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Abstract

Most of the research on text simplification is limited to sentence level nowadays. In this paper,
we are the first to investigate the helpfulness of document context on sentence simplification
and apply it to the sequence-to-sequence model. We firstly construct a sentence simplification
dataset in which the contexts for the original sentence are provided by Wikipedia corpus. The
new dataset contains approximately 116K sentence pairs with context. We then propose a new
model that makes full use of the context information. Our model uses neural networks to learn the
different effects of the preceding sentences and the following sentences on the current sentence
and applies them to the improved transformer model. Evaluated on the newly constructed dataset,
our model achieves 36.52 on SARI value, which outperforms the best performing model in the
baselines by 2.46 (7.22%), indicating that context indeed helps improve sentence simplification.
In the ablation experiment, we show that using either the preceding sentences or the following
sentences as context can significantly improve simplification.

1 Introduction

Text simplification is a hot issue in the field of natural language generation (NLG). It is also one of the
critical needs of society (Woodsend and Lapata, 2011). Text simplification aims to adapt a complex text
into a more readable version with the same meaning (Sulem et al., 2018b), which will benefit young
children (Kajiwara et al., 2013) and non-native English speakers (Paetzold, 2015; Paetzold and Specia,
2016). It includes many ways to deal with the input text, such as deletion, reordering, paraphrase,
and sentence separation (Saggion, 2017). Besides, text simplification is closely related to many natural
language processing (NLP) tasks, such as machine translation (Štajner and Popović, 2016; Hasler et al.,
2017), paraphrase generation (Pavlick and Callison-Burch, 2016; Cao et al., 2017; Zhao et al., 2018) and
text summarization (Li et al., 2017; Ma and Sun, 2017; Jin et al., 2020).

In recent years, many researchers have proposed various models to improve the performance of text
simplification. However, few people have explored the impact of document context (i.e., the preceding
and following sentences of the original sentence to be simplified in a document) on text simplification,
let alone establish a large-scale dataset containing context. Many examples like the one in Table 1 arouse
our interest in exploring the influence of context. In the simplified sentence, “played and sang” is the
simplification of “in her performances” in the original sentence. The phrase “sing as well as play” in the
context may provide additional information to help the simplification. The phrase “at the bar” is retained
because of the presence of “at the Midtown Bar” in the context. Correspondingly, there is no mention of
information related to “fan base” in the context, so adjectives such as “loyal”, “small” are deleted.

In this paper, we are committed to investigating the influence of document context on text simplifica-
tion and proposing a neural model to improve simplification using context. Using the Wikipedia datasets
(Coster and Kauchak, 2011; Kauchak, 2013), we first construct a dataset in which the document context

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



1412

Context
To fund her private lessons , Simone performed at the Midtown Bar & Grill on Pacific
Avenue in Atlantic City , whose owner insisted that she sing as well as play the piano .

Original
Simone ’s mixture of jazz , blues , and classical music in her performances at the bar
earned her a small , but loyal , fan base .

Simplified
Simone played and sang a mixture of jazz , blues and classical music at the bar . She
began to get fans .

Table 1: An example of context affecting simplification. We use Bold to highlight the keywords.

of the original sentence in each sentence pair is provided1. This dataset is built automatically, and the
training set has more than 150K sentence pairs. Then, we propose a new model named simplification
using context (SUC) by improving the transformer model. We use two multi-head self-attention modules
to learn the representations of the context. We also use neural networks to learn the different weights and
multiply them with the self-attention layer’s output. In the end, we conduct experiments to explore the
different effects of the preceding sentences and the following sentences on the current sentence.

The experiment results verify that our model has achieved remarkable results. Compared with the
original transformer model, our model improves the SARI value by 4.05 points. The ablation experiments
show that the use of sentence pairs with context information can significantly improve the SARI points.

There are the following main contributions of our work:
(1) We are the first to investigate the influence of document context on sentence simplification and

build a large dataset for training and testing.
(2) We propose and train a new model named simplification using context (SUC), which makes full

use of context information. SUC outperforms the baselines on both automatic evaluation and human
evaluation.

(3) We use ablation experiments to illustrate the different effects of the preceding sentences and the
following sentences on the current sentences to be simplified.

