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Abstract

Virtual adversarial training (VAT) is a power-
ful technique to improve model robustness in
both supervised and semi-supervised settings.
It is effective and can be easily adopted on
lots of image classification and text classifica-
tion tasks. However, its benefits to sequence
labeling tasks such as named entity recogni-
tion (NER) have not been shown as signifi-
cant, mostly, because the previous approach
can not combine VAT with the conditional ran-
dom field (CRF). CRF can significantly boost
accuracy for sequence models by putting con-
straints on label transitions, which makes it
an essential component in most state-of-the-
art sequence labeling model architectures. In
this paper, we propose SeqVAT, a method
which naturally applies VAT to sequence label-
ing models with CRF. Empirical studies show
that SeqVAT not only significantly improves
the sequence labeling performance over base-
lines under supervised settings, but also outper-
forms state-of-the-art approaches under semi-
supervised settings.

1 Introduction

While having achieved great success on various
computer vision and natural language processing
tasks, deep neural networks, even state-of-the-art
models, are usually vulnerable to tiny input pertur-
bations (Szegedy et al., 2014; Goodfellow et al.,
2015). To improve the model robustness against
perturbations, Goodfellow et al. (2015) proposed
to train neural networks on both original training
examples and adversarial examples (examples gen-
erated by adding small but worst-case perturbations
to the original examples). This approach, named
adversarial training (AT), has been reported to be
highly effective on image classification (Goodfel-
low et al., 2015), text classification (Miyato et al.,
2017), as well as sequence labeling (Yasunaga et al.,
2018).

However, AT is limited to a supervised scenario,

which uses the labels to compute adversarial losses.
To make use of unlabeled data, virtual adversar-
ial training (VAT) was proposed to extend AT to
semi-supervised settings (Miyato et al., 2019). Un-
like AT which treats adversarial examples as new
training instances that have the same labels as orig-
inal examples, VAT minimizes the KL divergence
between estimated label distribution of original ex-
amples and that of adversarial examples. In this
manner, both labeled and unlabeled data can be
used in training to improve accuracy and robust-
ness. As a semi-supervised learning algorithm,
VAT was reported to be effective on both image
(Goodfellow et al., 2015; Miyato et al., 2019) and
text classifications (Miyato et al., 2017). Moreover,
a recent study (Oliver et al., 2018) conducted com-
prehensive comparisons on various popular semi-
supervised learning algorithms. VAT turned out to
be the most effective one.

Despite its success in classification tasks, VAT
has not shown similar effectiveness in sequence la-
beling tasks. In the conventional classification task,
the model learns a mapping between a sentence
(sequence of tokens) and a label. Nevertheless, in
sequence labeling task, the target function becomes
a mapping from a sequence of tokens to a sequence
of labels. To apply VAT on sequence labeling,
Clark et al. (2018) proposed to use a softmax layer
on the top of token representations to obtain label
probability distributions for each token. In this fash-
ion, VAT could take KL divergence between tokens
at the same position of the original sequence and
the adversarial sequence as the adversarial losses.
This approach shows marginal improvements over
baseline models on several benchmarks, but fails
to achieve comparable performance as other state-
of-the-art models (Clark et al., 2018; Akbik et al.,
2018; Peters et al., 2018; Devlin et al., 2019).

Although the approach above applies VAT on
the entire sequence, it locally normalizes the label
probability per token and assumes all transitions
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between labels have equal possibilities. But in se-
quence labeling tasks, label transition probabilities
are not always the same. For example, a song name
is more likely to appear after a singer name, com-
pared to a travel company.

To incorporate label transitions into sequence
models, Lafferty et al. (2001) proposed conditional
random field (CRF). CRF models the probability
distribution of the whole label sequence given the
input sequence, instead of yielding a label proba-
bility distribution for each token. It takes account
of both token features and transition features. Most
state-of-the-art sequence labeling models apply a
CRF on top of token representations as a decoder.
Such neural-CRF models usually outperform mod-
els without CRF (Ma and Hovy, 2016; Akbik et al.,
2018; Peters et al., 2018; Yasunaga et al., 2018).

