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Abstract

Large language models (LLMs) have demon-
strated promising performance on medical
benchmarks; however, their ability to perform
medical calculations, a crucial aspect of clinical
decision-making, remains underexplored and
poorly evaluated. Existing benchmarks often
assess only the final answer with a wide numeri-
cal tolerance, overlooking systematic reasoning
failures and potentially causing serious clinical
misjudgments. In this work, we revisit med-
ical calculation evaluation with a stronger fo-
cus on clinical trustworthiness. First, we clean
and restructure the MedCalc-Bench dataset and
propose a new step-by-step evaluation pipeline
that independently assesses formula selection,
entity extraction, and arithmetic computation.
Under this granular framework, the accuracy
of GPT-40 drops from 62.7% to 43.6%, reveal-
ing errors masked by prior evaluations. Sec-
ond, we introduce an automatic error analysis
framework that generates structured attribution
for each failure mode. Human evaluation con-
firms its alignment with expert judgment, en-
abling scalable and explainable diagnostics. Fi-
nally, we propose a modular agentic pipeline,
MedRaC, that combines retrieval-augmented
generation and Python-based code execution.
Without any fine-tuning, MedRaC improves the
accuracy of different LLMs from 16.35% up to
53.19%. Our work highlights the limitations
of current benchmark practices and proposes
a more clinically faithful methodology. By en-
abling transparent and transferable reasoning
evaluation, we move closer to making LLM-
based systems trustworthy for real-world medi-
cal applications.

1 Introduction

Clinical calculation matters, but benchmarks miss
the point. While large language models (LLMs)
are increasingly used in clinical settings (Achiam
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et al., 2023; Goodman et al., 2023; Decker et al.,
2023; Ayers et al., 2023; Thirunavukarasu et al.,
2023a; Singhal et al., 2023; Sun et al., 2024;
Yao and Yu, 2025) for question answering (Jin
et al., 2021), medical documentation summariza-
tion (Shaib et al., 2023), and even decision sup-
port (Thirunavukarasu et al., 2023b; Tu et al.,
2025), many of these applications hinge on the
model’s ability to perform reliable medical calcu-
lations (Goodell et al., 2025). Such tasks, like
computing glomerular filtration rate or cardiovas-
cular risk, require high numerical accuracy, cor-
rect formula use, and context-aware data extrac-
tion (Cockcroft and Gault, 1976; Initiative, 2010;
Gage et al., 2001). Yet existing benchmarks for
evaluating LLMs in this domain fall short of these
requirements.

MedCalc-Bench (Khandekar et al., 2024) re-
cently introduced a collection of real-world medi-
cal calculation tasks, drawn from widely used cal-
culators that surveys show were regularly used by
over 80% of healthcare professionals today (MDC,
2025). However, its current evaluation protocol
only checks whether the final answer falls within
a £5% tolerance. This overlooks critical failures
in intermediate steps, such as selecting the wrong
formula, misreading patient attributes, or miscal-
culating values, creating an illusion of high perfor-
mance while masking real risks. Additionally, we
observed corrupted data points that hindered the
analysis of model performance.

We address this problem by first cleaning errors
in the original benchmark and proposing a three-
part framework for more faithful evaluation and
performance enhancement:

* A step-by-step evaluation pipeline that assesses
each reasoning stage: formula selection, entity
extraction, and numerical computation. !

'Our code and data are released here: https: //github.
com/Super-Billy/EMNLP-2025-MedRaC with Apache-2.0 li-
cense.
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* An LLM-based automatic error analysis frame-
work that attributes mistakes to specific steps
and generates structured explanations, validated
against human experts.

* A training-free, agentic enhancement method
that decomposes medical calculation into distinct
stages and leverages retrieval-augmented ground-
ing with executable code generation to reduce
hallucinations and boost accuracy.

While many recent benchmarks report steady
gains in accuracy, it remains unclear how much
these improvements translate into safer or more
deployable systems in high-stakes domains (Kung
et al., 2023; Jin et al., 2024; Yang et al., 2025). By
rethinking how we evaluate and support LLMs in
medical calculation, an essential, tool-heavy aspect
of real clinical practice, we offer a more transfer-
able and trustworthy pathway from NLP progress
to clinical impact.

2 Background and Related Work

Limitations of Final-Answer Medical Bench-
marks Early benchmarks, such as MedQA (Jin
et al., 2021), PubMedQA (Jin et al., 2019), and
MedMCQA (Pal et al., 2022), primarily focus on
factual recall and multiple-choice question answer-
ing. However, these benchmarks do not test mod-
els’ ability to perform quantitative or step-by-step
reasoning. MedIQ introduces a question-asking
dataset that encourages models to seek missing
information, though this often degrades perfor-
mance (Li et al., 2024b). MedCalc-Bench (Khan-
dekar et al., 2024) improves upon this by introduc-
ing real-world medical calculation tasks. It draws
from 55 widely used MDCalc calculators and in-
cludes 1047 patient vignettes covering scenarios
such as glomerular filtration rate (GFR) estimation
and body mass index (BMI) calculation. These
tasks require selecting the correct formula, extract-
ing clinical variables, and performing numerical
computations. Despite its innovation, MedCalc-
Bench only evaluates the final numeric answer, al-
lowing a +5% margin of error. This can obscure
errors such as formula misapplication, omission of
key patient factors, or hallucinated arithmetic. As
our reanalysis reveals, many answers marked as
“correct” under the original metric contain faulty
reasoning chains, thereby limiting their clinical reli-
ability. We extend MedCalc-Bench by introducing
a step-wise evaluation pipeline that inspects each
reasoning component—formula, extraction, com-

putation, and answer formatting—independently,
revealing deeper reasoning failures that would oth-
erwise go undetected.

