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Abstract

Visual features are a promising signal for learn-
ing bootstrap textual models. However, black-
box learning models make it difficult to iso-
late the specific contribution of visual compo-
nents. In this analysis, we consider the case
study of the Visually Grounded Neural Syntax
Learner (Shi et al., 2019), a recent approach
for learning syntax from a visual training sig-
nal. By constructing simplified versions of the
model, we isolate the core factors that yield
the model’s strong performance. Contrary to
what the model might be capable of learning,
we find significantly less expressive versions
produce similar predictions and perform just
as well, or even better. We also find that a sim-
ple lexical signal of noun concreteness plays
the main role in the model’s predictions as op-
posed to more complex syntactic reasoning.

1 Introduction

Language analysis within visual contexts has been
studied extensively, including for instruction fol-
lowing (e.g., Anderson et al., 2018b; Misra et al.,
2017, 2018; Blukis et al., 2018, 2019), visual ques-
tion answering (e.g., Fukui et al., 2016; Hu et al.,
2017; Anderson et al., 2018a), and referring ex-
pression resolution (e.g., Mao et al., 2016; Yu
et al., 2016; Wang et al., 2016). While significant
progress has been made on such tasks, the combi-
nation of vision and language makes it particularly
difficult to identify what information is extracted
from the visual context and how it contributes to
the language understanding problem.

Recently, Shi et al. (2019) proposed using align-
ments between phrases and images as a learning
signal for syntax acquisition. This task has been
long-studied from a text-only setting, including re-
cently using deep learning based approaches (Shen
et al., 2018a, 2019; Kim et al., 2019; Havrylov et al.,
2019; Drozdov et al., 2019, inter alia). While the

introduction of images provides a rich new signal
for the task, it also introduces numerous challenges,
such as identifying objects and analyzing scenes.

In this paper, we analyze the Visually Grounded
Neural Syntax Learner (VG-NSL) model of Shi
et al. (2019). In contrast to the tasks commonly
studied in the intersection of vision and language,
the existence of an underlying syntactic formalism
allows for careful study of the contribution of the vi-
sual signal. We identify the key components of the
model and design several alternatives to reduce the
expressivity of the model, at times, even replacing
them with simple non-parameterized rules. This
allows us to create several model variants, compare
them with the full VG-NSL model, and visualize
the information captured by the model parameters.

Broadly, while we would expect a parsing model
to distinguish between tokens and phrases along
multiple dimensions to represent different syntactic
roles, we observe that the model likely does not
capture such information. Our experiments show
that significantly less expressive models, which are
unable to capture such distinctions, learn a similar
model of parsing and perform equally and even
better than the original VG-NSL model. Our vi-
sualizations illustrate that the model is largely fo-
cused on acquiring a notion of noun concreteness
optimized for the training data, rather than identi-
fying higher-level syntactic roles. Our code and
experiment logs are available at https://github.
com/lil-lab/vgnsl_analysis.

2 Background: VG-NSL

VG-NSL consists of a greedy bottom-up parser
made of three components: a token embed-
ding function (φ), a phrase combination function
(combine), and a decision scoring function (score).
The model is trained using a reward signal com-
puted by matching constituents and images.

https://github.com/lil-lab/vgnsl_analysis
https://github.com/lil-lab/vgnsl_analysis
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Algorithm 1 VG-NSL greedy bottom-up parser

Input: A sentence x̄ = 〈x1, . . . , xn〉.
Definitions: φ(·) is a token embedding function; combine(·)

and score(·) are learned functions defined in Section 2.
1: C, T ← {[i, i]}ni=1

2: x[i,i] ← φ(xi) ∀i = 1, . . . , n
3: while [1, n] /∈ T do
4: i, k, j = argmax

[i,k],[k+1,j]∈C
score(x[i,k], x[k+1,j])

5: x[i,j] ← combine(x[i,k], x[k+1,j])
6: T ← T ∪ {[i, j]}
7: C ← (C ∪ {[i, j]}) \ {[i, k], [k + 1, j]}
8: return T

Given a sentence x̄ with n tokens 〈x1, . . . , xn〉,
the VG-NSL parser (Algorithm 1) greedily con-
structs a parse tree by building up a set of con-
stituent spans T , which are combined spans from
a candidate set C. Parsing starts by initializing the
candidate set C with all single-token spans. At each
step, a score is computed for each pair of adjacent
candidate spans [i, k] and [k + 1, j]. The best span
[i, j] is added to T and C, and the two sub-spans
are removed from C. The parser continues until the
complete span [1, n] is added to T .