To apply the conventional VAT on a model with
CRF, one can calculate the KL divergence on the la-
bel distribution of each token between the original
examples and adversarial examples. However, it is
sub-optimal because the transition probabilities are
not taken into account.

To better address these issues, we proposed Se-
qVAT, a variant of VAT that can be used along
with CRF. Our evaluation demonstrates that Seq-
VAT brings significant improvements in supervised
settings, rather than marginal improvements re-
ported from previous VAT-based approaches Clark
et al.. In the semi-supervised settings, SeqVAT
also outperforms many widely used methods such
as self-training (ST) (Yarowsky, 1995) and en-
tropy minimization (EM) (Grandvalet and Ben-
gio, 2004), as well as the state-of-the-art semi-
supervised sequence labeling algorithm, cross-view
training (CVT) (Clark et al., 2018).

2 Related Work

2.1 Sequence Labeling

Sequence labeling is a series of common natural
language processing tasks that predicts a label for
each token within a sequence, rather than a la-
bel for the whole sequence. Such tasks include
named entity recognition, chunking and part-of-
speech (POS) tagging etc. Most state-of-the-art
sequence labeling models are based on a neural-
CRF architecture (Ma and Hovy, 2016; Akbik et al.,
2018; Peters et al., 2018; Yasunaga et al., 2018).
More precisely, the general design is to use bidi-
rectional recurrent neural network (RNN) layers
for encoding and a CRF layer for decoding. In

addition, usually one or more convolutional neural
network (CNN) or RNN layers are applied before
the neural-CRF architecture to encode character-
level information as part of the input. In this paper,
we adapt the neural-CRF architecture by a CNN-
LSTM-CRF model, which consists of one CNN
layer to generate character embeddings, two layers
of bidirectional long short-term memory (LSTM)
as the encoder and a CRF layer as the decoder.

2.2 Semi-Supervised Learning
Semi-supervised learning is an important approach
to improve model performance without enough la-
beled data. It utilizes unlabeled data to get more in-
formation which might be beneficial for supervised
tasks. For semi-supervised learning, two robust
and widely used approaches are self-training (ST)
(Yarowsky, 1995) and entropy minimization (EM)
(Grandvalet and Bengio, 2004). In natural language
processing, ST has been successfully applied to
word sense disambiguation (Yarowsky, 1995) and
parsing (McClosky et al., 2006), and EM also has
successful application in text classification (Sachan
et al., 2019).

Recently, a powerful semi-supervised approach,
cross-view training (CVT), has achieved state-of-
the-art on several semi-supervised language tasks,
including dependency parsing, machine translation
and chunking (Clark et al., 2018). CVT forces
the model to make consistent predictions when
using the full input or partial input. Hence, it does
not require label information and can be used for
semi-supervised learning. In order to validate the
effectiveness of our approach on semi-supervised
sequence labeling, we make fair comparisons to
those three semi-supervised learning methods in
the experiments.

2.3 Virtual Adversarial Training
Adversarial training (Goodfellow et al., 2015) is
a regularization method that enhances model ro-
bustness against input perturbations. It generates
adversarial examples by injecting worst-case per-
turbations bounded by a small norm into the orig-
inal examples, and adds them into training. As a
consequence, model predictions would be consis-
tent regardless of the perturbations. Prior to AT,
several papers investigated various ways of pertur-
bations (Xie et al., 2017). Adversarial training was
demonstrated to be more effective since it intro-
duces the perturbations which leading to the largest
increase on model loss, respective to a constrained



8803

I went to Massachusetts

      Word 
       Embeddings

Character CNN

Input:

Word Char 

Predictions

CRF Layer

Bi-LSTMs

Figure 1: Sequence Labeling Model Architecture.

size (Goodfellow et al., 2015). Goodfellow et al.
(2015) proved the effect of adversarial training in
enhancing model robustness especially towards un-
seen samples for image classification. In addition
to computer vision tasks, adversarial training also
demonstrated its effectiveness on language tasks,
such as text classification, POS tagging, named en-
tity recognition and chunking (Miyato et al., 2017;
Yasunaga et al., 2018).