Evaluating Intermediate Reasoning with LLM-
as-Judge Step-wise evaluation has gained trac-
tion in general NLP tasks (Lightman et al., 2024;
Chen et al., 2022b; Lee and Hockenmaier, 2025;
Shen et al., 2025), with LLMs increasingly used as
automated judges (Li et al., 2024a; Gu et al., 2024).
Studies show that models like GPT-4 (Achiam et al.,
2023; Liu et al., 2023; Fu et al., 2024) and critique-
tuned variants (Ke et al., 2023) can approximate
human judgment in summarization (Chen et al.,
2022a), dialogue (Zheng et al., 2023; Zhang et al.,
2024), and translation (Kocmi and Federmann,
2023). In the medical domain, LLLM-as-judge has
been applied to clinical conversations (Tu et al.,
2025; Arora et al., 2025; Wang et al., 2023), medi-
cal documentation (Croxford et al., 2025; Chung
et al., 2025; Brake and Schaaf, 2024), exam ques-
tion answering & generation (Yao et al., 2024a,b),
and medical reasoning (Jeong et al., 2024; Tran
et al., 2024). Inspired by these works, we introduce
the first step-wise LLM-as-Judge framework for
clinical calculation tasks.

Retrieval-Augmented and Execution-Based En-
hancements In clinical NLP, hallucinations are
a key concern, particularly in high-stakes appli-
cations. Retrieval-augmented generation meth-
ods (Nori et al., 2023; Xiong et al., 2024, 2025;
Wang et al., 2024) address this by grounding gen-
eration in trusted sources. Visual RAG approaches
further improve reliability in imaging tasks (Chu
et al., 2025). Surveys confirm that RAG systemati-
cally reduces fabrication (Zhang and Zhang, 2025;
Amugongo et al., 2025). Program-aided reason-
ing and broader tool-use approaches have been
extensively studied in recent work, highlighting
the value of integrating external tools into LLM
workflows (Mialon et al., 2023; Gao et al., 2023).
Parallel to retrieval, execution-based techniques
like Self-Consistency (Wang et al., 2022) and Self-
Refine (Madaan et al., 2023) offer tools for reduc-
ing arithmetic and logical errors. These methods
are often applied in math and symbolic reasoning,
but have not been widely tested in clinical computa-
tions. We unify both strategies into a plug-and-play
agentic pipeline tailored to medical calculations.
By combining formula retrieval with Python code
execution, our method corrects both hallucination-
driven and computation-driven errors—without re-
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quiring any model fine-tuning.
3 Methods

3.1 Step-wise Evaluation

As shown in Figure 1, medical calculations typ-
ically involve multiple sequential steps, such as
retrieving relevant medical knowledge and identi-
fying the appropriate formula. We propose a struc-
tured evaluation pipeline for medical calculation
tasks that decomposes the reasoning process into
four sequential, individually validated steps:

Formula selection. The candidate response must
employ the correct medical calculation formula,
as defined among the 55 calculators in MedCalc-
Bench, and specify it fully, including appropriate
units, boundary conditions, and any relevant con-
straints. We constructed a reference formula li-
brary corresponding to these 55 calculators, against
which each model-proposed formula is evaluated.
We use an evaluator to compare the predicted for-
mula to its canonical counterpart in this library and
assign a binary correctness score.

Value extraction. We ask the evaluator to ex-
tract every numerical and categorical variable from
both the clinical vignette and the model’s re-
sponse. These extracted variables are then com-
pared against the gold-standard answers provided
in the dataset’s JSON annotations. Using a closed-
book LLM evaluator, we compute the alignment
and assign a binary correctness score: full agree-
ment is required to pass, while any mismatch, such
as a missing, hallucinated, or incorrectly labeled
variable, results in failure.

Mathematical calculation. The evaluator veri-
fies whether each arithmetic step is valid, based
on the extracted formula and values. UUnlike
MedCalc-Bench, which allows a 5% margin of
error, we adopt a stricter criterion, following the
tolerance defined on the original calculators’ web-
site, MDCalc. Specifically, the allowed numerical
tolerance depends on the number of decimal places
in the LLM’s answer, capped at two decimal places.
For example, an answer of 10.65 is evaluated with
a £0.005 tolerance, while answers with more than
two decimals (e.g., 10.6512) are rounded and as-
sessed with the same £0.005 threshold. A binary
correctness score is then assigned.

Final Answer. We evaluate whether the model’s
final prediction is equivalent to the ground-truth

answer in the dataset, allowing for valid unit con-
versions.

To ensure that the model focuses solely on eval-
uating the correctness of the mathematical compu-
tation, we provide only the LLM-generated answer
as input, excluding the ground-truth answer or any
reference formulas, to avoid potential bias or leak-
age that could influence judgment.