2 Related works

Text simplification has developed rapidly in the past decade. Wubben et al. (2012) proposed the PBMT-
R model while Narayan and Gardent (2014) put forward the Hybrid model. Both models were based
on statistic machine learning. Using a small number of manual simplifications and a large number of
paraphrases, Xu et al. (2016) adapted the method of the statistical machine translation. Nisioi et al.
(2017) were the first to apply the sequence-to-sequence model to automatic text simplification, using the
framework of neural machine translation and making specific improvements. Zhang and Lapata (2017)
proposed the DRESS model which rewards the simple, fluent output sentences with proper meaning. Vu
et al. (2018) used memory-augmented neural networks to adapt the existing architecture and Guo et al.
(2018) used multi-task learning to improve the entailment and paraphrase capabilities.

Recently, Kriz et al. (2019) used two techniques to solve the problem that the model tends to copy
words directly, resulting in a long and complicated output sentence. Nishihara et al. (2019) proposed
a method to simplify the original sentences to different level sentences. Different from most sequence-
to-sequence models, Dong et al. (2019) proposed a neural programmer-interpreter approach to predict
explicit edit operations directly. Jiang et al. (2020) proposed the neural CRF model to get better sentence
alignment.

However, up to now, most of the research on text simplification is limited to sentence level, ignoring
the influence of document context on sentence simplification. Pitler and Nenkova (2008) are the first
to empirically demonstrate that discourse relations are closely related to the perceived quality of the
text. So far, Zhong et al. (2020) are the first and the only ones to focus on discourse level factors of text
simplification. Their results have shown that using discourse level factors is useful for predicting sentence
deletion. Nevertheless, different from our research focusing on sentence simplification, this work mainly

1The dataset we used in the experiment is available at https://github.com/RLSNLP/Document-Context-to-Sentence-
Simplification
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analyzes and predicts the sentence deletion in document simplification. In addition to deletion operation,
sentence simplification also includes reservation, separation, synonym replacement, and other operations
(Xu et al., 2016). Whether the preceding sentences and the following sentences have different effects on
the original sentence has not been taken into account.

Even in a similar field of machine translation, most of the research focuses on the preceding sentences.
Based on the transformer model, Zhang et al. (2018) used a new encoder to represent the context and
proposed a new model. Werlen et al. (2018) proposed a hierarchical attention model that captures the
context in a structured and dynamic way. Both of the models that have received widespread attention
only focuses on the preceding sentences. In addition to the preceding sentences, the following sentences
also contain the information of keeping, paraphrasing, and deleting the words in the original sentence in
text simplification. To the best of our knowledge, we are the first to study the effects of the preceding
sentences and the following sentences and apply them to a sequence-to-sequence model in the field of
text simplification.

3 Our Model

The SUC model consists of four parts: the transformer model, context information module, pointer-
generator network, and coverage mechanism. Among them, the context information module is an original
module proposed by us to get the context representation and apply it to the transformer model.

3.1 The Transformer Model

The transformer model is based on attention mechanism, and the model has a straightforward structure
(Vaswani et al., 2017). The original transformer model has an encoder and a decoder, and both of them
use multi-head attention mechanism and feed-forward networks. It turns a set of queries into a matrix
Q, and turns the keys and values into matrix K and V respectively. Define the dimension of queries and
keys as dk and values as dv, and the output can be computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

A multi-head attention is defined as follows:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i )

(2)

Where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv and WO ∈ Rdmodel×hdv , and

dk = dv = dmodel/h.

3.2 Context Information Module

3.2.1 Representation of Context Information
First, we will give an overview of the module of computing context information representation, as shown
in Figure 1. We use two additional encoders to calculate the representations of the preceding sentences
and following sentences, respectively. The input text first passes through the embedding layer and the
position encoding layer. Define X ∈ RD×L as the representation of input text after embedding and
position encoding where D is embedding dimension and L is the length of input text.

The additional encoder consists of N identical layers, each of which contains two components. N is
equal to the number of layers of the encoder and decoder. The first component is a multi-head attention,
which is the same as the one in the transformer model. The input matrix Q, K, and V of multi-head
attention are all matrix X . The formula is defined as:

Attn = MultiHead(X,X,X) (3)
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The second component is a fully connected network. The network consists of two linear transforma-
tion layers and a GELU activation layer, the same as the one in the transformer model. Thus the attention
result of the input text is obtained.

