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Abstract
ICD coding is the task of classifying and cod-
ing all diagnoses, symptoms and procedures
associated with a patient’s visit. The process is
often manual, extremely time-consuming and
expensive for hospitals as clinical interactions
are usually recorded in free text medical notes.
In this paper, we propose a machine learning
model, BERT-XML, for large scale automated
ICD coding of EHR notes, utilizing recently
developed unsupervised pretraining that have
achieved state of the art performance on a va-
riety of NLP tasks. We train a BERT model
from scratch on EHR notes, learning with vo-
cabulary better suited for EHR tasks and thus
outperform off-the-shelf models. We further
adapt the BERT architecture for ICD coding
with multi-label attention. We demonstrate
the effectiveness of BERT-based models on the
large scale ICD code classification task using
millions of EHR notes to predict thousands of
unique codes.

1 Introduction

Information embedded in Electronic Health
Records (EHR) have been a focus of the health-
care community in recent years. Research aiming
to provide more accurate diagnose, reduce patients’
risk, as well as improve clinical operation efficiency
have well-exploited structured EHR data, which
includes demographics, disease diagnosis, proce-
dures, medications and lab records. However, a
number of studies show that information on patient
health status primarily resides in the free-text clini-
cal notes, and it is challenging to convert clinical
notes fully and accurately to structured data (Ash-
faq et al., 2019; Guide, 2013; Cowie et al., 2017).

Extensive prior efforts have been made on ex-
tracting and utilizing information from unstruc-
tured EHR data via traditional linguistics based
methods in combination with medical metathe-
saurus and semantic networks (Savova et al., 2010;

Aronson and Lang, 2010; Wu et al., 2018a; Soysal
et al., 2018). With rapid developments in deep
learning methods and their applications in Natural
Language Processing (NLP), recent studies adopt
those models to process EHR notes for supervised
tasks such as disease diagnose and/or ICD1 coding
(Flicoteaux, 2018; Xie and Xing, 2018; Miftahut-
dinov and Tutubalina, 2018; Azam et al., 2019;
Wiegreffe et al., 2019).

Yet to the best of our knowledge, applications
of recently developed and vastly-successful self-
supervised learning models in this domain have
remained limited to very small cohorts (Alsentzer
et al., 2019; Huang et al., 2019) and/or using other
sources such as PubMed publication (Lee et al.,
2020) or animal experiment notes (Amin et al.,
2019) instead of clinical data sets. In addition,
many of these studies use the original BERT mod-
els as released in (Devlin et al., 2019), with a vo-
cabulary derived from a corpus of language not
specific to EHR.

In this work we propose BERT-XML as an ef-
fective approach to diagnose patients and extract
relevant disease documentation from the free-text
clinical notes with little pre-processing. BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) utilizes unsuper-
vised pretraining procedures to produce meaning-
ful representation of the input sequence, and pro-
vides state of the art results across many impor-
tant NLP tasks. BERT-XML combines BERT
pretraining with multi-label attention (You et al.,
2018), and outperforms other baselines without
self-supervised pretraining by a large margin. Ad-

1ICD, or International Statistical Classification of Diseases
and Related Health Problems, is the system of classifying all
diagnoses, symptoms and procedures for a patient’s visit. For
example, I50.3 is the code for Diastolic (congestive) heart
failure. These codes need to be assigned manually by medical
coders at each hospital. The process can be very expensive and
time consuming, and becomes a natural target for automation.
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ditionally, the attention layer provides a natural
mechanism to identify part of the text that impacts
final prediction.

Compare to other works on disease identification,
we demonstrate the effectiveness of BERT-based
models on automated ICD-coding on a large cohort
of EHR clinical notes, and emphasize the following
aspects: 1) Large cohort pretraining and EHR
Specific Vocabulary. We train BERT model from
scratch on over 5 million EHR notes and with a
vocabulary specific to EHR, and show that it outper-
forms off-the-shelf or fine-tuned BERT using off-
the-shelf vocabulary. 2) Minimal pre-processing
of input sequence. Instead of splitting input text
into sentences (Huang et al., 2019; Savova et al.,
2010; Soysal et al., 2018) or extracting diagnose re-
lated phrases prior to modeling (Azam et al., 2019),
we directly model input sequence up to 1,024 to-
kens in both pre-training and prediction tasks to
accommodate common EHR note size. This shows
superior performance by considering information
over longer span of text. 3) Large number of
classes. We use the 2,292 most frequent ICD-10
codes from our modeling cohort as the disease tar-
gets, and shows the model is highly predictive of
the majority of classes. This extends previous ef-
fort on disease diagnose or coding that only predict
a small number of classes. 4) Novel multi-label
embedding initialization. We apply an innova-
tive initialization method as described in Section
3.3.2, that greatly improves training stability of the
multi-label attention.