Let S; denote the result of the ith step in the
calculation process, each step is dependent on the
previous steps: S; = f(Si—1,...,S1). Define a
validation function V(-) € {True,False}. We
propose that a step S; can only possibly be correct
if and only if the immediately preceding step is
correct, that is,

Our evaluation metric ensures correctness by ver-
ifying the validity of each step in the MedCalc
Bench dataset. Specifically, we evaluate the follow-
ing steps sequentially: formula correctness V(F),
extraction correctness V(E), calculation correct-
ness V(C), and final answer correctness V(A). We
define the correctness of the calculation task for
one case k € {True, False}, as the conjunction of
validity across all individual steps:

k = V(F) A V(E) AV(C) A V(A)

Further, we define the Conditional Correctness
of each step S; as the probability that the step is
correct given that all preceding steps are correct:

CC; = P(V(&S‘l) | V(Sl) VANPIRAN V(Slfl)) .

We also define the First Error Attribution Rate of
step S; as the proportion of examples in which S;
is the first step to fail, i.e., all previous steps are
correct but S; is incorrect:

FE, = P(V(S1) A ... AV(Si—1) A =V(S)) ‘ “K).

This decomposition enables fine-grained error
diagnosis and quantitative comparison across mod-
els and methods. Figure 1 illustrates the whole
pipeline.

3.2 LLM-aided Evaluation and Structured
Error Attribution

Building upon the step-wise evaluation pipeline,
we design an LLLM-aided judge to assess correct-
ness at each stage. Given an input—output pair from
the LLM Test Taker and a ground-truth reference
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"Patient Note": "An 87-
year-old man was admitted
to our hospital for anorexia

for several days, high-

grade fever from the

previous day...

"Question": "What is the
patient's Creatinine
Clearance using the

Cockroft-Gault Equation in
terms of mL/min? You
should use the patient's
adjusted body weight...
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Figure 1: Step-wise LLM-aided Evaluation Pipeline. Each reasoning stage is checked by an LLM-Judge against a

reference explanation to determine its correctness.
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Figure 2: Categorization of Reasoning Errors in Clinical
Calculation Tasks. Incorrect outputs can stem from
diverse sources of failure across reasoning stages.

(e.g., extracted variable, formula used, computed
value), we prompt a high-performance LLM Judge
to determine semantic alignment and provide bi-
nary correctness feedback.

To further analyze the failure patterns behind in-

correct answers, we define a taxonomy of common
medical calculation errors, visualized in Figure 2.

Each failure is assigned to one or more of the fol-
lowing categories:

Formula Misselection or Hallucination: The an-
swer chooses a formula that does not fit the clinical
scenario or distorts the correct formula by invent-
ing, omitting, or misplacing terms, coefficients, or
operators (e.g. using Cockcroft—Gault instead of
CKD-EPI for an AKI patient).

Incorrect Variable Extraction: A wrong value,
unit, or time-point is pulled from the note (e.g.
yesterday’s creatinine, or treating umolL~! as
mg dL™h).

Clinical Misinterpretation (Rule-based): Num-
bers are captured correctly, but their clinical mean-
ing is misjudged—wrong severity, threshold, or
presence/absence decision (e.g. calling “trace as-
cites” “no ascites”).

Missing Variable(s): One or more required in-
puts (weight, race, age group, etc.) are absent, yet
the calculation proceeds, rendering the result unre-
liable.

Demographic Adjustment Failure: A mandatory
sex, race, BSA, pregnancy, or age multiplier is
skipped or applied to the wrong group (e.g. omit-
ting the 0.85 female factor).

Unit Conversion Error (Equation-based): A
value is used without the necessary unit change,
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or with an incorrect factor/direction, before substi-
tution into the formula (e.g. using 134 pymol L !
as 134 mg dL™1).

Arithmetic Error: Pure math is wrong despite
correct formula and inputs, basic addition, order
of operations, exponentiation, or duplication/omis-
sion of terms.

Rounding / Precision Error (Equation-based):
The final number is outside the allowed tolerance
solely because of over- or under-rounding (rule of
1-2 d.p.: £0.05 for one decimal place, +£0.005 for
two).

These error types enable structured analysis of
model behavior and inform targeted interventions
in later modules.

3.3 MedRaC: Multi-Agent Enhancement with
Formula-RAG and Code

Guided by the diagnostic insights from the step-
wise evaluation and error analysis, we propose
MedRaC, a modular agentic pipeline (Figure 3) to
improve LLM performance on medical calculation
tasks without any additional training. MedRaC
combines Formula RAG, which embeds and in-
dexes MDCalc formulas and task-specific descrip-
tions so that relevant formulas can be retrieved and
injected into the prompt before reasoning begins,
thereby addressing formula selection errors and
mitigating hallucination, and Python Code Exe-
cution, where the LLM is instructed to generate
Python code representing the equation and this
code is executed to produce the final result, elimi-
nating arithmetic and rounding errors. MedRacC is
designed to be plug-and-play, requiring no model
fine-tuning and allowing it to be layered on top
of existing LLM inference APIs. Each compo-
nent targets a specific error type identified in our
earlier analysis, enabling explainable and modular
improvements.

