2016),

N
2
N
Lar =Y HH Hi, ‘F 3)
i=1
where N represents the number of input sources. ||. H% is the squared Frobenius norm. H’ and H;,i are

matrices whose rows are invariant and variant representations, individually.
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Figure 4: The architecture of Transformer-based multi-source NMT with SIN.

4.2 Combine with RNN and Transformer

Our proposed SIN can be easily combined with multi-encoder based multi-source methods. In the paper,
we leverage SIN to two representative frameworks, i.e. RNN and Transformer, and then derive two
models SIN-RNN and SIN-Transformer, respectively. The key issue of combination is how to generate
source representations from RNN and Transformer encoders and connect them with SIN. Considering the
particularity between RNN-based and Transformer-based multi-source NMT, SIN-RNN adopts the last
hidden states from RNN-based encoders, while SIN-Transformer (shown in Figure 4) takes the average
of encoder outputs as source representations corresponding to different encoders. After that, source
representations are fed to SIN as described in Section 4.1.

We jointly train the model with a combination of the cross entropy loss (Eq. 5), similarity loss (Eq. 2)
and difference loss (Eq. 3) as,

L= J + Oéﬁsim + /Bﬁdzf (4)
1
J = W Z —10gP(T|Sl,SQ) (5)
(Sl,SQ,T)ES

where o and 3 are user-specific constants, D is the training set, S, .S2 denotes the sources and 7 stands
for correct translation.

4.3 Discussion

We emphasize that SIN can influence the performance of multi-encoder based multi-source NMT frame-
work. Specifically, SIN tries to separate the invariant representation hg from private representation hy,
across all the encoders by minimizing the difference and similarity loss. Although SIN only acts on
loss function directly, the parameters of all the encoders would be updated at the same time via back-
propagation. The transformation of encoders would influence the word predictions via encoder-decoder
pipeline either by attention mechanism (SIN-Transformer) or initializing decoder (SIN-RNN).
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Test 2013 Test 2014

Languages Method gy p; METEOR BLEU METEOR
De = Fr 16.42 199 14.30 85
En — Fr RNN 27.23 26.2 25.18 25.0
{En, De} — Fr 35.07 55.4 33.04 527
De — Fr 23.84 239 21.30 223
En — Fr Transformer  36.05 30.8 33.67 29.4
{En,De} — Fr 39.82 57.8 36.88 55.7

Table 1: The result between single-source NMT methods and multi-source methods.

5 Experimental Set-up

We conduct our experiments on two tasks: multi-lingual and multi-modal NMT. In this section, we
describe the datasets, baselines, the evaluation protocol and implementation details.

5.1 Datasets

For multi-lingual translation task, we evaluate our proposed models on the standard benchmark
IWSLT *. We collect translation pairs of three languages including German (De), French (Fr) and En-
glish (En) from IWSLT evaluation campaign 2016. In addition, we use TED-dev-2010 as the develop-
ment set and TED-test-2013, TED-test-2014 as the test sets. Since IWSLT dataset is not a multi-parallel
corpus that required by multi-source NMT, we remove the sentences whose corresponding sentences in
English are not present in the corpus. Based on this, we obtain eligible trilingual sentence triples from
each language, and result in 188K triples in the training set.

For multi-modal translation task, we evaluate our models in Multi30K dataset (Elliott et al., 2016).
The dataset contains triplets of images, English captions and corresponding sentences in German, French
and Czech (Cz). The training, validation and test set contain 29, 000, 1,014 and 1, 000 triplets, respec-
tively.

In both tasks, all the sentences are firstly tokenized by Moses tokenizers', and then segmented into
subword units with Byte Pair Encoding (BPE) (Sennrich et al., 2016) for later processing.