Scoring a span [i, j] uses its span embedding
x[i,j]. First, a d-dimensional embedding for each
single-token span is computed using φ. At each
step, the score of all potential new spans [i, j] are
computed from the candidate embeddings x[i,k] and
x[k+1,j]. The VG-NSL scoring function is:

score(x[i,k], x[k+1,j]) = MLPs([x[i,k]; x[k+1,j]]) ,

where MLPs is a two-layer feed-forward network.
Once the best new span is found, its span embed-
ding is computed using a deterministic combine
function. VG-NSL computes the d-dimensional
embedding of the span [i, j] as the L2-normalized
sum of the two combined sub-spans:

combine(x[i,k], x[k+1,j]) =
x[i,k] + x[k+1,j]∥∥x[i,k] + x[k+1,j]

∥∥
2

.

Learning the token embedding function φ and
scoring model MLPs relies on a visual signal from
aligned images via a reward signal derived from
matching constituents and the image. The process
alternates between updating the parser parameters
and an external visual matching function, which
is estimated by optimizing a hinge-based triplet
ranking loss similar to the image-caption retrieval
loss of Kiros et al. (2014). The parser parameters
are estimated using a policy gradient method based
on the learned visual matching function, which

encourages constituents that match with the cor-
responding image. This visual signal is the only
objective used to learn the parser parameters. Af-
ter training, the images are no longer used and the
parser is text-only.

3 Model Variations

We consider varying the parameterization of VG-
NSL, i.e., φ, combine, and score, while keeping
the same inference algorithm and learning proce-
dure. Our goal is to constrain model expressivity,
while studying its performance and outputs.

Embedding Bottleneck We limit the informa-
tion capacity of the parsing model by drastically
reducing its dimensionality from d = 512 to 1 or
2. We reduce dimensionality by wrapping the to-
ken embedding function with a bottleneck layer
φB(x) = MLPB(φ(x)), where MLPB is a two-
layer feed-forward network mapping to the reduced
size. This bottleneck limits the expressiveness of
phrase embeddings throughout the parsing algo-
rithm. During training, we compute both original
and reduced embeddings. The original embeddings
are used to compute the visual matching reward
signal, whereas the reduced embeddings are used
by score to determine parsing decisions. At test
time, only the reduced embeddings are used. In
the case of d = 1, the model is reduced to using a
single criteria. The low dimensional embeddings
are also easy to visualize, and to characterize the
type of information learned.

Simplified Scoring We experiment with simpli-
fied versions of the score function. Together with
the lower-dimensional representation, this enables
controlling and analyzing the type of decisions the
parser is capable of. As we control the informa-
tion the embeddings can capture, simplifying the
scoring function makes sure it does not introduce
additional expressivity. The first variation uses a
weighted sum with parameters u,v:

scoreWS(x[i,k], x[k+1,j]) = u ·x[i,k] +v ·x[k+1,j] .

This formulation allows the model to learn struc-
tural biases, such as the head-initial (HI) bias com-
mon in English (Baker, 1987). The second is a non-
parameterized mean, applicable for d = 1 only:

scoreM(x[i,k], x[k+1,j]) =
x[i,k] + τx[k+1,j]

1 + τ
,

where τ is a hyper-parameter that enables upweight-
ing the right constituent to induce a HI inductive
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bias. We experiment with unbiased τ = 1 (scoreM)
and HI-biased τ = 20 (scoreMHI) scoring.

Reduced Dimension Combine In lower dimen-
sions, the combine function no longer produces
useful outputs, i.e., in d = 1 it always gives 1 or
−1. We therefore consider mean or max pooling:

combineME(x[i,k], x[k+1,j]) =
x[i,k] + x[k+1,j]

2
combineMX(x[i,k], x[k+1,j]) =

max(x[i,k], x[k+1,j]) .