4 Experiments

We conduct all experiments on MedCalc-Bench,
a benchmark comprising 1,048 physician-curated
clinical calculation cases. Because the original
release contains several obsolete or internally in-
consistent records, we manually reviewed the data
and had a board-certified clinician re-audit every
questionable item. After filtering out 108 faulty or
deprecated entries, we retained 940 valid cases for
evaluation. A detailed list of the removed items,
along with the rationale for each exclusion, is pro-

=

l
Formula] [ Values ]
Patient Note
]

00 6 ||~ B e
LM Test Taker
Figure 3: MedRaC Pipeline
vided in the Appendix A.

Our primary metric is the Step-wise LLM Evalu-
ation proposed in Section 3.1, which separately
grades formula selection, entity extraction, and
arithmetic computation.

Following the benchmark guidelines, we treat
zero-shot Chain-of-Thought (CoT) prompting as
the main baseline. In addition to the “direct” set-
ting, where models output only the final numer-
ical answer, we evaluate four reasoning-oriented
variants. In CoT, the model produces a detailed
chain of thought along with the final answer. One-
shot uses the same output format but augments the
prompt with a single worked example based on
the same calculator as the test case. MedPrompt
implements the k-nearest-neighbor retrieval com-
ponent of MedPrompt with k=3 (Nori et al., 2024),
without option-ordering heuristics since calculation
tasks lack a multiple-choice structure. Finally, Self-
Refine asks the model to critique its own response
and revise the solution if an error is detected, ter-
minating early when no error is reported, with at
most five refinement rounds.

4.1 Evaluation Results

Table 1 summarizes performance across a diverse
suite of closed- and open-source LLMs of varying
sizes. For the direct setting, we score only the
final answer, whereas all reasoning-based variants
are assessed with the automatic step-wise rubric
described above.

Our MedRaC method outperforms One-shot
prompting across most settings. For equation-
based questions, the improvement is substantial
regardless of model size, confirming the benefit
of external formula retrieval and modular reason-
ing. For rule-based questions, the performance
gains are more nuanced. Smaller models (e.g.,
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Model Direct CoT One-shot Self-Refine Medprompt MedRaC
Rule Calc Rule Calc Rule Calc Rule Calc Rule Calc Rule Calc
Phi-4-mini 16.52 2.16 5.01 2.16 12.09 1647 206 6.16 324 10.32 3510 68.39
LLaMA3.2-3B 12.39 0.83 147 399 14.75 1847 088 283 295 16.31 2 -
Qwen3-4B 2330 2679 9.73 2579 49.85 59.57 944 2629 1032 4592 4572 68.72
Qwen3-8B 2920 4226 1652 38.10 58.70 6290 19.76 40.10 1593 53.74 46.61 74.54
LLaMA3.1-8B 19.17 250 6.78 832 2507 2097 590 682 11.21 2845 31.27 70.22
Qwen3-14B 39.53 46.59 26.55 4343 60.77 67.05 27.14 4725 855 2230 5044 78.37
GPT-40-mini 2242 799 2389 3461 5280 49.58 2655 3394 11.80 4243 5044 72.71
GPT-40 2448 1398 43.07 4393 62.24 5424 4484 4493 2596 5691 51.03 64.39

Table 1: Performance comparison across models and prompting strategies using LLM-aided automatic evaluation.
Accuracy is reported under both rule-based and calculation-based metrics.

Phi-4-mini, LLaMA series) benefit significantly
from our method over One-shot, whereas stronger
models (e.g., Qwen-3, GPT-3.5) show marginal
improvements or even slightly worse results. We
hypothesize two reasons for this pattern: (1) Larger
models possess richer internal medical knowledge
and are less reliant on external formulas, reducing
the added value of MedRaC for rule-based cases.
(2) The One-shot examples include not only scor-
ing rules but also a worked-out example mapping
patient notes to scores, which involves clinical rea-
soning. Stronger models are more capable of ex-
tracting and generalizing such implicit knowledge,
enabling better transfer to new inputs.

4.2 Validation of LLM-aided Evaluation

We validate our evaluation pipeline from two per-
spectives: its ability to more effectively identify
reasoning errors, and its high agreement with ex-
pert human annotations, demonstrating both im-
proved diagnostic capability and alignment with
clinical judgment.

Improved Detection of Reasoning Failures.
The original MedCalc-Bench evaluates only the
final numeric answer and allows a wide tolerance
margin, often obscuring hallucinations or logical er-
rors in intermediate steps. In contrast, our pipeline
evaluates each stage, formula selection, variable ex-
traction, arithmetic computation, and final answer
formatting independently. This granular evaluation
enables the detection of clinically significant errors
that would be overlooked under final-answer-only
metrics. Appendix G presents a case study where
an LLM generated the correct final value but intro-
duced multiple hallucinations during intermediate
reasoning; our system successfully identified these
inconsistencies.

Alignment with Expert Annotations. To eval-
uate the reliability of our step-wise evaluation
pipeline, we compare its outputs against human
annotations. We randomly sampled 46 clinical cal-
culation questions across five calculators, spanning
both rule-based and equation-based tasks. Each
step in our pipeline was independently annotated
for correctness by both expert and non-expert eval-
uators.

We assessed the alignment between our evalua-
tion pipeline and human judgments by computing
pairwise agreement scores. Specifically, we mea-
sured agreement among all human annotator pairs,
as well as between our error analysis pipeline and
expert annotators. Agreement is defined as simple
percent agreement:

1
Agreement(a, b) = — ZH‘[CM = by,

where a; and b; are binary correctness labels from
two sources (e.g., expert and pipeline), and [] is
the indicator function.

