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Abstract

Our senses individually work in a coordi-
nated fashion to express our emotional inten-
tions. In this work, we experiment with mod-
eling modality-specific sensory signals to at-
tend to our latent multimodal emotional in-
tentions and vice versa expressed via low-
rank multimodal fusion and multimodal trans-
formers. The low-rank factorization of multi-
modal fusion amongst the modalities helps rep-
resent approximate multiplicative latent signal
interactions. Motivated by the work of (Tsai
et al., 2019) and (Liu et al., 2018), we present
our transformer-based cross-fusion architec-
ture without any over-parameterization of the
model. The low-rank fusion helps repre-
sent the latent signal interactions while the
modality-specific attention helps focus on rel-
evant parts of the signal. We present two meth-
ods for the Multimodal Sentiment and Emo-
tion Recognition results on CMU-MOSEI,
CMU-MOSI, and IEMOCAP datasets and
show that our models have lesser parameters,
train faster and perform comparably to many
larger fusion-based architectures.

1 Introduction

The field of Emotion Understanding involves com-
putational study of subjective elements such as sen-
timents, opinions, attitudes, and emotions towards
other objects or persons. Subjectivity is an inher-
ent part of emotion understanding that comes from
the contextual nature of the natural phenomenon.
Defining the metrics and disentangling the objec-
tive assessment of the metrics from the subjective
signal makes the field quite challenging and excit-
ing. Sentiments and Emotions are attached to the
language, audio and visual modalities at different
rates of expression and granularity and are use-
ful in deriving social, psychological and behavioral
insights about various entities such as movies, prod-
ucts, people or organizations. Emotions are defined
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as brief organically synchronized evaluations of
major events whereas sentiments are considered as
more enduring beliefs and dispositions towards ob-
jects or persons (Scherer, 1984). The field of Emo-
tion Understanding has rich literature with many in-
teresting models of understanding (Plutchik, 2001;
Ekman, 2009; Posner et al., 2005). Recent studies
on tensor-based multimodal fusion explore regu-
larizing tensor representations (Liang et al., 2019)
and polynomial tensor pooling (Hou et al., 2019).
In this work, we combine ideas from (Tsai et al.,
2019) and (Liu et al., 2018) and explore the use
of Transformer (Vaswani et al., 2017) based mod-
els for both aligned and unaligned signals with-
out extensive over-parameterization of the models
by using multiple modality-specific transformers.
We utilize Low Rank Matrix Factorization (LMF)
based fusion method for representing multimodal
fusion of the modality-specific information. Our
main contributions can be summarized as follows:

e Recently proposed Multimodal Transformer
(MulT) architecture (Tsai et al., 2019) uses at
least 9 Transformer based models for cross-
modal representation of language, audio and
visual modalities (3 parallel modality-specific
standard Transformers with self-attention and
6 parallel bimodal Transformers with cross-
modal attention). These models utilize several
parallel unimodal and bimodal transformers
and do not capture the full trimodal signal
interplay in any single transformer model in
the architecture. In contrast, our method uses
fewer Transformer based models and fewer
parallel models for the same multimodal rep-
resentation.

We look at two methods for leveraging the
multimodal fusion into the transformer ar-
chitecture. In one method (LMF-MulT), the
fused multimodal signal is reinforced using
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Figure 1: Modality-specific Fused Attention

attention from the 3 modalities. In the other
method (Fusion-Based-CM-Attn), the individ-
ual modalities are reinforced in parallel via
the fused signal.

The ability to use unaligned sequences for mod-
eling is advantageous since we rely on learning
based methods instead of using methods that force
the signal synchronization (requiring extra timing
information) to mimic the coordinated nature of
human multimodal language expression. The LMF
method aims to capture all unimodal, bimodal and
trimodal interactions amongst the modalities via
approximate Tensor Fusion method.