5.2 Baselines and Evaluation Protocol

We compare our proposed SIN-RNN and SIN-Transformer with two corresponding baselines: RNN-
based multi-source NMT (Zoph and Knight, 2016) (denoted as RNN in the following part), and
Transformer-based multi-source NMT (Junczys-Dowmunt and Grundkiewicz, 2018) (denoted as Trans-
former in the following part). We measure translation quality using BLEU (Papineni et al., 2002) ¥ and
METEOR (Denkowski and Lavie, 2011) 8. The score is computed on tokenized text after merging the
BPE-based sub-word symbols. We use single reference in our evaluation and they are case sensitive.

5.3 Implementation Details

We use two-layer bidirectional-LSTM as encoder and four-layer LSTM as decoder in our RNN models
with hidden size of 512. The Transformer-based methods have 6 layers in both encoder and decoder,
while 16 heads in multi-head attention. In loss function (Eq. 4), o and § are set to 1.0 and 0.1 by grid
search, individually. We adopt the optimizer Adam (Kingma and Ba, 2014) with 81 = 0.9, 82 = 0.98
and a weight decay of ¢ = 10~%. For the multi-lingual translation task, we set batch size to 64 and the
learning rate to 0.001 for all the RNN-based methods, and set 2, 048 tokens in each batch and the learning
rating to 1.0 for all transformer-based ones. For the multi-modal translation task, we set batch size to 32
and the learning rate to 0.01 for all the RNN-based methods, and set batch size to 32 and the learning
rating to 0.2 for transformer-based models following (Libovicky et al., 2018). For image processing
in multi-modal translation task, we adopt the last convolutional layer of ResNet network (He et al.,

*https://wit3.fbk.eu/mt.php?release= 2016-01

thttps://github.com/moses-smt/ mosesdecoder/blob/master/scripts/ tokenizer/tokenizer.perl
*https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
$https://github.com/jhclark/multeval
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Test 2013 Test 2014

Languages Method BLEU METEOR BLEU METEOR
RNN 40.75 36.2 37.30 353
{De,Fr} — En SIN-RNN 42.19 37.6 37.90 35.7
Transformer 45.33 39.1 41.72 37.7
SIN-Transformer  45.90 39.3 41.94 37.8
RNN 24.72 44.5 21.22 40.5
{En,Fr} — De SIN-RNN 26.30 45.9 22.65 414
Transformer 29.32 48.0 25.43 43.7
SIN-Transformer  29.78 48.4 25.65 43.8
RNN 35.07 55.4 33.04 52.7
{En,De} — Fr SIN-RNN 36.93 55.7 34.27 53.3
Transformer 39.82 57.8 36.88 55.6

SIN-Transformer  39.85 57.9 37.40 55.7

Table 2: The performances of four approaches, including two our proposed methods SIN-RNN, SIN-
Transformer and two baseline methods RNN-based and Transformer-based multi-source NMT.

Methods En — DFE En — F'r En — Cz
BLEU METEOR BLEU METEOR BLEU METEOR
RNN 35.81 53.7 55.43 67.9 26.98 25.7
SIN-RNN 36.7 54.5 59.75 68.3 27.86 26.1
Transformer 38.37 56.9 58.72 71.6 30.21 29.3

SIN-Transformer  39.01 57.4 59.75 72.3 30.31 29.4

Table 3: Quantitative results of the multi-modal translation experiments on the test-set-2016.

2016) trained for ImageNet classification to encode images in multi-modal translation task, following
the setting of (Libovicky et al., 2018).

6 Experimental Results

In this section, we exhibit the overall performance among our methods and baselines in Sec 6.1, ex-
amine the conflicts caused by the inconsistency among different sources in Sec 6.2, and evaluate the
effectiveness of learning invariance in Sec 6.3.

6.1 Quantitative Results

Firstly, we compare the multi-source NMT methods against the single-source ones as shown in Table 1.
It reports that multi-source methods outperform single-source ones by a large margin, which indicates the
effectiveness of information enhancements brought by parallel multi-source inputs. And we present the
overall performance of our SIN-RNN and SIN-Transformer on multi-lingual and multi-modal transla-
tion tasks in this section. For both tasks, we compare our SIN-RNN, SIN-Transformer with RNN-based
multi-source NMT (Zoph and Knight, 2016) and Transformer-based (Junczys-Dowmunt and Grund-
kiewicz, 2018), while reporting the BLEU, METEOR score.