Our results in Table 2 show that LLM-based er-
ror analysis achieves higher agreement with expert
annotators than non-experts, and outperforms all
human annotator pairs except on the extraction task.
We attribute this to the LLM’s careful, step-by-step
consistency in evaluating responses. These find-
ings support the validity of our evaluation pipeline
in better reflecting expert clinical judgment.

Agreement Type Formula Extraction Calculation Answer
Expert-Expert 84.8% 84.8% 89.1% 95.7%
Expert-Non-Expert ~ 72.3% 78.1% 66.6% 91.3%
LLM-Expert 90.2% 78.3% 88.1% 97.8%
All Pairs (Overall) 77.2% 81.9% 75.7% 92.5%

Table 2: Agreement scores (%) across evaluation stages.
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Error Type LLM Non-Expert
Arithmetic 73.9% 95.7%
Clinical Misinterpretation 76.1% 87.0%
Formula 73.4% 89.1%
Variable Extraction 75.0% 76.1%
Missing Variables 90.2% 100.0%
Precision Errors 79.4% 93.5%

Table 3: Average agreement (%) between expert—LLM
and expert—non-expert across error types.

4.3 Error Type Experiments

We compare the error type annotations produced
by our LLM-based pipeline with those from hu-
man evaluators, as detailed in Appendix C, using
the same experimental setup. Each annotator was
asked to label all applicable error types in LLM-
generated answers, and agreement was computed
using Jaccard similarity:

B |AN B

Agreement(A, B) = [AUB|

where A and B are the sets of error types identified
by two annotators.

Table 3 shows the average agreement between
the LLLM Judge and experts, as well as between
experts and non-experts. While LLM—expert agree-
ment is not consistently higher than human—human
agreement, we observe that the LLM is reason-
ably aligned with expert decisions, particularly on
well-defined tasks such as variable extraction and
missing inputs.

These results reflect the inherent difficulty of
multi-label error attribution: humans often con-
verge on the most salient error, while LLMs evalu-
ate each category independently and systematically.
Although imperfect, the LLM’s error analysis is
structured, reproducible, and offers a valuable ref-
erence point for reviewing model failures.

Error-type comparison. We evaluated differ-
ences in output error types between Zero-Shot and
MedRaC across four models, as detailed in Ap-
pendix E. Figure 4, using the Llama3.1-8B-Instruct
model as an example, illustrates that the proposed
MedRaC pipeline substantially reduces the main er-
ror types relative to the Zero-Shot CoT baseline. Al-
most all error categories showed decreases; among
them, the steepest drops were in Formula Misse-
lection/Hallucination (—587, —77.5%), Arithmetic

2The model fails to output executable code

Error (—352, —82.6%), and Demographic Adjust-
ment Failure (—105, —70.9%). These decreases
can be understood to stem from using grounded
formulas and precise programmatic calculation. A
slight increase in the low-frequency Rounding/Pre-
cision Error category likely reflects our stricter eval-
uation tolerance rather than a true decline in numer-
ical performance. We also provide the error anal-
ysis of other methods evaluated with LLaMA3.1-
8B in Table 4. Oneshot reduces many errors be-
cause curated examples guide step-by-step reason-
ing, though it cannot fix arithmetic mistakes since
examples do not improve raw computation. Self-
Refine performs better in math-heavy categories
by iteratively correcting outputs, directly address-
ing numerical slips. In contrast, MedPrompt often
underperforms Oneshot because noisy retrieved ex-
amples dilute key signals.

Error Type Counts for Llama3.1-8B-Instruct
Zero-Shot CoT vs. MedRaC

Zero-Shot CoT
= MedRaC

Formula Unit  Demographic Arithmetic _ Variable  Missing  Rounding  Clinical

Figure 4: Error Type Counts for Llama3.1-8B-Instruct

Attribution of gains. Formula retrieval provides
the model with the exact equation and relevant de-
mographic terms, which reduces hallucinations and
incorrect formulations, thereby lowering formula-
related and adjustment errors. Code execution del-
egates arithmetic operations to Python, preventing
mistakes such as incorrect operation order or unit
miscalculations and yielding roughly an 83% re-
duction in arithmetic errors along with fewer unit
conversion issues. An ablation study demonstrating
the individual contributions of these two techniques
will be presented in Section F.

Residual challenges. Error types that depend on
nuanced clinical understanding, such as Incorrect
Variable Extraction (—64, —21.3%) and Clinical
Misinterpretation (—82, —26.9%), show relatively
limited improvement. These cases often require
background medical knowledge or familiarity with
clinical reasoning, which current LLMs lack. Even
when a correct formula is available, models may
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Method Formula Missing Missing/ Unit Arithmetic Rounding/ Incorrect  Clinical
Error Variables Misused Conversion Errors Precision  Variable Mis-
Demographic Error Extraction interpretation
Coeff.
CoT 757 308 148 204 426 11 301 305
Oneshot 295 152 44 82 455 5 194 241
Self-Refine 818 716 29 46 101 5 370 118
Medprompt 477 271 60 97 430 54 307 295
MedRaC 170 131 43 83 74 22 237 223
code-only 776 430 93 181 91 17 416 318
rag-only 211 142 44 107 318 35 213 238

Table 4: Error counts by method and error type.

struggle if the necessary medical context is implicit
or not explicitly encoded. This indicates that up-
stream information extraction remains a bottleneck.