To extend AT to semi-supervised settings, Miy-
ato et al. (2019) proposed virtual adversarial
training (VAT). “Virtual” means label informa-
tion is not required in this new adversarial train-
ing approach and consequently it could be ap-
plied to both labeled or unlabeled training in-
stances. VAT achieved state-of-the-art performance
for image classification tasks (Miyato et al., 2019),
and proved to be more efficient than traditional
semi-supervised approaches, such as entropy mini-
mization (Grandvalet and Bengio, 2004) and self-
training (Yarowsky, 1995), from a recent study
(Oliver et al., 2018).

However, despite the successful applications on
text classification (Miyato et al., 2017), VAT has
not shown great benefits to semi-supervised se-
quence labeling tasks, due to its incompatibility
with CRF. In this paper, SeqVAT is proposed to
make VAT compatible with CRF, and achieves sig-
nificant improvements in sequence labeling.

3 Method

3.1 Model Architecture

Our baseline model architecture is illustrated in
Fig.1. It adopts the basic architecture for several
state-of-the-art sequence labeling models (Ma and
Hovy, 2016; Peters et al., 2017; Akbik et al., 2018;
Peters et al., 2018), called CNN-LSTM-CRF (CLC)
in this paper. We apply a CNN layer to extract
character information and concatenate its output
with word embeddings as input features. Then,
we feed the input features into LSTM layers, and
decode with a CRF layer.

3.1.1 Word Embeddings

300-dimension randomly initialized word embed-
dings serve as word-level input. However, the
model could learn embeddings with large norm,
which makes the effects of adversarial perturba-
tions with small norm insignificant (Miyato et al.,
2017). To avoid such effect, we normalize the word
embeddings at the beginning of each epoch. De-
note v = {vi|i = 1, 2, ..., n} as the embeddings set,
where n is vocabulary size, a specific embedding
vi is normalized by:

v̂i =
vi − E(v)√

D(v)
(1)

where E(v) =
1

n

n∑
i=1

vi

and D(v) =
1

n

n∑
i=1

(vi − E(v))2

After normalization, word embeddings have zero
mean and unit variance.

3.1.2 Character CNN Layer

Character-level information has proved to help im-
prove the sequence labeling accuracy by captur-
ing morphological features (Ma and Hovy, 2016).
In this paper, 32-dimension embeddings are ran-
domly initialized for each character. To ensure that
adversarial perturbations have significant effects,
character embeddings are also normalized at the
beginning of each epoch in the same way as word
embeddings. Suppose u = {ui|i = 1, 2, ...,m}
where m is the number of unique characters show
up in the dataset, a specific embedding ui is ran-
domly initialized and normalized by:
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ûi =
ui − E(u)√

D(u)
(2)

where E(u) =
1

m

m∑
i=1

ui

and D(u) =
1

m

m∑
i=1

(ui − E(u))2

A CNN layer with 16 unigram, 16 bigram and 32
trigram filters is applied on top of all 32-dimension
embeddings for one word. Hence, each word has
64-dimension character embeddings which are the
output of CNN layer.

3.1.3 LSTM Layer
After concatenating character embeddings and
word embeddings as input, all those features pass
through two bidirectional LSTM layers with 256
neurons per direction to encode information for the
whole sequence.

3.1.4 CRF Layer
To incorporate the probabilities of label transitions,
the outputs of LSTM layers are fed into a linear-
chain CRF decoder (Lafferty et al., 2001). Negative
log-likelihood is computed as the training loss and
Viterbi algorithm (Viterbi, 1967) is used for decod-
ing.