The mean variant computes the representation of
a new span as an equal mixture of the two sub-
spans, while the max directly copies to the new
span representation information only from one of
the spans. The max function is similar to how head
rules lexicalize parsers (Collins, 1996).

4 Experimental Setup

We train VG-NSL and our model variants using the
setup of Shi et al. (2019), including three training
extensions: (a) +HI: adding a head-initial inductive
bias to the training objective; (b) +FastText: the
textual representations are partially initialized with
pre-trained FastText (Joulin et al., 2016); and (c) -
IN: 1 disabling the normalization of image features.
We follow the Shi et al. (2019) setup. We train all
VG-NSL variants on 82,783 images and 413,915
captions from the MSCOCO (Lin et al., 2014) train-
ing set. We evaluate unsupervised constituency
parsing performance using 5,000 non-overlapping
held-out test captions. We use additional 5,000
non-overlapping validation captions for model se-
lection, as well as for our analysis and visualization
in Section 5. We generate binary gold-trees using
Benepar (Kitaev and Klein, 2018), an off-the-shelf
supervised constituency parser.

We notate model variations as d, score, combine.
For example, 1, sWS, cME refers to dimensionality
d = 1, weighted sum scoring function (sWS), and
mean pooling combine (cME). We train five models
for each variation, and select the best checkpoint
for each model by maximizing the parse prediction
agreement on the validation captions between five
models. The agreement is measured by the self-F1

agreement score (Williams et al., 2018). This pro-
cedure is directly adopted from Shi et al. (2019).
We use the hyper-parameters from the original im-
plementation without further tuning.

1The authors of Shi et al. (2019) suggested this ablation as
particularly impactful on the learning outcome.

Model NP VP PP ADJP Avg. F1

Shi2019 79.6 26.2 42.0 22.0 50.4± 0.3
Shi2019∗ 80.5 26.9 45.0 21.3 51.4± 1.1
1, sWS, cME 77.2 17.0 53.4 18.2 49.7± 5.9
2, sWS, cME 80.8 19.1 52.3 17.1 51.6± 0.6

+HI
Shi2019 74.6 32.5 66.5 21.7 53.3± 0.2
Shi2019∗ 73.1 33.9 64.5 22.5 51.8± 0.3
1, sWS, cME 74.0 35.2 62.0 24.2 51.8± 0.4
2, sWS, cME 73.8 30.2 63.7 21.9 51.3± 0.1

+HI+FastText
Shi2019 78.8 24.4 65.6 22.0 54.4± 0.3
Shi2019∗ 77.3 23.9 64.3 21.9 53.3± 0.1
1, sWS, cME 76.6 21.9 68.7 20.6 53.5± 1.4
2, sWS, cME 77.5 22.8 66.3 19.3 53.6± 0.2

+HI+FastText-IN
Shi2019∗ 78.3 26.6 67.5 22.1 54.9± 0.1
1, sM, cMX 79.6 29.0 38.3 23.5 49.7± 0.2
1, sMHI, cMX 77.6 45.0 72.3 24.3 57.5± 0.1
1, sM, cME 80.0 26.9 62.2 23.2 54.3± 0.2
1, sMHI, cME 76.5 20.5 63.6 22.7 52.2± 0.3
1, sWS, cME 77.7 26.3 72.5 22.0 55.5± 0.1
2, sWS, cME 78.5 26.3 69.5 21.1 55.2± 0.1

Table 1: Test results. We report the results from
Shi et al. (2019) as Shi2019 and our reproduction
(Shi2019∗). We report mean F1 and standard devia-
tion for each system and recall for four phrasal cate-
gories. Our variants are specified using a representation
embedding (d ∈ {1, 2}), a score function (sM: mean,
sMHI: mean+HI, sWS: weighted sum), and a combine
function (cMX: max, cME: mean).

We evaluate using gold trees by reporting F1

scores on the ground-truth constituents and recall
on several constituent categories. We report mean
and standard deviation across the five models.