R = FFN(Attn) (4)

Figure 1: An overview of how to get the representation of the context information. The inputs are the
preceding sentences and the following sentences of the current sentence. The output is the representation
RC of the context information.

It is worth noting that in order to prevent overfitting, the dropout mechanism and the LayerNorm is
added at the end of each component, which is defined as:

O = LayerNorm(I +Dropout(O)) (5)

The symbols I and O represent the input and output of the component respectively.
Given the input matrix X , the output RN ∈ Rdf×L of the additional encoder is obtained where df

represents the dimension of the inner-layer. We design a new neural network to calculate the weight V
corresponding to RN . The network consists of a linear transformation layer and a sigmoid activation
layer. The linear transformation layer converts RN to weights V with dimension 1. The sigmoid ac-
tivation layer converts V to a value between 0 and 1. When the input of the sigmoid function is near
0, the derivative is larger. When the input approaches positive infinity or negative infinity, the output
approaches 1 or 0 respectively. The calculation process of V can be defined as:

V = wRN + b

V = Sigmoid(V )
(6)

Then we multiply V by RN to get the weighted output of the additional encoder. There are two
additional encoders in our model, which are used to obtain the representations for the preceding sentences
and the following sentences, respectively. We combine two weighted outputs to getRC , which is defined
as:
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RC = Concat(V1RN1, V2RN2) (7)

RC is the representation of the context information. V1 is different from V2, indicating that the weights
of the preceding sentences and the following sentences are different.

3.2.2 Incorporation of Context Information
We also give an overview of how to use the context information, as shown in Figure 2. We apply the
representation RC of context information to encoder and decoder at the same time. The encoder and the
decoder contain N identical improved layers. We also use the dropout mechanism and LayerNorm, as
we use in the additional encoder.

Figure 2: An overview of how to use the context information. The blue modules are the ones we add to
process the representation of context information.

The improved encoder layer consists of three components, including two multi-head attentions and a
neural network. The first component is a multi-head attention. Define Xorigin as the representation of
the original sentence after embedding and position encoding. The input matrix Q, K, and V of the first
multi-head attention are all matrix Xorigin, which is defined as:

Attn = MultiHead(Xorigin, Xorigin, Xorigin) (8)

The second component is also a multi-head attention. We input the representation RC of the context
into this multi-head attention as matrices K and V . Matrix Q is the output Attn of the previous multi-
head attention. The formula can be defined as:

Attn′ = MultiHead(Attn,RC , RC) (9)

The last component is a neural network, which is the same as the one in the additional encoder. Define
RE as the output of encoder, and the formula can be expressed as:

RE = FFN(Attn′) (10)
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The improved decoder layer consists of four components, including three multi-head attentions and a
neural network. Following the original transformer model, we offset the word embedding of the simple
sentence by one position. Define that Xsimple is the representation of the simple sentence after embed-
ding and position encoding. The input matrix Q, K, and V of the first multi-head attention are all matrix
Xsimple, which is defined as:

Attn = MultiHead(Xsimple, Xsimple, Xsimple) (11)

The second component is the same as the second component in encoder layer. It also takes the repre-
sentation RC of the context and output of the first component as input, which is defined as:

Attn′ = MultiHead(Attn,RC , RC) (12)

The third component is a multi-head attention but we take the output RE of the encoder as matrices
K and V . The matrix Q is the output Attn′ of the previous multi-head attention. The formula can be
defined as:

Attn′′ = MultiHead(Attn′, RE , RE) (13)

The last component is a neural network, which is the same as the one in encoder. Define RD as the
output of the decoder, and the formula can be expressed as:

RD = FFN(Attn′′) (14)

3.3 Pointer-Generator Network and Coverage Mechanism

The pointer-generator network copies words from the original sentence to solve the problem of out-of-
vocabulary (See et al., 2017). Following the implementation2, the pointer-generator network used in our
model contains a multi-head attention. RD is taken as matrix Q and RE is taken as matrices K and V ,
which is defined as:

A = MultiHead(RD, RE , RE) (15)

The generation probability Pgen can be calculated as:

Pgen = Sigmoid(W1A+W2RD +W3Xsimple + b) (16)

The vectorsW1,W2,W3 and the scalar b are all learnable parameters. The final probability distribution
can be defined as:

P (W ) = PgenPvocab + (1− Pgen)D (17)

Where D can be obtained from multi-head attention and Pvocab is the vocabulary.
The coverage model focuses on solving the problem of generating text repeatedly in sequence-to-

sequence model (Tu et al., 2016). The general coverage model is given by:

Ci = gupdate(Ci−1, αi,Φ(h),Ψ) (18)

Ci is the coverage vector which summarizes the previous attentions at time step i to help adjust future
attention. gupdate updates Ci after new attention αi when decoding at time step i. Φ(h) is a word-specific
feature and Ψ are different auxiliary inputs.

2The code is available at https://github.com/lipiji/TranSummar.
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4 Experiments

4.1 Dataset

Since the contexts are not provided in commonly used datasets such as Wikismall (Zhu et al., 2010) and
Newsela (Xu et al., 2015), we need to build appropriate datasets first. With the help of the Wikipedia
datasets (Coster and Kauchak, 2011; Kauchak, 2013), we successfully construct a dataset for our re-
search3. The Wikipedia datasets contain about 167K aligned sentence pairs. We extract the context
sentences of each original sentence from the document-aligned data. For those sentences without the
preceding sentences or the following sentences, we choose to retain them to train the sentence-level
modules of our model. In the training set, there are around 110K aligned sentence pairs with context
information and around 41K aligned sentence pairs without context information. From the remaining
sentence pairs with context information, we use 5K as the validation set and 1K as the test set. There is
no repetition among the sentences in the test, validation and training sets.

Previous study on machine translation has shown that using too much context information will not only
not improve the results, but increase the computational complexity (Tu et al., 2018). Following Zhang
et al. (2018), we take two preceding sentences and two following sentences of the current sentence as
context information. If there is only one preceding sentence or following sentence, we choose to keep it.

4.2 Evaluation Metrics

We use SARI (Xu et al., 2016) and FKGL (Kincaid et al., 1975) and BLEU (Papineni et al., 2002) as
automatic evaluation metrics in our work.

The SARI metric may be the most important criteria to measure the result of text simplification.4 The
SARI metric compares the simplified sentence with the original one and the reference one at the same
time. The SARI value comes from three parts: adding words, deleting words properly and keeping words
properly. The values of the three parts are also reported in our results.

The BLEU metric is commonly used previously and used to measure the similarity of output to a
reference sentence (Zhao et al., 2020), so we decide to use this metric.5 It is worth noting, however,
that the BLEU metric has been found often negatively correlates with simplicity recently (Sulem et al.,
2018a).

Following Dong et al. (2019), we choose to use the FKGL method to measure the readability of the
output sentences.6 The lower the FKGL value, the simpler the output sentences are.

In this paper, we regard SARI as the most important criterion to judge the effect of simplification. We
also employ human judges to conduct more reliable evaluation for this task.

4.3 Training Details

Our model is based on the transformer model (Vaswani et al., 2017). The addition encoder, encoder and
decoder in our model have 4 layers with 4 multi-heads. We set the size of the vocabulary to 45800 and
other uncommon words in the training set are replaced with the out-of-vocabulary token UNK. When
predicting, we follow the method proposed by Jean et al. (2015) to replace UNK. We use the Adagrad
optimizer (Duchi et al., 2011) to train our model and we train 50 epochs. We set the learning rate to
0.1 and the training batch size to 16. Following BERT (Devlin et al., 2019), we replace the ReLU
activation function with a GELU activation function (Hendrycks and Gimpel, 2016) that performs better
on transformer. When training, we firstly use the sentence pairs with context information to train the
whole model, then we fix the parameters of the document-level module. Next, we use the sentence pairs
without context information to train the sentence-level module.

3We originally planned to make a dataset based on Newsela at the same time, but unfortunately our application for the
Newsela data has not been approved.

4We use the original script in https://github.com/cocoxu/simplification/blob/master/SARI.py.
All SARI values in our paper are calculated by this script.

5We use the script in https://github.com/moses-smt/mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl. All BLEU values in our paper are calculated by this script.