The paper is organized as follows: We summa-
rize related works in Section 2. In Section 3 we
define the problem and describe the BERT-based
models and several baseline models. Section 4 pro-
vides experiment data and model implementation
details. We also show the performances of differ-
ent model and examples of visualization. The last
Section concludes this work and discusses future
research areas.

2 Related Works

2.1 CNN, LSTM based Approaches and
Attention Mechanisms in ICD-coding

Extensive work has been done on applying ma-
chine learning approaches to automatic ICD cod-
ing. Many of these approaches rely on variants
of Convolutional Neural Networks (CNNs) and
Long Short-Term Memory Networks (LSTMs). Fli-
coteaux (2018) uses a text CNN as well as lexical

matching to improve performance for rare ICD
labels. In Xu et al.(2019), authors use an ensem-
ble of a character level CNN, Bi-LSTM, and word
level CNN to make predictions of ICD codes. An-
other study Xie and Xing (2018) proposes a tree-
of-sequences LSTM architecture to simultaneously
capture the hierarchical relationship among codes
and the semantics of each code. Miftahutdinov
and Tutubalina (2018) propose an encoder-decoder
LSTM framework with a cosine similarity vector
between the encoded sequence and the ICD-10
codes descriptions. A more recent study Azam et
al. (2019) compares a range of models including
CNN, LSTM and a cascading hierarchical architec-
ture in prediction class with LSTM and show the
hierarchical model with LSTM performs best.

Many works further incorporates the attention
mechanisms as introduced in Bahdanau et al.
(2015), to better utilize information buried in longer
input sequence. In Baumel et al. (2018), the au-
thors introduce a Hierarchical Attention bidirec-
tional Gated Recurrent Unit(HA-GRU) architec-
ture. Shi et al. (2017) use a hierarchical combina-
tion of LSTMs to encode EHR text and then use
attention with encodings of the text description of
ICD codes to make predictions.

While these models have impressive results,
some fall short in modeling the complexity of EHR
data in terms of the number of ICD codes predicted.
For example, Shi et al. (2017) limit their predic-
tions to the 50 most frequent codes and Xu et al.
(2019) predict 32. In addition, these works do not
utilize any pretraining and performance can be lim-
ited by size of labeled training samples.

2.2 Transformer Modules

Unsupervised methods to learn word representa-
tions has been well established within the NLP
community. Word2vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) learn vector repre-
sentations of tokens from large unsupervised cor-
pora in order to encode semantic similarities in
words. However, these approaches fail to incorpo-
rate wider context into account as the pretraining
only considers words in the immediate neighbour-
hood.

Recently, several approaches are developed to
learn unsupervised encoders that produce contextu-
alized word embedding such as ElMo (Peters et al.,
2018) and BERT (Bidirectional Encoder Represen-
tations from Transformers) (Devlin et al., 2019).
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These models utilize unsupervised pretraining pro-
cedures to produce representations that can transfer
well to many tasks. BERT uses self-attention mod-
ules rather than LSTMs to encode text. In addition,
BERT is trained on both a masked language model
task as well as a next sentence prediction task. This
pretraining procedure has provided state of the art
results across many important NLP tasks.

Inspired by the success in other domains, several
works have utilized BERT models for medical tasks.
Shang et al. (2019) use a BERT style model for
medicine recommendation by learning embeddings
for ICD codes. Sänger et al. (2019) use BERT as
well as BioBERT (Lee et al., 2020) as base models
for ICD code prediction. Clinical BERT (Alsentzer
et al., 2019) uses a BERT model fine-tuned on
MIMIC III (Johnson et al., 2016) notes and dis-
charge summaries and apply to downstream tasks.
Si et al. (2019) compare traditional word embed-
dings including word2vec, GloVe and fastText to
ELMo and BERT embeddings on a range of clini-
cal concept extraction tasks.