We develop and test our approaches on the CMU-
MOSI, CMU-MOSEI, and IEMOCAP datasets
as reported in (Tsai et al., 2019). CMU Multi-
modal Opinion Sentiment and Emotion Intensity
(CMU-MOSEI) (Zadeh et al., 2018) is a large
dataset of multimodal sentiment analysis and emo-
tion recognition on YouTube video segments. The
dataset contains more than 23,500 sentence utter-
ance videos from more than 1000 online YouTube
speakers. The dataset has several interesting prop-
erties such as being gender balanced, containing
various topics and monologue videos from peo-
ple with different personality traits. The videos
are manually transcribed and properly punctuated.
Since the dataset comprises of natural audio-visual
opinionated expressions of the speakers, it provides
an excellent test-bed for research in emotion and
sentiment understanding. The videos are cut into
continuous segments and the segments are anno-
tated with 7 point scale sentiment labels and 4
point scale emotion categories corresponding to the
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Ekman’s 6 basic emotion classes (Ekman, 2002).
The opinionated expressions in the segments con-
tain visual cues, audio variations in signal as well
as textual expressions showing various subtle and
non-obvious interactions across the modalities for
both sentiment and emotion classification. CMU-
MOSI (Zadeh et al., 2016) is a smaller dataset
(2199 clips) of YouTube videos with sentiment an-
notations. IEMOCAP (Busso et al., 2008) dataset
consists of 10K videos with sentiment and emotion
labels. We use the same setup as (Tsai et al., 2019)
with 4 emotions (happy, sad, angry, neutral).

In Fig 1, we illustrate our ideas by showing the
fused signal representation attending to different
parts of the unimodal sequences. There’s no need
to align the signals since the attention computation
to different parts of the modalities acts as proxy
to the multimodal sequence alignment. The fused
signal is computed via Low Rank Matrix Factor-
ization (LMF). The other model we propose uses a
swapped configuration where the individual modal-
ities attend to the fused signal in parallel.

2 Model Description

In this section, we describe our models and meth-
ods for Low Rank Fusion of the modalities for use
with Multimodal Transformers with cross-modal
attention.

2.1 Low Rank Fusion

LMF is a Tensor Fusion method that models the uni-
modal, bimodal and trimodal interactions without
using an expensive 3-fold Cartesian product (Zadeh
et al., 2017) from modality-specific embeddings.
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Figure 2: Low Rank Matrix Factorization

Instead, the method leverages unimodal features
and weights directly to approximate the full multi-
tensor outer product operation. This low-rank ma-
trix factorization operation easily extends to prob-
lems where the interaction space (feature space or
number of modalities) is very large. We utilize the
method as described in (Liu et al., 2018). Simi-
lar to the prior work, we compress the time-series
information of the individual modalities using an
LSTM (Hochreiter and Schmidhuber, 1997) and
extract the hidden state context vector for modality-
specific fusion. We depict the LMF method in Fig 2
similar to the illustration in (Liu et al., 2018). This
shows how the unimodal tensor sequences are ap-
pended with 1s before taking the outer product to
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be equivalent to the tensor representation that cap-
tures the unimodal and multimodal interaction in-
formation explicitly (top right of Fig 2). As shown,
the compressed representation (h) is computed us-
ing batch matrix multiplications of the low-rank
modality-specific factors and the appended modal-
ity representations. All the low-rank products are
further multiplied together to get the fused vector.

2.2 Multimodal Transformer

We build up on the Transformers (Vaswani et al.,
2017) based sequence encoding and utilize the
ideas from (Tsai et al., 2019) for multiple cross-
modal attention blocks followed by self-attention
for encoding multimodal sequences for classifi-
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31

Tuxd
X, e RTLx4L

Tyxd
Xy e RTv>dv

Taxd,
X, € RTaxda

Figure 4: Low Rank Fusion Transformer



| Metric H Acc?  Acch  FI® MAE' Corr® ‘

[ (Aligned) CMU-MOSI Sentiment ]
LF-LSTM (pub) 35.3 76.8 767 1.015 0.625
MulT (Tsai et al., 2019) (pub) 40.0 830 828 0.871 0.698
MulT (Tsai et al., 2019) (our run) 331 785 784 0991 0.676
Fusion-Based-CM-Attn-MulT (ours) 32.9 770 769 1.017 0.636
LMF-MulT (ours) 324 779 779 1.016 0.647