3.2 Adversarial Training
Adversarial training (Goodfellow et al., 2015) is
an effective method to improve model robustness
over input perturbations. AT first generates adver-
sarial examples, which are close to the original
examples but model is not likely to correctly pre-
dict their labels (i.e. leading to most significant
loss increase). Then, the model is trained with
both original examples and adversarial examples.
The loss on adversarial examples are treated as
adversarial loss. In this paper, adversarial perturba-
tions are added to word and character embeddings
respectively. To prevent vanishing effects of adver-
sarial perturbations explained in section 3.1.1 and
3.1.2, embeddings are normalized at the beginning
of each epoch. Denote w and c as normalized word
and character embeddings of the whole input se-
quence, θ is parameter of model, y is a vector of
labels for all tokens in the sequence, and Loss is
the loss (i.e. negative log-likelihood) for the whole
sequence. Given the bounded norms δw and δc re-
spectively, the worst-case perturbations dw and dc

for w and c are:

dw = argmax
ε,||ε||2≤δw

Loss(y;w + ε, c, θ̂) (3)

dc = argmax
τ,||τ ||2≤δc

Loss(y;w, c+ τ, θ̂) (4)

Note that all variables, y, w, c, dw and dc here are
vectors for the whole sequence, since the last layer,
CRF, is modeling the whole label sequence. In
addition, θ̂ is current estimation of θ. The purpose
for using constant value θ̂ instead of θ is to empha-
size that the gradient should not propagate during
generation of adversarial examples.

Hence, the worst-case perturbations dw and dc
against current model can be calculated through
(3) and (4) at each training step, and model can
be trained on examples plus those perturbations to
improve robustness against them. Yet, computing
exact value of those perturbations with maximiza-
tion is intractable for complex DNN models. As
proposed by Goodfellow et al. (2015), first order
approximation is applied to approximate the value
of dw and dc. With this approximation, dw and dc
can be calculated by:

dw =
gw
||gw||2

δw (5)

dc =
gc
||gc||2

δc (6)

where gw = ∇wLoss(y;w, c, θ̂),
and gc = ∇cLoss(y;w, c, θ̂)

Then, the adversarial loss Ladv is formed by:

Ladv = Loss(y;w + dw, c+ dc, θ̂) (7)

3.3 Virtual Adversarial Training
Nevertheless, adversarial training cannot be ap-
plied to unlabeled data since label information is
required to generate adversarial examples and com-
pute adversarial loss. Virtual adversarial training
is proposed (Miyato et al., 2019) to adapt adver-
sarial training to semi-supervised settings. In VAT,
instead of using the regular loss on perturbed ex-
amples as adversarial loss, the discrepancy (KL
divergence) between predictions of original exam-
ples and those of adversarial examples acts as the
adversarial loss. With this modification, label in-
formation is not needed in the computation of ad-
versarial loss.

Indeed, the adversarial loss for VAT is written
as:
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Ladv = KL( Pori || Padv ) (8)

where Pori = P (ŷ;w, c, θ̂),

and Padv = P (ŷ;w + dw, c+ dc, θ̂)

Here, ŷ is to emphasize that the computation of
KL divergence takes current estimation of distribu-
tion over y, so that label information is not required.
Pori and Padv are the estimated probability distribu-
tions of labels on original examples and adversarial
examples respectively. As explained in section 1,
VAT is not compatible with CRF. Hence, Pori and
Padv here stand for sets of label distributions for
tokens, computed by applying a softmax on top of
LSTM output representations. As a consequence,
the function P to estimate probability distributions
of labels here is:

P (ŷ;w, c, θ̂) = CLS(w, c, θ̂) (9)

where CLS means applying softmax on top of
CNN-LSTM encoder.