Transformer based architectures have led to a
large increase in performance on clinical tasks.
However, they rely on fine tuning off-the-shelf
BERT models, whose vocabulary is very differ-
ent from clinical text. For example, while clinical
BERT (Alsentzer et al., 2019) fine-tune the model
on the clinical notes, the authors did not expand
the base BERT vocabulary to include more relevant
clinical terms. Cui et al. (2019) show that pretrain-
ing with many out of vocabulary words can degrade
quality of representations as the masked language
model task becomes easier when predicting a chun-
ked portion of a word. Si et al. (2019) show BERT
models pretrained on the MIMIC-III data dominate
those pretrained on non-clinical datasets on clinical
concept extraction tasks. This further motivates
our hypothesis that pretraining on clinical text will
improve the performance on ICD-coding task.

Moreover, existing BERT implementations often
require segmenting the notes. For example, Clin-
ical BERT caps at a length of 128 and Sänger et
al. (2019) truncate note length to 256. This poses
question on how to combine segments from the
same document in down-stream prediction tasks, as
well as difficulty in learning long-term relationship
across segments. Instead, we extend the maximum
sequence length to 1,024 and can accommodate
common clinical notes as a single input sequence.

3 Methods

3.1 Problem Definition
We approach the ICD tagging task as a multi-label
classification problem. We learn a function to map
a sequence of input tokens x = [x0, x1, x2, ..., xN ]
to a set of labels y = [y0, y1, ...yM ] where yj ∈
[0, 1] and M is the number of different ICD classes.
Assume that we have a set of N training samples
{(xi, yi)}Ni=0 representing EHR notes with associ-
ated ICD labels.

3.2 BERT Pre-training
In this work, we use BERT to represent input text.
BERT is an encoder composed of stacked trans-
former modules. The encoder module is based
on the transformer blocks used in (Vaswani et al.,
2017), consisting of self-attention, normalization,
and position-wise fully connected layers. The
model is pretrained with both a masked language
model task as well as a next sentence prediction
task.

Unlike many practitioners who use BERT mod-
els that have been pretrained on general purpose
corpora, we trained BERT models from scratch
on EHR Notes to address the following two ma-
jor issues. Firstly, healthcare data contains a spe-
cific vocabulary that leads to many out of vocab-
ulary(OOV) words. BERT handles this problem
with WordPiece tokenization where OOV words
are chunked into sub-words contained in the vocab-
ulary. Naively fine tuning with many OOV words
may lead to a decrease in the quality of the repre-
sentation learned as in the masked language model
task as shown by Cui (Cui et al., 2019). Models
such as Clinical BERT may learn only to com-
plete the chunked word rather than understand the
wider context. The open source BERT vocabulary
contains an average 49.2 OOV words per note on
our dataset compared with 0.93 OOV words from
our trained-from-scratch vocabulary. Secondly, the
off-the-shelf BERT models only support sequence
lengths up to 512, while EHR notes can contain
thousands of tokens. To accommodate the longer
sequence length, we trained the BERT model with
1024 sequence length instead. We found that this
longer length was able to improve performance on
downstream tasks. We train both a small and large
architecture model whose configurations are given
in table 1. More details on pretraining are described
in Section 4.2.1.

We show sample output from our BERT model
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Masked Language Model Example
review of systems : gen : no weight loss or gain

, good general state of health , no weakness , no
fatigue , no fever , good exercise tolerance , able
to do usual activities . heent : head : no headache ,
no dizziness , no lightheadness eyes : normal vision ,
no redness , no blind spots , no floaters . ears : no
earaches , no fullness , normal hearing , no tinnitus
. nose and sinuses : no colds , no stuffiness , no
discharge , no hay fever , no nosebleeds , no sinus
trouble . mouth and pharynx : no cavities , no
bleeding gums , no sore throat , no hoarseness

. neck : no lumps , no goiter , no neck stiffness or
pain . ln : no adenopathy cardiac : no chest pain
or discomfort no syncope , no dyspnea on exertion
, no orthopnea , no pnd , no edema , no cyanosis

, no heart murmur , no palpitations resp : no
pleuritic pain , no sob , no wheezing , no stridor , no
cough , no hemoptysis , no respiratory infections , no
bronchitis .

Figure 1: Example of masked language model task for
BERT trained on EHR notes. Highlighted tokens are
model predictions for [MASK] tokens

in Figure 1. Our model successfully learns the
structure of medical notes as well as the relation-
ships between many different types of symptoms
and medical terms.