5 Ablation Studies

To analyze the contribution of each MedRaC com-
ponent, we conduct controlled ablations.

Formula RAG We compare MedRaC with and
without retrieval, keeping the rest of the pipeline
fixed. In the no-retrieval variant, the LLM is
prompted to infer relevant background information
before extracting the value. As shown in Table 5,
accuracy drops sharply from 64.68% to 25.64%
without retrieval. The formula stage becomes the
primary failure point, with its First Error Attribu-
tion Rate (FE) rising to 71.96% and its Conditional
Correctness (CC) falling to 7.34%. These results
suggest that retrieval is crucial for selecting accu-
rate formulas and for subsequent reasoning.

Components MedRaC MedRaC w/o RAG
Acc % T 64.68 25.64
Formula FE % |, 20.78 71.96
Formula CC % 1 92.66 46.49

Table 5: Comparing accuracies w/ and w/o RAG

Code We compare variants with and without
code execution. In place of code generation, the
model is asked to produce chain-of-thought rea-
soning to calculate the requested value. Since
DeepSeek-v3 struggles to accurately assess Python
code, we rely on reasoning models as judges; re-
sults for DeepSeek-v3 are shown here, with the
rest reported in Appendix F. Across different judge
models, the inclusion of the Code component con-
sistently reduces error rates.

Memory Scaling We expand the formula bank
from 55 to 785 formulas and evaluate retrieval per-

Components MedRaC MedRaC w/o Code
Acc % 1 64.68 53.09
Calc FE % | 3.23 31.88
Calc CC % 1 97.82 76.52

Table 6: Comparing accuracies w/ and w/o Code

formance using OpenAlI’s embedding models. The
smaller set corresponds exactly to the 55 calcu-
lators in MedCalc-Bench, while the larger set in-
cludes nearly all formulas from the MDCalc web-
site’s evidence sections.’

Retrieval is considered successful if any of the
top-k retrieved formulas match the ground-truth
formula for a given question. As shown in Table 7:

* All three embedding models achieve 100%
top-2 accuracy in both the 55- and 785-
formula settings.

e Even with a 14 x increase in formula count,
top-1 accuracy remains high. For in-
stance, text-embedding-ada-002 maintains
100%, while text-embedding-3-large and text-
embedding-3-small still achieve over 96%.

These results suggest that retrieval-augmented
methods are especially well-suited for medical cal-
culation tasks, not because of any inherent superi-
ority of RAG itself, but due to the unique nature of
medical formulas. These formulas are highly struc-
tured, semantically distinct, and domain-specific,
which allows embedding-based retrieval to remain
robust even as the size of the knowledge base in-
creases. This makes our method practically scal-
able to a much broader range of clinical calculators
beyond those in MedCalc-Bench.

3Formulas were obtained via web scraping. Ensure proper
licensing and data usage compliance.
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6 Discussion and Conclusion

Medical calculations are not just a numeric task.
They represent structured, high-stakes reasoning
in clinical workflows. Our study reveals that ex-
isting evaluation metrics, which focus solely on
final answer accuracy, often fail to capture critical
reasoning failures such as formula misuse, variable
misinterpretation, or arithmetic errors. These over-
sights may result in overly optimistic assessments
of model safety and applicability.

We introduce a stepwise evaluation framework
and a structured error taxonomy that enable more
transparent, diagnostic, and actionable feedback
on model behavior. Furthermore, our MedRaC
pipeline improves performance without additional
training by augmenting model reasoning with ex-
plicit retrieval and executable code. Through con-
trolled ablations and human-aligned validation, we
show that each component directly mitigates failure
modes in clinical computation.

Importantly, our findings point to a broader
methodological shift: as language models are de-
ployed in safety-critical domains, evaluating in-
termediate reasoning and domain-grounded cor-
rectness becomes essential. This work advocates
for domain-aware, explanation-oriented evaluation
practices that bridge the gap between model devel-
opment and real-world deployment. By prioritiz-
ing interpretability and modular error analysis over
end-task scores, we take a step toward safer, more
trustworthy Al systems that serve beyond NLP’s
traditional boundaries.

7 Limitations

While our step-wise evaluation framework and
MedRaC pipeline provide more granular insight
into LLM reasoning in medical calculations, sev-
eral limitations remain. First, our benchmark cur-
rently focuses on structured, single-turn tasks in-
volving well-defined formulas. This setup may not
accurately capture the ambiguity, context switch-
ing, or exception handling that are common in real-
world clinical reasoning.

Second, although our dataset covers 55 diverse
calculators and our RAG component scales to hun-
dreds more, all experiments were conducted in En-
glish, using curated clinical notes. The generaliz-
ability of our results to multilingual settings, noisy
EHR data, or patient-facing dialogue remains to be
studied.

Third, the correctness judgments at each reason-

ing step rely on LLM-as-Judge evaluation. While
we validated this against expert annotations, LLM-
based evaluation may still be prone to error propa-
gation, especially for subtle clinical misinterpreta-
tions.