However, to compute worst-case perturbations
dw and dc, label information y is still needed, as in
equation (3), (4), (5) and (6). To get rid of the label
information, the worst-case perturbations are now
computed based on KL divergence between Pori
and Padv, given the bounded norms δw and δc.

So word perturbation dw is now defined by:

argmax
ε,||ε||2≤δw

KL(P (ŷ;w, c, θ̂)||P (ŷ;w + ε, c, θ̂))

(10)
While character perturbation dc is:

argmax
τ,||τ ||2≤δc

KL(P (ŷ;w, c, θ̂)||P (ŷ;w, c+ τ, θ̂))

(11)
Those two computations are still intractable for

gradient descent. By applying second-order ap-
proximation and a single iteration of power method,
as in (Miyato et al., 2019), the word perturbation
and character perturbation can be estimated with:

dw =
gw
||gw||2

δw (12)

dc =
gc
||gc||2

δc (13)

where

gw = ∇εKL(P (ŷ;w, c, θ̂)||P (ŷ;w + ε, c, θ̂)),

gc = ∇τKL(P (ŷ;w, c, θ̂)||P (ŷ;w, c+ τ, θ̂))

3.4 SeqVAT

Because of its incompatibility with CRF, adapt-
ing VAT to sequence labeling is not yet successful
(Clark et al., 2018). To fully release the power of
VAT to sequence labeling models with CRF, we
propose a CRF-friendly VAT, named SeqVAT.

CRF models the conditional probability of the
whole label sequence given the whole input se-
quence. Consequently, instead of using the label
distribution over individual token, we could use
the probability distribution for the whole label se-
quence, to compute KL divergence. The probability
distribution can be denoted by:

P (ŷ;w, c, θ̂) = CLC(w, c, θ̂) (14)

where ŷ is the whole label sequence, and CLC
indicates the full CLC model.

Nevertheless, given a sequence with t tokens and
l possible labels for each token, the total number
of possible label sequences is lt. Considering the
substantial number of possible label sequences, it
is not possible to compute the full probability distri-
bution over all possible label sequences. To make
the computation of such distribution possible, we
estimate the full distribution by only considering
the probabilities of k most possible label sequences,
with one additional dimension to represent all the
rest label sequences. Thus, the estimation of the
probability distribution is (k + 1) dimensions and
feasible to compute.

To get the most possible label sequences, we
apply a k-best Viterbi decoding (Huang and Chiang,
2005) on the original sequence in each training
step. Denote S = (s1, s2, .., sk) as the k-best label
sequences of current input embeddings w and c,
and pcrf as the function to get probability of a
label sequence. Given the current parameters θ̂,
the probability distribution estimation P ′ can be
written as:

P ′(S;w, c, θ̂) = (p′1, p
′
2, .., p

′
k, 1−

k∑
i=1

p′i),(15)

where p′i = pcrf (si;w, c, θ̂), i ∈ [1, k]

Then, Pori and Padv can be denoted as:

Pori = P ′(S;w, c, θ̂) (16)

Padv = P ′(S;w + dw, c+ dc, θ̂) (17)
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Here, dw and dc can be computed using the same
approximation as VAT by:

dw =
gw
||gw||2

δw (18)

dc =
gc
||gc||2

δc (19)

where:

gw = ∇εKL(P ′(S;w, c, θ̂)||P ′(S;w + ε, c, θ̂)),

gc = ∇τKL(P ′(S;w, c, θ̂)||P ′(S;w, c+ τ, θ̂))

The adversarial loss for SeqVAT can be computed
by:

Ladv = KL( Pori || Padv ) (20)

3.5 Training with Adversarial Loss
Regardless of the adversarial training method we
use (AT, VAT or SeqVAT), sequence labeling loss
is computed for all labeled data at each training
step:

Llabel = Loss(y;w, c, η, θ̂) (21)

In addition, in every training step, adversarial ex-
amples are generated and adversarial loss Ladv is
calculated based on the corresponding adversarial
training algorithm. To combine the sequence la-
beling loss and adversarial loss, the total loss is a
summation of those two loss:

Ltotal = Llabel + λLadv (22)

Here, weight λ is introduced to balance the
model accuracy (sequence labeling loss) and ro-
bustness (adversarial loss). This objective function
is optimized with respect to θ.