In the multi-lingual translation task, the overall performance is reported in Table 2. From the table,
we can observe that our methods outperform corresponding baselines on almost all the language pairs.
In detail, SIN-RNN achieves up to 1.86 BLEU (1.4 METEOR) improvement over RNN-based multi-
source NMT translating from {En, De} to Fr on TED-test-2013, while SIN-Transformer outperforms the
Transformer baseline 0.57 BLEU from {De, Fr} to En.

In the multi-modal translation task, shown in Table 3, SIN-RNN gains a maximum improvement of
0.96 BLEU (0.8 METEOR) over RNN-based method from En to De while SIN-Transformer beats its
corresponding baseline by 1.03 BLEU (0.7 METEOR) from En to Fr. In general, both SIN-RNN and
SIN-Transformer enhance the translation quality on multi-lingual and multi-modal tasks by learning
invariance among sources. It also shows positive influence of SIN on updating parameters of encoders.

Recall that multi-source NMT are always better than single-source NMT as shown in (Zoph and
Knight, 2016; Junczys-Dowmunt and Grundkiewicz, 2018)
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Figure 5: The attention mappings between the source sentences (shown in X-axis) and the prediction
sentence (shown in Y-axis) of RNN baseline and SIN-RNN.
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Figure 6: An example used in Case Study translating

from German and French to English Figure 7: How to swap source representations

of two encoders.

6.2 Case Study

Next, we conduct case studies to show our model can alleviate inconsistencies of sources and improve
translation quality. We firstly select 200 sentences from the test sets of IWSLT where the inconsistency
of grammar structures occurs as shown in Figure 6. Then we test the performance of trained RNN-based
multi-source NMT and SIN-RNN in the same experimental settings on the selected sets. The former
method achieves 35.19 while our SIN-RNN obtains 36.83 BLEU score, achieving 1.64 improvement.

Furthermore, we visualize the attention on the word mappings (via hard attention) of the selected
sentences from which we randomly choose one example for demonstration (shown in Figure 5). The
word alignment between the two source sentences and one target sentence of the picked example is
illustrated in Figure 6. In this case, conflict occurs when reference both French and German to translate
to English phrase “stands before us”. From Figure 5, we can see that both these two methods capture the
main idea except that RNN-based multi-source NMT neglects the object “us”. Furthermore, RNN-based
multi-source NMT mainly focuses on one source language at a time. We conjecture that it might be a
reason why it drops some information when inconsistency between different sources exists. While our
SIN-RNN can better take advantages of both source language for translation.

Method 1-gram 2-gram 3-gram 4-gram
Before Swa RNN baseline 67.4 45.0 31.8 22.8
W4 SIN-RNN 67.9 45.7 32.5 23.4
After Swa RNN baseline  47.1 (Vv =20.3) 1.6(V =43.4) 0.8 (v =31) 0.0 (Vv =22.8)
wap SIN-RNN 65.8(v=21) 302(v =155 178(v=14.7) 11.0(v=12.4)

Table 4: Comparison results on swapping experiment. BLEU of 1-gram, 2-gram, 3-gram and 4-gram of
RNN baseline and SIN-RNN are reported. V represents the decrease of BLEU score after swapping.
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Corpora Prediction Corpora Prediction
Source . L Source .
Fp Jai unephoto icilieu dans le Kentucky. RNN Fp La ferme est incroyable. RNN
Target s \ \ \ - Target | | $ . ! 4 The farm is amazing.
(a) I’'ve got apicture here of a place in Kentucky. The farm is incredible. (c)
U e e S SIN-RNN En 4 bt t SIN-RNN
Soll;:ce Hierist ecinBild eines Ortes in Kentucky. 1havea picture here. Soll;rce Die fram ist unglaublich. The farm is amazing.
e
Source Source
Alors  qu'avons nous a faire? RNN . Merci RNN
Fp A0S quavons nous  ataire, Fr
Target v ,/ \, / . X and what we do Target Thank you
(b) g So, what do we haveto do? Thank you (d)
En 7% t SIN-RNN En } SIN-RNN
S0Durce Was miissen  wir also tun? So, what do we do? So;rce Dankeschén Thank you
e e

Figure 8: Four specific translation cases on the experiment of swapping source representations. We also
display the word mappings between source languages and the target one. The corresponding predictions
of two methods are also listed.