5 Experiments

Quantitative Evaluation Table 1 shows our
main results. As the table illustrates, The model
variations achieve F1 scores competitive to the
scores reported by Shi et al. (2019) across training
setups. They achieve comparable recall on differ-
ent constituent categories, and robustness to pa-
rameter initialization, quantified by self-F1, which
we report in an expanded version of this table in
Appendix A. The model variations closest to the
original model, 1, sWS, cME and 2, sWS, cME, yield
similar performance to the original model across
different evaluation categories and metrics, espe-
cially in the +HI and +HI+FastText settings. Most
remarkably, our simplest variants, which use 1d
embeddings and a non-parameterized scoring func-
tion, are still competitive (1, sM, cME) or even out-
perform (1, sMHI, cMX) the original VG-NSL.

Our simplified model variations largely learn the
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Training Setting 1, sWS, cME 2, sWS, cME U

Basic Setting 72.0 77.5 87.5
+HI 78.2 80.3 91.8
+HI+FastText 80.5 83.1 92.3
+HI+FastText-IN 85.6 86.4 92.8

Table 2: Self-F1 agreement between two of our vari-
ations and the original VG-NSL model. We also re-
port the upper bound scores (U ) calculated by directly
comparing two separately trained sets of five original
VG-NSL models.

d = 2

d = 1

Figure 1: Token embedding visualization for
2, sWS, cME (top) and 1, sWS, cME (bottom) colored by
universal POS tags (Petrov et al., 2012). Appendix A
includes an expanded version of this figure.

same parsing model as the original. Table 2 shows
self-F1 agreement by comparing constituents pre-
dicted by our models in each training setting with
the original model. We compute this agreement
measure by training two sets of five models on
the training data, and selecting checkpoints using
the validation captions for each of our model vari-
ants and the original VG-NSL model. We parse
the same validation captions using each model and
generate ten parse trees for each caption, one for
each model (i.e., five for each distinct set). We
calculate self-F1 agreement between models by
comparing parse trees from model variants to parse
trees from the original VG-NSL. We permute all
25 (five by five) combinations of variant/VG-NSL
pairs and obtain self-F1 agreement between the
model variant and the original VG-NSL by aver-
aging scores from each pair. For the upper-bound
agreement calculation, we train two distinct sets of
five original VG-NSL models. Our parsing model
is very similar but not exactly identical: there is
roughly a six points F1 agreement gap in the best
case compared to the upper bound. We consider
these numbers a worst-case scenario because self-
F1 agreement measures on the validation data are
used twice. First, for model selection to eliminate
the variance of each five-model set, and second for
the variant agreement analysis.

Expressivity Analysis We analyze the embed-
dings of the two variants closest to the original

Model 1, sWS, cME

Turney et al. (2011) 0.73
Brysbaert et al. (2014) 0.75
Hessel et al. (2018) 0.89

Shi2019∗ 0.94

Table 3: Pearson correlation coefficient of concreteness
estimates between our 1, sWS, cME variant and existing
concreteness estimates, including reproduced estimates
derived from VG-NSL by Shi et al. (2019).

Figure 2: Noun distribution using the 1d representation
from the 1, sWS, cME variant. The nouns are sorted by
their representation value in increasing order from left.

model, 1, sWS, cME and 2, sWS, cME, to identify
the information they capture. Both behave similarly
to the original VG-NSL. Figure 1 visualizes the
token embedding space for these variants. Interest-
ingly, the distribution of the 2d token embeddings
seems almost linear, suggesting that the additional
dimension is largely not utilized during learning,
and that both have a strong preference for separat-
ing nouns from tokens belonging to other parts of
speech. It seems only one core visual signal is used
in the model and if this factor is captured, even a
1d model can propagate it through the tree.

We hypothesize that the core visual aspect
learned, which is captured even in the 1d setting, is
noun concreteness. Table 3 shows that the reduced
token embeddings have strong correlations with
existing estimates of concreteness. Figure 2 shows
the ordering of example nouns according to our
1d learned model representation. We observe that
the concreteness estimated by our model correlates
with nouns that are relatively easier to ground vi-
sually in MSCOCO images. For example, nouns
like “giraffe” and “elephant” are considered most
concrete. These nouns are relatively frequent in
MSCOCO (e.g., “elephant” appears 4,633 times in
the training captions) and also have a low variance
in their appearances. On the other hand, nouns
with high variance in images (e.g., “traveller”) or
abstract nouns (e.g., “chart”, “spot”) are estimated
to have low concreteness. Appendix A includes
examples of concreteness.