Note, unlabeled data might be leveraged in VAT
and SeqVAT, and they do not have sequence la-
beling loss due to lack of annotation. Hence, the
sequence labeling loss Llabel would be set to 0 for
unlabeled data.

4 Experiment

4.1 Dataset
Our proposed method is evaluated on three datasets:
CoNLL 2000 (Sang and Buchholz, 2000) for
chunking, CoNLL 2003 (Sang and Meulder, 2003)
for named entity recognition (NER) and an internal
natural language understanding (NLU) dataset for
slot filling.

For chunking and NER, One Billion Word Lan-
guage Model Benchmark (Chelba et al., 2014) is

Domain Labels Train Test Unlabeled
Cook 66 306155 55368 416348
Joke 20 230835 10311 586509

Booking 32 121067 5691 218864
News 12 116841 9607 339790
Assist 15 164364 5922 199383

Sporting 14 26763 3119 16034

Table 1: Number of sentences and labels in our internal
NLU dataset.

used as unlabeled data pool for semi-supervised
learning. Considering the relatively small size
of those two datasets, we randomly sampled 1%
of the benchmark as the unlabeled dataset. We
still have 20 times more data than training sets of
CoNLL 2000 and 2003. For slot filling, our NLU
dataset contains labeled and unlabeled sentences
for 6 domains (detailed information is shown in
Table.1). We directly use the unlabeled data for
semi-supervised experiments.

4.2 Experiment Settings
All parameters are randomly initialized. All hyper-
parameters are chosen by grid search on the devel-
opment set. Variational dropout (Blum et al., 2015)
with rate 0.2 is applied to the input and output of
each LSTM layer. The perturbation sizes for word
and character embeddings, δw and δc, are 0.4 and
0.2 respectively. The weight for adversarial loss
(i.e. λ) is set to 0.6. k is set to 3 for CoNLL datasets
and 9 for our NLU dataset.

Sequence labeling model is optimized by Adam
optimizer (Kingma and Ba, 2015) with batch size
64, learning rate 0.0006 and decay rate 0.992. Early
stopping is applied based on model performance
on the development set.

5 Evaluation

All sequence labeling tasks are evaluated with “slot-
F1” metric, which is used in CoNLL 2000 and
CoNLL 2003 shared tasks (Sang and Buchholz,
2000; Sang and Meulder, 2003).

5.1 Supervised Sequence Labeling
We evaluate our proposed SeqVAT technique in su-
pervised settings and compare the results with other
techniques designed to improve model robustness,
including AT (Miyato et al., 2017), VAT (Miyato
et al., 2019) and CVT (Clark et al., 2018).

To demonstrate the effectiveness of CRF, we
compare results from models with or without CRF
using each training technique mentioned above.
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Method Cook Joke Booking News Assist Sporting CoNLL
2000

CoNLL
2003

Baseline w/o. CRF 88.25 87.39 92.32 89.55 83.55 82.73 94.68 90.59
AT w/o. CRF 88.51 88.05 93.03 89.36 84.14 84.25 95.03 90.95
VAT w/o. CRF 88.40 88.04 92.84 89.75 83.92 84.21 94.89 90.87
CVT w/o. CRF 88.47 87.99 92.97 89.41 83.50 84.07 94.76 91.02
Baseline 88.53 87.97 93.04 90.32 84.99 86.67 95.18 91.20
AT 88.93 88.32 93.21 90.46 85.26 87.66 95.30 91.63
VAT 88.62 88.19 93.11 90.38 85.05 87.20 95.21 91.55
CVT 88.86 88.24 93.18 90.36 85.12 87.63 95.26 91.47
SeqVAT 88.90 88.46 93.23 90.81 85.28 87.79 95.45 91.76
ST† 88.73 88.69 93.42 91.29 85.13 86.73 95.27 91.66
EM† 88.68 88.70 93.45 91.21 85.09 86.79 95.91 91.69
VAT† 88.92 88.30 93.66 91.34 84.97 87.82 96.12 91.70
CVT† 88.81 88.75 93.57 91.31 85.58 87.80 96.19 92.08
SeqVAT† 89.05 88.87 93.74 91.57 85.86 88.43 96.34 92.27