3.3 BERT ICD Classification Models
3.3.1 BERT Multi-Label Classification
The standard architecture for multi-label classi-
fication using BERT is to embed a [CLS] token
along with all additional inputs, yielding contextu-
alized representations from the encoder. Assume
H = {hcls, h0, h1, ...hN} is the last hidden layer
corresponding to the [CLS] token and input tokens
0 through N , hcls is then directly used to predict a
binary vector of labels.

y = σ(Wouthcls) (1)

where y ∈ RM , Wout are learnable parameters
and σ() is the sigmoid function.

3.3.2 BERT-XML
Multi-Label Attention

One drawback of using the standard BERT multi-
label classification approach is that the [CLS] vec-
tor of the last hidden layer has limited capacity,
especially when the number of labels to classify is

large. We experiment with the multi-label atten-
tion output layer from AttentionXML (You et al.,
2018), and find it improves performance on the
prediction task. This module takes a sequence
of contextualized word embeddings from BERT
H = {h0, h1, ...hN} as inputs. We calculate the
prediction for each label yj using the attention
mechanism shown below.

aij =
exp(〈hi, lj〉)∑N
i=0 exp(〈hi, lj〉)

(2)

cj =
N∑
i=0

aijhi (3)

yj = σ(Warelu(Wbcj)) (4)

Where lj is the vector of attention parameters
corresponding to label j. Wa and Wb are shared
between labels and are learnable parameters.

Semantic Label Embedding
The output layer of our model introduces a large

number of randomly initialized parameters. To fur-
ther leverage our unsupervised pretraining, we use
the BERT embeddings of the text description of
each ICD code to initialize the weights of the cor-
responding label in the output layer. We take the
mean of the BERT embeddings of each token in
the description. We find this greatly increases the
stability of the optimization procedure as well de-
creases convergence time of the prediction model.

3.4 Baseline Models
3.4.1 Logistic Regression
A logistic regression model is trained with bag-of-
words features. We evaluated L1 regularization
with different penalty coefficients but did not find
improvement in performance. We report the vanilla
logistic regression model performance in table 2.

3.4.2 Multi-Head Attention
We then trained a bi-LSTM model with a multi-
head attention layer as suggested in (Vaswani et al.,
2017). Assume H = {h0, h1, ..., hn} is the hidden
layer corresponding to input tokens 0 through n
from the bi-LSTM, concatenating the forward and
backward nodes. The prediction of each label is
calculated as below:

aik =
exp(〈hi,qk〉)∑n
i=0 exp(〈hi,qk〉)

(5)

ck = (
n∑

i=0

aikhi)/
√
dh (6)
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c =concatenate[c0, c1, ..., cK] (7)

y = σ(Wac) (8)

k = 0, ...,K is the number of heads and dh is
the size of the bi-LSTM hidden layer. qk is the
query vector corresponding to the kth head and is
learnable. Wa ∈ RM×Kdh is the learnable output
layer weight matrix. Both the query vectors and
the weight matrices are initialized randomly.

3.4.3 Other EHR BERT Models
We compare the BERT model pretrained on EHR
data (EHR BERT) with other models released
for the purpose of EHR applications, including
BioBERT (Lee et al., 2020) and clinical BERT
(Alsentzer et al., 2019). We compare to the
BioBERT v1.1 (+ PubMed 1M) version of the
BioBERT model and Bio+Discharge Summary
BERT for Clinical BERT. We use the standard
multi-label output layer described in section 3.3.1.
We choose to compare only with Alsentzer et
al. (2019) and not Huang et al. (2019) as they
are trained on very similar datasets derived from
MIMIC-III using the same BERT initialization.

4 Experiments

4.1 Data

We use medical notes and diagnoses in ICD-10
codes from the NYU Langone Hospital EHR sys-
tem. These notes are de-identified via the Phys-
ionet De-ID tool (Neamatullah et al., 2008), with
all personal identifiable information removed such
as names, phone numbers, and addresses of both
the patients and the clinicians. We exclude notes
that are erroneously generated, student generated,
belongs to miscellaneous category, as well as notes
that contain fewer than 50 characters as these are
often not diagnosis related. The resulting data set
contains a total of 7.5 million notes correspond-
ing to visits from about 1 million patients, with a
median note length of around 150 words and 90th
percentile of around 800 tokens. Overall about 50
different types of notes presents in the data. Over
50% of the notes are progress notes, following by
telephone encounter (10%) and patient instructions
(5%).