We quantify the role of concreteness-based noun
identification in VG-NSL by modifying test-time
captions to replace all nouns with the most con-
crete token (i.e., “elephant”), measured according
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Training Setting Token 1, sWS, cME Shi2019∗

Basic Setting herd 49.5⇒ 36.3 51.0⇒ 47.6
Basic Setting* cat 52.4⇒ 56.9 51.0⇒ 57.2
+HI elephant 51.7⇒ 63.7 51.6⇒ 59.8
+HI+FastText motorcycle 52.9⇒ 59.9 52.9⇒ 60.7
+HI+FastText-IN elephant 55.0⇒ 62.9 54.6⇒ 60.2

Table 4: F1 scores evaluated before and after replac-
ing nouns in captions with the most concrete token pre-
dicted by models using the 1, sWS, cME configuration.
The replacement occurs during test time only as de-
scribed in Section 5. In Basic Setting∗, we remove one
model from 1, sWS, cME which has a significantly low
F1 agreement (54.2) to the rest of four models using
the 1, sWS, cME configuration.

to the 1d token embeddings learned by our model.
We pick the most concrete noun for each training
configuration using mean ranking across token em-
beddings of the five models in each configuration.
For example, instead of parsing the original cap-
tion "girl holding a picture," we parse "elephant
holding an elephant." This uses part-of-speech in-
formation to resolve the issue where nouns with
low concreteness are treated in the same manner
as other part-of-speech tokens. We compare the
output tree to the original gold ones for evalua-
tion. We observe that the F1 score, averaged across
the five models, significantly improves from 55.0
to 62.9 for 1, sWS, cME and from 54.6 to 60.2 for
the original VG-NSL before and after our caption
modification. The performance increase shows that
noun identification via concreteness provides an
effective parsing strategy, and further corroborates
our hypothesis about what phenomena underlie the
strong Shi et al. (2019) result. Table 4 includes the
results for the other training settings.

6 Conclusion and Related Work

We studied the VG-NSL model by introducing sev-
eral significantly less expressive variants, analyzing
their outputs, and showing they maintain, and even
improve performance. Our analysis shows that the
visual signal leads VG-NSL to rely mostly on es-
timates of noun concreteness, in contrast to more
complex syntactic reasoning. While our model vari-
ants are very similar to the original VG-NSL, they
are not completely identical, as reflected by the
self-F1 scores in Table 2. Studying this type of dif-
ference between expressive models and their less
expressive, restricted variants remains an important
direction for future work. For example, this can be
achieved by distilling the original model to the less
expressive variants, and observing both the agree-

ment between the models and their performance.
In our case, this requires further development of
distillation methods for the type of reinforcement
learning setup VG-NSL uses, an effort that is be-
yond the scope of this paper.

Our work is related to the recent inference pro-
cedure analysis of Dyer et al. (2019). While they
study what biases a specific inference algorithm in-
troduces to the unsupervised parsing problem, we
focus on the representation induced in a grounded
version of the task. Our empirical analysis is re-
lated to Htut et al. (2018), who methodologically,
and successfully replicate the results of Shen et al.
(2018a) to study their performance. The issues
we study generalize beyond the parsing task. The
question of what is captured by vision and lan-
guage models has been studied before, including
for visual question answering (Agrawal et al., 2016,
2017; Goyal et al., 2017), referring expression
resolution (Cirik et al., 2018), and visual naviga-
tion (Jain et al., 2019). We ask this question in
the setting of syntactic parsing, which allows to
ground the analysis in the underlying formalism.
Our conclusions are similar: multi-modal models
often rely on simple signals, and do not exhibit the
complex reasoning we would like them to acquire.
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A Additional Results and Visualizations