[ (Unaligned) CMU-MOSI Sentiment ]
LF-LSTM (pub) 337 776 778 0988  0.624
MulT (Tsai et al., 2019) (pub) 39.1 81.1 81.0 0.889 0.686
MulT (Tsai et al., 2019) (our run) 34.3 80.3 804 1.008 0.645
Fusion-Based-CM-Attn-MulT (ours) 34.4 76.8 76.8 1.003 0.640
LMF-MulT (ours) 340 785 785 0957 0.681

Table 1: Performance Results for Multimodal Sentiment Analysis on CMU-MOSI dataset with aligned and un-

aligned multimodal sequences.

l Metric H Acc?  Acch F1I® MAE' Corr® ‘

[ (Aligned) CMU-MOSEI Sentiment ]
LF-LSTM (pub) 48.8 80.6 80.6 0.619 0.659
MulT (Tsai et al., 2019) (pub) 51.8 82.5 823 0.580 0.703
MulT (Tsai et al., 2019) (our run) 49.3 80.5 81.1 0.625 0.663
Fusion-Based-CM-Attn-MulT (ours) 49.6 799 80.7 0.616 0.673
LMF-MuIT (ours) 50.2 803 803 0.616 0.662

[ (Unaligned) CMU-MOSEI Sentiment ]
LF-LSTM (pub) 488 775 782 0.624 0.656
MulT (Tsai et al., 2019) (pub) 50.7 81.6 81.6 0.591 0.694
MulT (Tsai et al., 2019) (our run) 504 80.7 80.6 0.617 0.677
Fusion-Based-CM-Attn-MulT (ours) 49.3 794 792 0.613 0.674
LME-MulT (ours) 493 80.8 813 0.620 0.668

Table 2: Performance Results for Multimodal Sentiment Analysis on larger-scale CMU-MOSEI dataset with

aligned and unaligned multimodal sequences.

cation. While the earlier work focuses on latent
adaptation of one modality to another, we focus on
adaptation of the latent multimodal signal itself us-
ing single-head cross-modal attention to individual
modalities. This helps us reduce the excessive pa-
rameterization of the models by using all combina-
tions of modality to modality cross-modal attention
for each modality. Instead, we only utilize a linear
number of cross-modal attention for each modality
and the fused signal representation. We add Tempo-
ral Convolutions after the LMF operation to ensure
that the input sequences have a sufficient awareness
of the neighboring elements. We show the overall
architecture of our two proposed models in Fig 3
and Fig 4. In Fig 3, we show the fused multimodal
signal representation after a temporal convolution
to enrich the individual modalities via cross-modal
transformer attention. In Fig 4, we show the archi-
tecture with the least number of Transformer layers
where the individual modalities attend to the fused
convoluted multimodal signal.
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3 Experiments

We present our early experiments to evaluate the
performance of proposed models on the standard
multimodal datasets used by (Tsai et al., 2019).
We run our models on CMU-MOSI, CMU-MOSEI,
and IEMOCAP datasets and present the results for
the proposed LMF-MulT and Fusion-Based-CM-
Attn-MulT models. Late Fusion (LF) LSTM is
a common baseline for all datasets with reported
results (pub) together with MulT in (Tsai et al.,
2019). We include the results we obtain (our run)
for the MulT model for a direct comparison?. Ta-
ble 1, Table 2, and Table 3 show the performance of
various models on the sentiment analysis and emo-
tion classification datasets. We do not observe any
trend suggesting that our methods can achieve bet-
ter accuracies or F1-scores than the original MulT
method (Tsai et al., 2019). However, we do note

"We have built this work up on the code-base released
for MulT (Tsai et al., 2019) at https://github.com/
yaohungt/Multimodal-Transformer

’In this work, we have not focused on the further hyper-
parameter tuning of our models.