This data is then randomly split by patient into
70/10/20 train, dev, test sets. For the models with
a maximum length of 512 tokens, notes exceeding

the length are split into segments of every 512 to-
kens until the remaining segment is shorter than the
maximum length. Shorter notes, including the ones
generated from splitting, are padded to a length of
512. Similar approach applies to models with a
maximum length of 1,024 tokens. For notes that
are split, the highest predicted probability per ICD
code across segments is used as the note level pre-
diction.

We restrict the ICD codes for prediction to all
codes that appear more than 1,000 times in the
training set, resulting in 2,292 codes in total. In
the training set, each note contains 4.46 codes on
average. For each note, besides the ICD codes
assigned to it via encounter diagnosis codes, we
also include ICD codes related to chronic condi-
tions as classified by AHRQ (Friedman et al., 2006;
Chi et al., 2011), that the patient has prior to a en-
counter. Specifically, if we observe two instances
of a chronic ICD code in the same patient’s records,
the same code would be imputed in all records
since the earliest occurrence of that code. Notes
without the in-scope ICD codes are still kept in the
dataset, with all 2,292 classes labeled as 0.

4.2 BERT-Based Models

4.2.1 BERT Pretraining
We trained two different BERT architectures from
scratch on EHR notes in the training set. Config-
urations of both models are provided in Table 1.
We use the most frequent 20K tokens derived from
the training set for both models. Our vocabulary
is select based on the most frequent tokens in the
training set. In addition, we extended the max po-
sitional embedding to 1024 to better model long
term dependencies across long notes. More details
given in sections 4.

Models are trained for 2 complete epochs with
a batch size of 32 across 4 Titan 1080 GPUs and
Nvidia Apex mixed precision training for a total
training time of 3 weeks. We found that after 2
epochs the training loss becomes relatively flat. We
utilize the popular HuggingFace2 implementation
of BERT. Training and development data splits are
the same as the ICD prediction model. Number
of epochs is selected based on dev set loss. We
compare the pretrained models with those released
in the original BERT paper (Devlin et al., 2019)
in the downstream classification task, including
the off-the-shelf BERT base uncased model and

2https://github.com/huggingface/pytorch-transformers
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EHR BERT models
small big

hidden size 512 768
# layers 8 12
# attention heads 8 12
intermediate size 2048 3072
activation function gelu gelu
hidden dropout .1 .1
attention dropout .1 .1
max len 1024 1024

Table 1: configurations for from scratch BERT mod-
els. Big configuration matches the base BERT configu-
ration from original paper but has larger max positional
embedding

that after fine-tuning on EHR data. The original
BERT models only support documents up to 512
tokens in length. In order to extend these to the
same 1024 length as other models, we randomly
initialize positional embeddings for positions 512
to 1024.

4.2.2 BERT ICD Classification Models
Models are trained with Adam optimizer (Kingma
and Ba, 2015) with weight decay and a learning
rate of 2e-5. We use a warm-up proportion of .1
during which the learning rate is increased linearly
from 0 to 2e-5. After which the learning rate de-
cays to 0 linearly throughout training. We train
models for 3 epochs using batch size of 32 across
4 Titan 1080 GPUs and Nvidia mixed precision
training. Learning rate and number of epochs are
tuned based on AUC of the dev set. All of the ICD
classification models optimizes the Binary Cross
Entropy loss with equal weights across classes.

4.3 Baseline Models

All baseline models use a max input length of 512
tokens. The multi-headed attention model utilizes
pretrained input embeddings with the StarSpace
(Wu et al., 2018b) bag-of-word approach. We use
the notes in training set as input sequence and their
corresponding ICD codes as labels and train em-
beddings of 300 dimensions. Input embeddings are
fixed in prediction task because of memory limi-
tation. Additionally, a dropout layer is applied to
the embeddings with rate of 0.1. We use a 1-layer
bi-LSTM encoder of 512 hidden nodes with GRU,
and 200 attention heads.

The multi-headed attention model is trained with
Adam optimizer with weight decay and an initial

learning rate of 1e-5. We use a batch size of 8 and
trained it up to 2 epochs across 4 Titan 1080 GPUs.
Hyperparameters including learning rate, drop out
rate and number of epochs are tuned based on AUC
of the dev set.

4.4 Results

For each model we report macro AUC and micro
AUC. We found that all BERT based models far
outperform non-transformer based models. In ad-
dition, the big EHR BERT trained from scratch
outperforms off-the-shelf BERT models. We be-
lieve this speaks to the benefit of pretraining us-
ing a vocabulary closer to the prediction task. In
addition we find that adding multi-label attention
outperforms the standard classification approach
given the large number of ICD codes.