Table 2: Slot F1 on all domains and datasets. “w/o. CRF” indicates CRF is excluded in the model architecture. †
indicates semi-supervised sequence labeling.

In Table.2, the first set of results corresponds to
models without CRF, while the second utilizes CRF.
Note, based on the characteristics of each training
technique, the added adversarial loss varies. Since
AT is compatible with CRF, and thus its adversarial
loss is computed on top of CRF. But as explained
in Sec.1, the adversarial loss of conventional VAT
cannot be calculated on top of CRF. Consequently,
VAT in the second set of Table.2 only applies CRF
for label loss. It uses adversarial loss without CRF.

As shown in Table.2, regardless of the training
techniques, models with CRF consistently perform
better than those without it. This demonstrates that
CRF is a crucial component in sequence labeling.
Hence, we conduct the rest of our evaluation only
on models with CRF.

Moreover, except that AT performs slightly bet-
ter than SeqVAT in Cook domain, SeqVAT can
outperform all approaches in all the other do-
mains/datasets. All improvements of SeqVAT over
other approaches are statistically significant (with
p-value < 0.05 in t-test). Compared with VAT used
by Clark et al. (2018), SeqVAT consistently shows
more significant improvements, which indicates
that SeqVAT is a better way of adopting virtual
adversarial loss to sequence labeling.

5.2 Semi-Supervised Sequence Labeling

VAT has been proved to be very effective in semi-
supervised learning (Oliver et al., 2018). Our pro-
posed SeqVAT preserves the ability of utilizing
unlabeled data. In this work, we also compare
SeqVAT with two widely used semi-supervised
learning algorithms: self-training (ST) (Yarowsky,
1995), entropy minimization (EM) (Grandvalet

and Bengio, 2004), and one state-of-the-art semi-
supervised sequence labeling approach, cross-view
training (CVT) (Clark et al., 2018). Detailed re-
sults are tabulated in the third set of Table.2. From
this comparison, SeqVAT consistently outperforms
conventional VAT, ST, EM, and CVT. The improve-
ments over other approaches are also statistically
significant with p-value < 0.05. These results sug-
gest that SeqVAT is also highly effective at utilizing
unlabeled data.

5.3 K-best Selection in SeqVAT

To choose the optimal k in k-best decoding, we
conduct experiments with different ks on super-
vised sequence labeling. The F1 score from each
k is plotted in Fig.2. From these plots, we observe
that each dataset has its own optimal k for SeqVAT,
and there is no unique k that gives the best results
across datasets.

To get a better generalization over all datasets
and tasks, we avoid selecting the optimal k for
each dataset/domain. However, different sources of
language have different characteristics, including
vocabulary, sentence length, syntax etc. Using the
same k for different types of text might limit the
effects of SeqVAT. To make a balance between
generalization and effectiveness, we use different
k for different types of text, but the same k for all
datasets/domains with the same source. We use
k = 3 for CoNLL 2000 and 2003 (news), and k =
9 for our internal NLU dataset (spoken language).