Table 5 is an extended version of Table 1 from
Section 5. We include standard deviation for the
phrasal category recall and self-F1 scores evaluated
across different parameter initializations. Figure 3
is a larger version of Figure 1 from Section 5. It vi-
sualizes the token embeddings of 1, sWS, cME and
2, sWS, cME for all universal parts-of-speech cate-
gories (Petrov et al., 2012). Figures 4 and 5 show
several examples visualizing our learned represen-
tations with the 1, sWS, cME variant, the 1d variant
closest to the original model, as a concreteness esti-
mate. Figure 4 shows the most concrete nouns, and
Figure 5 shows the least concrete nouns. We se-
lected nouns from the top (bottom) 5% of the data
as most (least) concrete. We randomly selected
image-caption pairs for these nouns.

At the end of the supplementary material, we in-
clude tree visualizations, comparing gold trees with
phrasal categories, trees generated by the original
VG-NSL, and trees generated by our best perform-
ing, simplified 1, sMHI, cMX variant. We select the
trees to highlight the difference between VG-NSL
and our variant. First, we select all development
trees where all five VG-NSL models agree to avoid
results that are likely due to initialization differ-
ences. We do the same for our variant. Finally, we
select all trees where the two sets, from VG-NSL
and our variant, disagree. This process leaves us
with 814 development examples, out of the original
5,000 examples. We display ten examples from
this final set.
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Model NP VP PP ADJP Avg. F1 Self-F1

Shi2019 79.6± 0.4 26.2± 0.4 42.0± 0.6 22.0± 0.4 50.4± 0.3 87.1
Shi2019∗ 80.5± 1.5 26.9± 0.9 45.0± 2.9 21.3± 1.2 51.4± 1.1 87.3
1, sWS, cME 77.2± 5.3 17.0± 5.2 53.4± 12.8 18.2± 1.0 49.7± 5.9 76.0
2, sWS, cME 80.8± 1.1 19.1± 1.1 52.3± 3.5 17.1± 1.0 51.6± 0.6 88.1

+HI
Shi2019 74.6± 0.5 32.5± 1.5 66.5± 1.2 21.7± 1.1 53.3± 0.2 90.2
Shi2019∗ 73.1± 0.3 33.9± 0.8 64.5± 0.2 22.5± 0.4 51.8± 0.3 91.6
1, sWS, cME 74.0± 0.4 35.2± 2.0 62.0± 1.1 24.2± 0.9 51.8± 0.4 87.3
2, sWS, cME 73.8± 0.3 30.2± 0.4 63.7± 0.3 21.9± 0.3 51.3± 0.1 93.3

+HI+FastText
Shi2019 78.8± 0.5 24.4± 0.9 65.6± 0.1 22.0± 0.7 54.4± 0.3 89.8
Shi2019∗ 77.3± 0.1 23.9± 0.5 64.3± 0.3 21.9± 0.3 53.3± 0.1 92.2
1, sWS, cME 76.6± 0.3 21.9± 2.3 68.7± 4.1 20.6± 0.9 53.5± 1.4 87.8
2, sWS, cME 77.5± 0.2 22.8± 0.4 66.3± 0.6 19.3± 0.7 53.6± 0.2 93.6

+HI+FastText-IN
Shi2019∗ 78.3± 0.2 26.6± 0.3 67.5± 0.5 22.1± 1.0 54.9± 0.1 92.6
1, sM, cMX 79.6± 0.2 29.0± 0.7 38.3± 0.3 23.5± 0.6 49.7± 0.2 95.5
1, sMHI, cMX 77.6± 0.2 45.0± 0.8 72.3± 0.2 24.3± 1.0 57.5± 0.1 93.4
1, sM, cME 80.0± 0.2 26.9± 0.2 62.2± 0.4 23.2± 0.4 54.3± 0.2 95.7
1, sMHI, cME 76.5± 0.1 20.5± 0.8 63.6± 0.6 22.7± 0.7 52.2± 0.3 94.7
1, sWS, cME 77.7± 0.1 26.3± 0.4 72.5± 0.2 22.0± 0.6 55.5± 0.1 95.5
2, sWS, cME 78.5± 0.4 26.3± 0.6 69.5± 1.2 21.1± 0.5 55.2± 0.1 93.7

Table 5: Test results. We report the results from Shi et al. (2019) as Shi2019 and our reproduction as Shi2019∗.
We report mean F1 and standard deviation for each system and mean recall and standard deviation for four phrasal
categories. Our variants are specified using a representation embedding (d ∈ {1, 2}), a score function (sM: mean,
sMHI: mean+HI, sWS: weighted sum), and a combine function (cMX: max, cME: mean).