6We use the script in https://github.com/XingxingZhang/dress/blob/master/dress/scripts/
readability/getFKGL.py. All FKGL values in our paper are calculated by this script.
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4.4 Baselines
The main purpose of our work is to investigate the effect of context on sentence simplification, rather
than propose a model that outperforms all existing models. Thus, we use four representative models as
baselines, which are all trained on the training set we construct. They are also tested on the test set we
construct. The four baselines are:

(1) A BiLSTM-based encoder-decoder model which is used in DRESS (Zhang and Lapata, 2017). 7

(2) The original transformer model (Vaswani et al., 2017).
(3) The transformer model with the pointer-generator network (TP).
(4) The transformer model with the pointer-generator network and coverage mechanism (TPC).
The sentence pairs used by the baselines in the training set and test set are the same as those used by

our SUC model, but do not include context.

5 Results

5.1 Automatic Evaluation

SARI ↑ Each part of SARI FKGL ↓ BLEU ↑
Fkeep Pdel Fadd

BiLSTM-based encoder-decoder 34.06 74.19 25.94 2.06 10.92 59.01
Transformer 32.47 67.40 28.00 2.02 12.05 46.67
TP 32.82 77.83 18.26 2.35 13.25 52.35
TPC 27.97 78.09 5.71 0.01 12.01 66.94
SUC(ours) 36.52 77.54 29.29 2.74 11.37 64.41

Table 2: Results of the automatic evaluation on our test set. We report the values of SARI, each part of
SARI and FKGL(lower is better) and BLEU and use Bold to mark the best results. We regard SARI as
the most important criterion for automatic evaluation.

The results of the automatic evaluation are shown in Table 2. Our SUC model achieves 36.52 on SARI
value, which outperforms the baselines. Compared with the original transformer model, our model
improves on the SARI value by 4.05 points. In terms of the individual SARI values, our model also
achieves the highest scores for the deleting and adding operations. For the keeping operation, our model’s
score is slightly lower than that of TPC that performs fewer deleting and adding operations and thus gets
higher scores on keeping operations.

As for the FKGL values, although our model does not achieve the best result, our model’s FKGL
value is just 0.45 points higher than that of the BiLSTM-based encoder-decoder and much lower than
the rest of the baselines. The TP gets the highest FKGL value but it improves the SARI value by better
keeping operation compared with the transformer. As for the BLEU values, our SUC model and the
best-performing TPC model yield similar results and far outperform the other three models. However, it
is worth noting that the SARI value of our model is 8.55 higher than that of the TPC model.

We regard SARI as the most important criterion for automatic evaluation. Therefore, the automatic
evaluation results illustrate that our model outperforms the baselines and that the context contributes to
sentence simplification. Examples of the sentences generated from our model and the baseline models
are given in Table 3.

5.2 Human Evaluation
In addition to automatic evaluation, we conducted the human evaluation on the outputs of different
models. We randomly selected 50 sentences from the test set for evaluation.8 Following previous works

7The code is available at https://github.com/mounicam/wiki-auto/tree/master/simplification
8One of the goals of text simplification is to provide convenience for non-native speakers. Therefore, we invited two non-

native speakers with English proficiency roughly equivalent to 10-12 years old in English-speaking countries as volunteers.
Volunteers had fully understood the evaluation criteria before conducting the evaluation and they were given complex sentences
and different system outputs in random order. After the evaluation, they received a sum of money as payment.
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Examples
Original sentence On census night 2006 , Goulburn had a population of 20,127 people .
Reference sentence In 2006 there were 20,127 people living in Goulburn .
BiLSTM-based
encoder-decoder

on census night 2006 , goulburn had a population of 20,127 people .

Transformer
in 2006 there were 89 people were living in 2006 , but in fact she had a
population of about 6,500 people .

TP
in 2006 there were 20,127 people living in the population of 20,127
people were living in 2006 .

TPC on census night 2006 , goulburn had a population of 20,127 people .
SUC(ours) in 2006 there were 20,127 people living in goulburn .

Table 3: Examples of the sentences generated from our model and the baseline models. The first model
and TPC do not make any changes to the original sentence. The transformer model fails to generate
uncommon numbers. The TP appears to generate words repeatedly. Only our model generates the same
sentence as the reference.