6.3 Intrinsic Evaluation

Experiment results on two multi-source translation tasks demonstrate that our proposed methods can
enhance the translation performance by learning the invariance. Next, we further investigate intrinsic
evaluations, aimed to examine whether our methods can learn better invariance. Due to the space limita-
tion, we only report the results of SIN-RNN and RNN-based multi-source NMT method in this part.

6.3.1 Quantitative Evaluation

Recall that our proposed SIN can learn invariance among multiple source inputs. Hence, source repre-
sentation of each encoder might be replaceable by each other since they are hoped to contain the invariant
information. Therefore, we conduct an experiment by swapping the source representations (h' and h? in
Figure 3) from two encoders as shown in Figure 7, to prove whether our methods can obtain better invari-
ance among distinct sources. We begin with the TED-test-2014 composed of 1, 305 trilingual translation
pairs from {Fr, De} to En and prepare the pre-trained models of RNN-based multi-source NMT and
SIN-RNN, both of which have been trained in the same settings. After generating source representations
h!' and h? in the encoding process, we swap h' and h? as shown in Figure 7 and apply them to predict
target words based on the pre-trained models. Thus, two groups of predicted sentences of baseline and
SIN-RNN are yielded by performing above process, and the results on BLEU score of 1-gram, 2-gram,
3-gram and 4-gram are reported in Table 4. We see that all the BLEU scores of RNN-based multi-source
method are significantly decreased, especially on the 2-gram and 3-gram BLEU. While the performance
of SIN-RNN slightly decreases and can even keep similar score on 1-gram matching. Furthermore, there
is a clear gap between multi-encoder and our methods on the 2-gram, 3-gram, 4-gram BLEU scores. It
indicates that our methods can match more words and longer phrases even after swapping source repre-
sentations. These observations demonstrate that our method is able to incorporate the invariance cross
sources.

6.3.2 A Closer Look

Next, we take a closer look at the results of the previous evaluation. We select four representative trans-
lation results ({Fr, De} — FEn) and report them in Figure 8. We can see that SIN-RNN generally
performs better than RNN-based multi-source method. In case (a), RNN-based mult-source method just
translates an irrelevant symbol rather than a meaningful sentence in English, while SIN-RNN captures
the main idea of source sentences. For case (b), the target is a common interrogative sentence in English.
But we can see that German has inconsistent word order with French and English, which might cause
ambiguity when translating them to English. We observe that the baseline lost the basic grammar struc-
tures. We conjecture the reason is that RNN baseline can well learn mappings of words among different
languages, but fails to deal with inconsistent grammatical structures. In contrast, our methods perform
well on such inconsistency. While for some simple cases, e.g. case (c) and (d), both methods translate
correctly even swapping the source representations. From above four cases, we find our methods can
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obtain better invariance representations, which could be helpful for improving translation quality.

7 Conclusion

In this paper, we observed the drawbacks of multi-encoder based multi-source NMT on neglecting the
potential inconsistency among sources. We thus proposed SIN to learn the invariance among multiple
sources. With the equipped invariant encoder, the invariant features are explored by minimizing the
maximum mean discrepancy between source representations. Meanwhile, the private encoder is devised
to distill the corresponding particular features of different sources. SIN can be easily integrated with
conventional multi-encoder based multi-source NMT frameworks. We conducted extensive experiments
in two main multi-source tasks, and the results demonstrate the effectiveness of the proposed model.
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