We analyze the performance by ICD in figure
2. We achieve very high performance in many
ICD classes: 467 of them have an AUC of 0.98
or higher. On ICDs with a low AUC value, we
notice that the model can have trouble delineating
closely related classes. For example, ICD G44.029-
”Chronic cluster headache, not intractable” has a
rather low AUC of 0.57. On closer analysis, we
find that the model commonly misclassifies this
ICD code with other closely related ones such as
G44.329-”Chronic post-traumatic headache, not
intractable”. In future iterations of the model we
can better adapt our output layer to the hierarchi-
cal nature of the classification problem. Detailed
performance of the EHR-BERT+XML model on
the test set for the top 45 frequent ICD codes is
included in Appendix A.

Furthermore, we find that models trained with
max length of 1024 outperform those of 512. EHR
notes tend to be long and this shows the value of
modeling longer sequences for EHR applications.
However, training time for the longer sequence
models is roughly 3.5 times that of the shorter ones.
In order to scale training and inference to longer
patient histories with multiple notes it is necessary
to develop faster and more memory efficient trans-
former models.

In addition, while the BERT based models do
better than standard models on average, we see
very pronounced gains in lower frequency ICDs.
Table 3 compares the macro AUC for all ICD codes
with fewer than 2000 training examples (757 ICDs
in total) of the best BERT and non-BERT models.
Note that the best non-BERT model does worse on
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Figure 2: distributions of AUCs across ICD 10 codes

Prediction Visualization : Right Hip Fracture
physical therapy progress note ... right hip
pain mnn . nnn nnn . nn treatment diagnosis
: r hip pain , s / p labral repair with [UNK]
primary insurance : [UNK] group subscriber
number : @ subnum @ secondary insurance :
n / a primary language spoken : english [UNK]
nn [UNK] interpreter present : no any relevant
changes to medical status : no recent falls : no
precautions : see surgical protocol in media file
, currently phase ii

Figure 3: visualization of XML-BERT attention layer.
Darker colors correspond to higher attention weights.

this set compare to its performance on all ICDs,
while the best BERT model performs better on av-
erage on the lower frequency ones. This further
illustrates the value of the unsupervised pretrain-
ing and provides a good motivation to expand our
analysis to even less frequent ICD codes in future
works.

4.5 Visualization

For many machine learning applications, it is im-
portant to enable users to understand how the model
comes to the predictions, especially in healthcare
industry where decisions have serious implications
for patients. To understand the model predictions,
we can visualize the attention weights of the XML
output layer of each of the classes. In figure 3
we show attention weights corresponding to a note
coded with right hip fracture. The model success-
fully identify key terms such as ’right hip pain’,
’hip pain’ and ’s/p labral’.

In addition, we examine the attention weights
between tokens in the BERT encoder. In figure 4
we show the attention scores between each word
of the note of the final layer of the BERT encoder
of a note with 735 tokens. We observe that, while
probability mass tends to concentrate between se-

quentially close tokens, a significant amount of
probability mass also comes from far away tokens.
In addition we see specialisation of different heads.
For example, head 0 (row 1, column 1 in figure 4)
tends to capture long range contextual information
such as the note type and encounter type which
are typically listed at the beginning of each note;
while head 5 (row 1, column 1 in figure 4) tends to
model local information. We believe the increase
in performance can partially be attributed to the
ability to model long range contextual information.

5 Conclusion

Automatic ICD coding from medical notes has high
value to clinicians, healthcare providers as well
as researchers. Not only does auto-coding have
high potential in cost- and time-saving, but more
accurate and consistent ICD coding is necessary to
facilitate patient care and improve all downstream
healthcare EHR based research.

We demonstrate the effectiveness of models
leveraging the most recent developments in NLP
with BERT as well as multi-label attention on ICD
classification. Our model achieves state of the art
results using a large set of real world EHR data
across many ICD classes. In addition we find that
domain specific pretrained BERT model outper-
forms BERT models trained on general purpose cor-
pora. We note that the off-the-shelf WordPiece tok-
enizer can naively split domain-specific yet OOV
words and resulting in a BERT model focusing
on word completion, while using a specific EHR
vocabulary seem to help overcome the problem.
Lastly, we also observe the benefit of modeling
longer sequences.