(Dong et al., 2019; Zhao et al., 2020), the volunteers rated the simplified sentences from the following
three aspects: (1) Fluency: Is the sentence smooth and grammatical? (2) Adequacy: Is the main meaning
of the original sentence retained? (3) Simplicity: Is the output simpler than the original sentence?

Fluency Adequacy Simplicity Avg
BiLSTM-based encoder-decoder 3.12 2.81 3.45 3.13
Transformer 2.67 2.70 3.38 2.92
TP 2.95 3.18 3.18 3.10
TPC 2.97 2.98 3.00 2.98
SUC(ours) 3.36 3.19 3.54 3.36
Reference 4.41 3.32 4.02 3.92

Table 4: Results of human evaluation on 50 sentence pairs randomly selected from our test set. We use
Bold to mark the best results other than the reference. Avg represents the average scores of the three
aspects.

Apart from the outputs of different models, volunteers also rated the reference. The five-point Likert
scale is used for rating, and the results of the human evaluation are shown in Table 4. It can be seen
that our SUC model outperforms baselines in all the aspects and the average score. Although the fluency
of generated sentences of our model is still far from the reference, it exceeds that of the second-ranked
model by 0.24 points. In terms of adequacy, the performance of our model is close to the reference. In
terms of simplicity, our model outperforms the second-ranked model by 0.09 points, which is also the
best performing model.

5.3 Ablation Study

We designed ablation experiments to explore the effects of different modules in our model on the results,
especially the effects of the preceding sentences and the following sentences. We designed five additional
experiments:

(1) We added an additional encoder to TPC and only used 114K sentence pairs with the preceding
sentences to train the model (TPC-P).

(2) We added an additional encoder to TPC and used 114K sentence pairs with the preceding sentences
and 37K sentence pairs without context to train the model (TPC-PF).

(3) We added an additional encoder to TPC. There are a total of 134K sentence pairs with the fol-
lowing sentences in our dataset. To better compare the impact of the position of the added contextual
information, we randomly selected 114K sentence pairs with the following sentences to train the model
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(TPC-F).
(4) We added an additional encoder to TPC and used 134K sentence pairs with the following sentences

and 17K sentence pairs without context to train the model (TPC-FF).
(5) We added an additional encoder to TPC. We simply spliced the preceding sentences and the follow-

ing sentences together and fed them into the additional encoder, which means the preceding sentences
and the following sentences won’t have any extra weight (TPC-S).

SARI↑ F1-scores of SARI FKGL↓ BLEU↑ Size of the training set
Fkeep Fdel Fadd

TPC 27.97 78.09 5.71 0.01 12.01 66.94 151K
TPC-P 32.70 76.91 19.50 1.70 12.36 50.50 114K
TPC-PF 33.01 76.44 20.53 2.06 11.73 56.43 151K
TPC-F 32.17 75.95 18.74 1.82 11.05 66.14 114K
TPC-FF 32.94 73.23 23.16 2.43 10.10 61.15 151K
TPC-S 32.43 75.70 19.78 1.82 11.00 65.84 151K

Table 5: The results of ablation experiments on our test set. We use Bold to mark the best results.

The results of ablation experiments are shown in Table 5. From the results, we can see that when
adding context, the SARI value increased by nearly five points compared to TPC, which means context
is helpful for simplification. In particular, context helps immensely with deleting and adding operations,
which we believe is the result of the additional information provided by the context. In experiment 2 and
experiment 4, when the sentences without context information are added for training, there is a slight
increase in the SARI value and a more significant decrease in the FKGL value, indicating that training
with more sentence pairs can improve the readability of the output sentences. The results of experiment 5
show that simply splicing together the preceding and following sentences does not improve simplification
very much, and is even less effective than using the full dataset with preceding or following sentences.
This also demonstrates the necessity of treating the preceding and following sentences separately and
assigning different weights to them.

6 Conclusion

In this paper, we propose a new model named SUC which makes full use of the context information for
text simplification. From the results of the automatic evaluation and human evaluation, it can be seen
that our model outperforms the baselines, which proves that context information is helpful to sentence
simplification. In the ablation experiment, we show that sentence pairs with the preceding sentences or
following sentences can both significantly improve simplification.
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