Finally, while MedRaC enhances factual relia-
bility through modular design, it assumes access
to accurate formula banks and structured variables.
Future work should explore more open-ended clin-
ical reasoning and integrate real-time human over-
sight in deployment settings.

8 [Ethics Statement

This study uses only publicly available and
anonymized clinical data, including physician-
written vignettes and structured case reports from
sources such as PubMed Central. No identifiable
patient data were accessed or used.

The MedCalc-Bench dataset and the associated
MedRaC framework are designed solely for evalu-
ating and improving LLM capabilities in medical
calculations under controlled conditions. They are
not intended for diagnostic use or direct clinical
deployment. All outputs must be reviewed and
interpreted by licensed healthcare professionals.

To validate our evaluation pipeline, we engaged
two medical experts in the United States to annotate
reasoning steps and provide structured feedback on
LLM outputs. They were compensated for their
time at a rate of $40 per hour, following academic
ethical standards.

Finally, given the high-stakes nature of clini-
cal MedCalc-Bench disqualifies a model for any
real-world medical calculation task, while passing
should be considered a necessary but not sufficient
condition for use. We caution against deploying
LLMs for clinical decision-making without rigor-
ous benchmarking, error attribution, and domain-
specific oversight. Our work is intended to con-
tribute to the responsible development of Al for
healthcare, rather than replacing expert judgment.
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A Removed Data List and Reasons

From the original 1048 examples, we excluded
108 records (10.3%) after a double-blinded review
by two expert clinicians. Retaining these flawed
items would have distorted both step-wise and end-
to-end accuracy, so they were discarded before any
model-level analysis.

Calculator ID 13 — Estimated Due Date
(Equation-Based).

Rows removed: all.

The gestational-age equation in the benchmark
spreadsheet was mis-typed, yielding uniformly in-
correct targets; therefore, every instance was re-
moved.

Calculator ID 28 — APACHE II Score (Rule-
Based).

Rows removed: all.

The ground-truth rule assigned +4 points when the
alveolar—arterial gradient exceeded 349 mmHg,
but authoritative guidelines award +3 points from
350-499 mmHg and reserve +4 points for > 500
mmHg.

Calculator ID 3 — FeverPAIN Score for Strep
Pharyngitis (Rule-Based).

Rows removed: 451 only.

Wrong ground truth answer.

Calculator ID N/A

Rows removed (45 total):

472, 803, 473, 946, 940, 804, 764, 936,
761, 798, 930, 738, 934, 938, 789, 469,
792, 948, 944, 937, 781, 941, 507, 478,
801, 945, 931, 477, 806, 929, 763, 794,
471, 932, 481, 942, 947, 943, 805, 486,
939, 768, 810, 933, 935, 468

For these cases with negative answers, the data
incorrectly specifies the Lower Limit and Upper
Limit in reversed order—for example, Lower Limit
=—4 and Upper Limit = -5—due to improper han-
dling of negative values. As a result, the original
benchmark evaluation method always yields incor-
rect results.

Calculator ID 11 — QTc Bazett Calculator
(Equation-Based).

Rows removed: all.

Prompt instructions required answers in seconds,
whereas the ground-truth column stored QTc
in milliseconds, causing a systematic unit mis-
match. Standard QT/QTc formulae—including
Bazett—are defined in seconds.

Calculator ID 36 — Caprini Score (2005) (Rule-
Based).

Rows removed: all.

The benchmark granted +1 point to every female
patient. The validated rule adds this point only for
pregnancy or other specific obstetric conditions;
indiscriminate gender scoring overestimates risk.

B Inference Environment

All runs are inference-only—no training is per-
formed. We use two NVIDIA RTX A6000 GPUs
for local execution of open-source models. For
GPT models, we use the default settings. For all
other open-source models, we set the temperature
to 0.6, top-p to 0.95, and repetition penalty to 1.0.
The LLM Evaluation pipeline is conducted using
DeepSeek-chat as the evaluator, and Error Types
are checked by DeepSeek-reasoner.

Model #F  Top-1(%) Top-2 (%)
ada-002 55 100.00 100.00
785 100.00 100.00
3-large 55 98.18 100.00
785 96.36 100.00
3-small 55 94.55 100.00
785 08.18 100.00

Table 7: Top-k retrieval accuracy on formula sets of
size 55 and 785 using OpenAl embedding models. “#F”
denotes number of formulas.

C Human Annotation Details

Our human annotation study was conducted in a
single session with four annotators: two medically
trained experts and two students from medically
related fields. Annotators were provided with the
LLM-generated outputs and asked to assess their
correctness. For outputs judged incorrect, they
were further asked to identify the corresponding
error types.

We initially selected 35 samples from code-
based generations and 15 from non-code gener-
ations. During review, two samples were found
to have incorrect ground truth labels. These were
replaced with two additional randomly selected
samples from the same calculator. However, fur-
ther inspection revealed additional labeling issues.
After discarding all problematic entries, the final
dataset contained 46 validated samples.
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C.1 Human Annotation Guidance

Human Evaluation Guidelines Evaluation Steps
Thank you very much for assisting us with data
annotation. The data to be evaluated is provided
in a Google Sheet, where each row corresponds to
a response generated by a large language model
(LLM) for a medical calculation task. These re-
sponses fall into two broad categories: - Equation-
based Calculation Tasks: Questions that require
explicit mathematical formulae (e.g., computing
BMI). - Rule-based Calculation Tasks: Questions
that involve assigning points based on clinical cri-
teria and summing them (e.g., Wells score). Step
1: Answer Validation Please read the Patient Note,
and carefully read the Question and the Ground
Truth Explanation. Then assess the LLM Answer.