Figure 3: Token embedding visualization for 2, sWS, cME (top) and 1, sWS, cME (bottom) colored by universal
POS tags (Petrov et al., 2012).
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Elephant (4633 occurrences):
(a) A person riding an elephant and carrying gas cylinders.
(b) An elephant is in some brown grass and some trees.
(c) A captive elephant stands amid the branches of a tree in his park-like enclosure.
(d) Two baby gray elephant standing in front of each other.
(e) The older elephant is standing next to the younger elephant.

(a) (b) (c) (d) (e)

Giraffe (5546 occurrences):
(a) Two giraffe standing next to each other on a grassy field.
(b) A giraffe laying down on the dirt ground.
(c) A herd of giraffe standing next to each other on a field.
(d) A giraffe stands beneath a tree beside a marina.
(e) A giraffe rests its neck on a bunch of rocks.

(a) (b) (c) (d) (e)

Pizza (8340 occurrences):
(a) A woman holding a pizza up in the air.
(b) A slice of pizza sitting on top of a white plate.
(c) A pizza sitting on top of a plate covered in cheese and tomatoes.
(d) Three pieces of sliced pizza on a wooden surface.
(e) Some boxes of frozen pizzas are in the store.
(f) A pizza topped with cheese and pepperoni with veggies.
(g) A large pizza is in a cardboard box.

(a) (b) (c) (d) (e) (f) (g)

Snowboarder (922 occurrences):
(a) A snowboarder practicing his moves at a snow facility.
(b) A snowboarder is coming down a hill and some trees.
(c) A snowboarder rests in the snow on the snowboard.
(d) A snowboarder jumps off of a hill instead of just sliding down it.
(e) A snowboarder is jumping in the air with their board held to the side.
(f) The snowboard is almost as big as the snowboarder.

(a) (b) (c) (d) (e) (f)

Figure 4: Image-caption pairs corresponding to noun tokens estimated as most concrete (bottom 5%) in our
1, sWS, cME variant. We also report the number of occurrences in the MSCOCO training set.
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Metal (1630 occurrences):
(a) A pink piece of metal with a bolt and nut on top.
(b) Wilting roses and greenery in a metal vase.
(c) A couple of street signs sitting on top of a metal pole.
(d) Kitchen with wooden cabinets and a metal sink.
(e) A metal toilet and some tissue in a bathroom.

(a) (b) (c) (d) (e)

Palm (321 occurrences):
(a) A motorcycle sits parked in palm tree lined driveway.
(b) Two people in helmets on a parked motorcycle and a small palm tree to the side of them.
(c) Two flat bed work trucks among palm trees .
(d) A cake with palm trees, and a person on a surf board.
(e) A pink cellphone and white palm pilot on a table.

(a) (b) (c) (d) (e)

Picture (5932 occurrences):
(a) A blurry picture of a cat standing on a toilet.
(b) Picture of a church and its tall steeple.
(c) The street sign at the intersection of Broadway and 7th avenue is the star of this picture.
(d) A picture of some people playing with a frisbee.
(e) A little girl sitting in the middle of a restaurant and smiling for picture.

(a) (b) (c) (d) (e)

Time (1184 occurrences):
(a) A time lapse photo of a skier skiing down a hill.
(b) A skaterboarder getting major air over some stairs during a night time shoot.
(c) The man is trying to eat three hot dogs are the same time.
(d) A boy playing a WII game at Christmas time.
(e) A large display of a hand holding a cell phone to tell the time.

(a) (b) (c) (d) (e)

Figure 5: Image-caption pairs corresponding to noun tokens estimated as least concrete (bottom 5%) in our
1, sWS, cME variant. We also report the number of occurrences in the MSCOCO training set.
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