On the other hand, the current work has several
limitations. Most importantly, while we have found
that modeling longer term dependencies improves
performance, it comes at a large cost of training
time. Doubling the input length roughly triples
the training and inference time. For many applica-
tions this increase in computational demand may
offset the gain in model performance. This mo-
tivates further exploration on efficient variants of
the self-attention modules to accommodate longer
input length in similar tasks. Additionally, adding
XML to the BERT architecture generates signifi-
cant yet rather marginal performance improvement
(Micro-AUC improvement of 0.002 for EHR BERT
Big model with maximum input length of 1024).
This also increases the computation complexity
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AUC
Micro Macro

Logistic Reg (max length 512) 0.932 0.815
Multi-head Attn (max length 512) 0.941 0.859

BERT (max length 512) 0.954 0.895
BERT (max length 1024) 0.955 0.898

Finetuned BERT (max length 1024) 0.958 0.903
BioBERT 0.960 0.908

clinical BERT 0.961 0.904
EHR BERT Small (max length 512) 0.959 0.897

EHR BERT Small (max length 1024) 0.965 0.918
EHR BERT Small + XML (max length 1024) 0.968 0.924

EHR BERT Big (max length 512) 0.964 0.917
EHR BERT Big (max length 1024) 0.968 0.925

EHR BERT Big + XML (max length 512) 0.967 0.919
EHR BERT Big + XML (max length 1024) 0.970 0.927

Table 2: Test set model performance. The largest confidence interval calculated was only 4e-5 so all results shown
are statistically significant.

Figure 4: The attention weights of each head for each head in the last layer of the BERT encoder. Brighter color
denotes higher attention score. We see some heads specialize in modeling local information(row 2, column 2)
while some specialize in passing global information (row 1, column 1). Suggest print in color.
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Macro AUC - Low Frequency ICDS
Multi-head Att 0.825
Big EHR BERT + XML 0.933

Table 3: Macro AUC of the best non transformer model
and the best BERT model compared using only ICDs
with fewer than 2000 examples. Note that the non pre-
trained model performs worse on this section of the
dataset while the BERT model performs just as good.

and more efficient alternatives, such as hierarchical
based methods as evaluated in Azam et al. (2019),
are promising candidates.

For future works, we plan on expanding our
model to more classes with fewer records as we
observe the model performing as well on low fre-
quency ICD codes as on the high frequency ones.
To address limitations discussed above, we plan on
adapting our model to utilize the hierarchical nature
of the ICD codes as well as developing memory
efficient models that can support inference across
long sequences.
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Rémi Flicoteaux. 2018. Ecstra-aphp@ clef
ehealth2018-task 1: Icd10 code extraction from
death certificates. In CLEF (Working Notes).

Bernard Friedman, H Joanna Jiang, Anne Elixhauser,
and Andrew Segal. 2006. Hospital inpatient costs
for adults with multiple chronic conditions. Medical
Care Research and Review, 63(3):327–346.

Beacon Nation Learning Guide. 2013. Capturing high
quality electronic health records data to support per-
formance improvement. Implementation Objective,
2:16.

Kexin Huang, Jaan Altosaar, and Rajesh Ran-
ganath. 2019. Clinicalbert: Modeling clinical
notes and predicting hospital readmission. CoRR,
abs/1904.05342.

Alistair EW Johnson, Tom J Pollard, Lu Shen,
H Lehman Li-wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits,
Leo Anthony Celi, and Roger G Mark. 2016. Mimic-
iii, a freely accessible critical care database. Scien-
tific data, 3:160035.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
(Poster).

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
http://arxiv.org/abs/1904.05342
http://arxiv.org/abs/1904.05342
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


33

Zulfat Miftahutdinov and Elena Tutubalina. 2018.
Deep learning for icd coding: Looking for medi-
cal concepts in clinical documents in english and in
french. In International Conference of the Cross-
Language Evaluation Forum for European Lan-
guages, pages 203–215. Springer.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Ishna Neamatullah, Margaret M Douglass, H Lehman
Li-wei, Andrew Reisner, Mauricio Villarroel,
William J Long, Peter Szolovits, George B Moody,
Roger G Mark, and Gari D Clifford. 2008. Auto-
mated de-identification of free-text medical records.
BMC medical informatics and decision making,
8(1):32.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Mario Sänger, Leon Weber, Madeleine Kittner, and Ulf
Leser. 2019. Classifying german animal experiment
summaries with multi-lingual bert at clef ehealth
2019 task 1. In CLEF (Working Notes).