https://github.com/yaohungt/Multimodal-Transformer
https://github.com/yaohungt/Multimodal-Transformer

Emotion Happy Sad Angry Neutral

Metric Acc"  F1"™  Acc® F1*  Acc® F1"  Acc®  FI”

[ (Aligned) IEMOCAP Emotions ]
LF-LSTM (pub) 85.1 863 789 81.7 847 83.0 67.1 67.6
MulT (Tsai et al., 2019) (pub) 90.7 886 867 860 874 870 724 70.7
MulT (Tsai et al., 2019) (our run) 864 829 823 824 853 858 712 700
Fusion-Based-CM-Attn-MulT (ours) 85.6 837 836 837 846 850 704 699
LMF-MulT (ours) 853 841 841 834 857 862 712 708

[ (Unaligned) IEMOCAP Emotions ]
LF-LSTM (pub) 725 718 729 704 686 679 596 56.2
MulT (Tsai et al., 2019) (pub) 84.8 819 777 741 739 702 625 59.7
MulT (Tsai et al., 2019) (our run) 856 790 794 703 758 654 592 440
Fusion-Based-CM-Attn-MulT (ours) 85.6 790 794 703 758 654 593 442
LMF-MulT (ours) 856 790 794 703 758 654 592 440

Table 3: Performance Results for Multimodal Emotion Recognition on IEMOCAP dataset with aligned and un-

aligned multimodal sequences.

Dataset CMU-MOSI CMU-MOSEI IEMOCAP
Model Aligned | Unaligned | Aligned | Unaligned | Aligned | Unaligned
MulT (Tsai et al., 2019) 18.87 19.25 191.40 216.32 36.20 37.93
Fusion-Based-CM-Attn (ours) 14.53 15.80 140.95 175.68 26.10 29.16
LME-MulT (ours) 11.01 12.03 106.15 137.35 20.57 23.53

Table 4: Average Time/Epoch (sec)

| Dataset [ CMU-MOSI | CMU-MOSEI | IEMOCAP |
MulT (Tsai et al., 2019) 1071211 1073731 1074998
Fusion-Based-CM-Attn (ours) || 512121 531441 532078
LMF-MulT (ours) 836121 855441 856078

Table 5: Number of Model Parameters

that on some occasions, our methods can achieve
higher results than the MulT model, in both aligned
(see LMF-MulT results for IEMOCAP in Table 3)
and unaligned (see LMF-MulT results for CMU-
MOSEI in Table 2) case. We plan to do an ex-
haustive grid search over the hyper-parameters to
understand if our methods can learn to classify the
multimodal signal better than the original competi-
tive method. Although the results are comparable,
below are the advantages of using our methods:

e Our LMF-MulT model does not use multiple
parallel self-attention transformers for the dif-
ferent modalities and it uses least number of
transformers compared to the other two mod-
els. Given the same training infrastructure and
resources, we observe a consistent speedup in
training with this method. See Table 4 for
average time per epoch in seconds measured
with fixed batch sizes for all three models.

As summarized in Table 5, we observe that
our models use lesser number of trainable pa-
rameters compared to the MulT model, and
yet achieve similar performance.
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4 Conclusion

In this paper, we present our early investigations
towards utilizing Low Rank representations of the
multimodal sequences for usage in multimodal
transformers with cross-modal attention to the
fused signal or the modalities. Our methods
build up on the (Tsai et al., 2019) work and apply
transformers to fused multimodal signal that aim
to capture all inter-modal signals via the Low
Rank Matrix Factorization (Liu et al., 2018). This
method is applicable to both aligned and unaligned
sequences. Our methods train faster and use
fewer parameters to learn classifiers with similar
SOTA performance. We are exploring methods to
compress the temporal sequences without using
the hidden state context vectors from LSTMs that
lose the temporal information. We recover the
temporal information with a Convolution layer.
We believe these models can be deployed in low
resource settings with further optimizations. We
are also interested in using richer features for
the audio, text, and the vision pipeline for other
use-cases where we can utilize more resources.
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