5.4 Impact of Unlabeled Data

To further understand the effect of unlabeled data
in semi-supervised learning, we analyze the corre-
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(a) Cook (b) Joke (c) Booking

(d) News (e) Assist (f) Sporting

(g) CoNLL 2000 (h) CoNLL 2003

Figure 2: K-best results with different values of k for all domains and datasets.

lation between the amount of augmented unlabeled
data and model performance on both CoNLL 2000
and 2003 datasets. For this analysis, we specifically
focus ourselves on CVT and SeqVAT, which show
the best accuracy across all datasets in Table.2. As
shown in Fig.3, the amount of unlabeled data is
a crucial factor for the performance of those two
approaches. More specifically, the performance
of those two approaches increases with more un-
labeled data. For the CoNLL 2000 dataset, CVT
has better performance when the unlabeled data
is limited while SeqVAT gradually outperforms
with more unlabeled data. As for the CoNLL 2003
dataset, SeqVAT shows consistently superior per-
formance. This experiment shows that both ap-
proaches can provide significant benefits with a
large amount of unlabeled data. In addition, Seq-
VAT has better utilization of unlabeled data, espe-
cially when having substantial unlabeled data.

5.5 Comparison on Semi-Supervised
Approaches

ST utilizes the unlabeled data by augmenting train-
ing data with the teacher model predictions, while
EM makes the model more confident on the predic-
tions for unlabeled data. Hence, both approaches
are trying to force the model to trust predictions
from the teacher model. If the teacher initially
makes wrong predictions, the error would propa-
gate to the student model.

Unlike them, CVT and VAT/SeqVAT construct
similar sentences which might have the same labels,
and force the model to make consistent predictions
on them. If the model makes incorrect prediction
for the original sentence, CVT and VAT/SeqVAT
can form a “discussion” to reach an agreement
among the prediction of the original sentence and
that of the similar sentences. If the model can make
correct predictions for some similar utterances, it
would have a chance to fix the error. Consequently,
CVT and VAT/SeqVAT are generally expected to
be more effective than ST and EM on the use of
unlabeled data.
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(a) CoNLL 2000

(b) CoNLL 2003

Figure 3: Model performance with different amount of
augmented unlabeled sentences.

The major difference between CVT and VAT
is the mechanism of selecting similar sentences.
CVT takes segments of the original sentence while
VAT/SeqVAT generates new sentences by replacing
tokens in the original sentence with their neighbors
in the embedding space. Each approach has its
own benefits and problems: 1) CVT can handle
different tokens in the similar context, but would
produce noise when the key words for meaning
are not in the segments; 2) VAT generates truly
similar sentences, but it might not be able to cover
synonyms which have large distances in the em-
bedding space. Hence, the effectiveness of them
highly depends on the data. As in Table.2, CVT
and VAT might outperform each other on different
domains/datasets.

The improvements of SeqVAT over CVT and
VAT can be explained by its compatibility with
CRF, because CRF is a critical component for
some sequence labeling tasks (including the three
in this paper). The compatibility with CRF would
largely affect the effectiveness of semi-supervised
approaches. In other tasks where label transitions
are important, we might not see significant gains
from SeqVAT over VAT or CVT.

5.6 Insights from K-best Estimation
To make VAT compatible with CRF, we propose
an idea to estimate the label sequence distribution
using k-best estimation. This idea provides a view
to optimize the label sequence level distribution

directly rather than work on the label distribution
per token. This idea could be beneficial for tasks
needing distribution transfer on sequence models,
such as knowledge distillation, multi-source trans-
fer learning.

6 Conclusion

In this paper, we propose a CRF compatible VAT
training algorithm and demonstrate that sequence
labeling tasks can greatly benefit from it. Our pro-
posed method, SeqVAT, has strong effects to im-
prove model robustness and accuracy on supervised
sequence labeling tasks. In addition, SeqVAT is
also highly effective in semi-supervised settings
and outperforms traditional semi-supervised algo-
rithms (ST and EM) as well as a state-of-the-art
approach (CVT). Overall, our approach is highly ef-
fective for chunking, NER and slot filling, and can
be easily extended to solve other sequence labeling
problems in both supervised and semi-supervised
settings.
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