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507–513.

Junyuan Shang, Tengfei Ma, Cao Xiao, and Jimeng
Sun. 2019. Pre-training of graph augmented trans-
formers for medication recommendation. In Pro-
ceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5953–5959. AAAI
Press.

Haoran Shi, Pengtao Xie, Zhiting Hu, Ming Zhang,
and Eric P Xing. 2017. Towards automated
icd coding using deep learning. arXiv preprint
arXiv:1711.04075.

Yuqi Si, Jingqi Wang, Hua Xu, and Kirk Roberts. 2019.
Enhancing clinical concept extraction with contex-
tual embeddings. Journal of the American Medical
Informatics Association, 26(11):1297–1304.

Ergin Soysal, Jingqi Wang, Min Jiang, Yonghui
Wu, Serguei Pakhomov, Hongfang Liu, and Hua

Xu. 2018. Clamp–a toolkit for efficiently build-
ing customized clinical natural language processing
pipelines. Journal of the American Medical Infor-
matics Association, 25(3):331–336.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sarah Wiegreffe, Edward Choi, Sherry Yan, Jimeng
Sun, and Jacob Eisenstein. 2019. Clinical concept
extraction for document-level coding. In Proceed-
ings of the 18th BioNLP Workshop and Shared Task,
pages 261–272.

Honghan Wu, Giulia Toti, Katherine I Morley, Zina M
Ibrahim, Amos Folarin, Richard Jackson, Ismail
Kartoglu, Asha Agrawal, Clive Stringer, Darren
Gale, et al. 2018a. Semehr: A general-purpose se-
mantic search system to surface semantic data from
clinical notes for tailored care, trial recruitment, and
clinical research. Journal of the American Medical
Informatics Association, 25(5):530–537.

Ledell Yu Wu, Adam Fisch, Sumit Chopra, Keith
Adams, Antoine Bordes, and Jason Weston. 2018b.
Starspace: Embed all the things! In AAAI, pages
5569–5577.

Pengtao Xie and Eric Xing. 2018. A neural architec-
ture for automated icd coding. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1066–1076.

Keyang Xu, Mike Lam, Jingzhi Pang, Xin Gao, Char-
lotte Band, Piyush Mathur, Frank Papay, Ashish K
Khanna, Jacek B Cywinski, Kamal Maheshwari,
et al. 2019. Multimodal machine learning for auto-
mated icd coding. In Machine Learning for Health-
care Conference, pages 197–215. PMLR.

Ronghui You, Suyang Dai, Zihan Zhang, Hiroshi
Mamitsuka, and Shanfeng Zhu. 2018. Attentionxml:
Extreme multi-label text classification with multi-
label attention based recurrent neural networks.
arXiv preprint arXiv:1811.01727.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16998


34

A ICD Performance for frequent ICDs

ICD-10 Count AUC ICD-10 Count AUC ICD-10 Count AUC
I10 391298 0.877 M81.0 46528 0.868 I73.9 24992 0.898
E78.5 291430 0.863 Z00.00 43136 0.988 F41.1 26032 0.842
I25.10 131280 0.904 I48.0 40032 0.923 E11.65 22912 0.882
E11.9 132150 0.874 Z51.11 42336 0.970 F17.200 21408 0.849
K21.9 133422 0.816 G47.33 38592 0.846 Z23 23296 0.977
E55.9 114322 0.839 N40.0 34688 0.896 M17.0 19648 0.885
E03.9 91072 0.840 J45.909 34496 0.835 M54.5 21296 0.973
E66.9 80454 0.838 E66.01 30080 0.877 C50.912 21984 0.944
E78.00 72740 0.862 N18.3 28784 0.888 M06.9 18160 0.913
F41.9 71836 0.835 I48.2 26592 0.936 C50.911 22544 0.945
F32.9 68172 0.824 Z95.0 24592 0.930 C50.919 22880 0.950
I48.91 61056 0.922 G62.9 25632 0.853 R53.83 19616 0.968
G89.29 49600 0.838 M17.9 22992 0.854 I35.0 17536 0.917
J44.9 48224 0.881 E78.2 24096 0.876 Z51.12 20784 0.963
M19.90 47968 0.830 I34.0 21600 0.900 J45.20 18848 0.856

Table 4: Individual ICD Performance for most frequent ICDs, Big EHR BERT + XML. Count is the total positive
examples we have observed in our test set.


