[RETRACTED] A Contextual Hierarchical Attention Network with Adaptive Objective for Dialogue State Tracking
Yong Shan, Zekang Li, Jinchao Zhang, Fandong Meng, Yang Feng, Cheng Niu, Jie Zhou
This paper has been retracted. The authors found an error in their experimental systems. After the error was corrected, some published results are no longer valid. Because this error has impacted the main conclusion of the paper, both the authors and ACL2020 PCs agree that the best way to move forward is to withdraw this paper from ACL2020.
Abstract
Recent studies in dialogue state tracking (DST) leverage historical information to determine states which are generally represented as slot-value pairs. However, most of them have limitations to efficiently exploit relevant context due to the lack of a powerful mechanism for modeling interactions between the slot and the dialogue history. Besides, existing methods usually ignore the slot imbalance problem and treat all slots indiscriminately, which limits the learning of hard slots and eventually hurts overall performance. In this paper, we propose to enhance the DST through employing a contextual hierarchical attention network to not only discern relevant information at both word level and turn level but also learn contextual representations. We further propose an adaptive objective to alleviate the slot imbalance problem by dynamically adjust weights of different slots during training. Experimental results show that our approach reaches 52.68% and 58.55% joint accuracy on MultiWOZ 2.0 and MultiWOZ 2.1 datasets respectively and achieves new state-of-the-art performance with considerable improvements (+1.24% and +5.98%).- Anthology ID:
- 2020.acl-main.563
- Original:
- 2020.acl-main.563v1
- Version 2:
- 2020.acl-main.563v2
- Volume:
- Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
- Month:
- July
- Year:
- 2020
- Address:
- Online
- Editors:
- Dan Jurafsky, Joyce Chai, Natalie Schluter, Joel Tetreault
- Venue:
- ACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 6322–6333
- Language:
- URL:
- https://aclanthology.org/2020.acl-main.563
- DOI:
- 10.18653/v1/2020.acl-main.563
- PDF:
- https://preview.aclanthology.org/landing_page/2020.acl-main.563.pdf
- Data
- MultiWOZ