The answer consists of four steps: formula, ex-
tracted values, calculation, and final answer. For-
mula and extracted values are complemented by
their corresponding reasons. Please review each
field carefully and verify that the steps and results
are accurate. If it’s not fully correct, please refer to
the Possible Error Types section on the next page
and select all errors that are present. Note: ONLY if
ALL intermediate steps and the final result are cor-
rect is the LLM Answer considered correct. Note2:
Formula correctness is assessed on both the for-
mula field and the actual formula used during cal-
culation. Step 2: LLM Self-Evaluation Assessment
Next, review the LLM Evaluation columns. These
involves another model’s assessment of previous
LLM’s performance in terms of: - Formula correct-
ness - Extracted values correctness - Mathematical
calculation correctness

For each column, please judge the evaluation
result as one of the following: Correct / Correct
but explanation flawed / Incorrect We greatly ap-
preciate your help and detailed annotations! Pos-
sible Error Types Incorrect Formula Selection The
wrong medical formula is used for the given clini-
cal scenario. Example: Using the Cockcroft-Gault
equation to estimate GFR in an AKI patient instead
of CKD-EPI. Internal Formula Logic or Parameter
Errors (Hallucination) - Equation-based Questions:
The overall formula structure is correct, but compo-
nents such as terms, coefficients, or exponents are
incorrect or hallucinated. Example: Writing Fram-
ingham QTc as QT + 154*1 — RR, where missing
parentheses result in a miscalculation.

- Rule-based Questions: Scoring items are miss-
ing or fabricated. Example: Omitting “recent

surgery” from the Wells score or adding a non-
existent “family history” item. Incorrect Variable
Extraction Values extracted from the patient note
are incorrect in terms of number, timing, or unit.
Example: Extracting “heart rate = 76 bpm” as 176
bpm, or using a lab value from a previous visit in-
stead of the current one. Clinical Misinterpretation
(Rule-based Only) Misunderstanding the clinical
implications of a symptom or finding can lead to
incorrect scoring. Example: “Abdomen was dif-
fusely distended” suggests mild ascites (+2), but
the model assumes no ascites and assigns +1. Miss-
ing Variables The model fails to extract the required
inputs, making it impossible to complete the calcu-
lation. Example: Missing weight or race informa-
tion causes incomplete or halted computation.

Unit Conversion Errors Units are not converted
correctly before calculation, resulting in serious
numerical errors. Example: Using 134 umol/L
creatinine in the MDRD formula without convert-
ing to mg/dL. Missing or Misused Demograph-
ic/Adjustment Coefficients Important adjustment
factors, such as gender, race, BMI-based weight
corrections, or pregnancy status, are omitted or
misused. Example: Not applying a 0.85 coefficient
for female patients in the Cockcroft-Gault equa-
tion. Arithmetic Errors - Equation-based Questions:
Incorrect mathematical operations, such as order-
of-operations errors or basic calculation mistakes.
Example: Writing (A+B) *Cas A+ B *C, or
calculating 3 x 3 as 10.

- Rule-based Questions: Correct scoring items
are identified, but summed incorrectly. Example:
Adding 1 + 2 + 1 and mistakenly writing 5. Round-
ing / Precision Errors Rounding is too aggressive
or insufficient, leading to clinically significant inac-
curacies. Use the number of decimal places in the
LLM’s answer to determine the required precision,
up to a maximum of 2 decimal places. If the LLM
returns 10.65, evaluate it to 2 decimal places with
a tolerance of +0.005. If it returns 10.7, use 1 dec-
imal place with a tolerance of £0.05. If it returns
10.6512, use two decimal places with a tolerance of
+0.05. NOTE: The final answer has already been
pre-checked against the ground truth answer in the
LLM Answer Eval column. You do not need to
manually re-check it based on this precision rule.
This error type should be marked when rounding
errors or insufficient precision in intermediate or
final steps cause the final answer to fall outside the
tolerance range/result in “Incorrect” in the Answer
Evaluation Column.
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D Categorized Evaluation Results

We present categorized evaluation results in Ta-
ble 8. MedRaC delivers substantial improvements
in specialties that depend heavily on numerical cal-
culations—such as Nephrology (39.7% — 90.4%),
Thrombosis/Hematology (28.8% — 76.3%), Clin-
ical Pharmacology (5.0% — 65.0%), and En-
docrinology & Metabolism (65.6% — 90.2%).
These gains stem from two design features: ground-
ing formula selection in trusted medical knowledge
to reduce hallucinations, and executing code to
eliminate arithmetic errors. Although MedRaC
does not outperform all baselines in every domain
(e.g., Oneshot attains higher scores in Pulmonology
and Hepatology), it achieves the most consistent
and large-scale improvements in areas where com-
putational fidelity is paramount.

By contrast, smaller gains are observed in do-
mains such as General Practice/Family Medicine
(10.0% — 40.0%) and Hepatology/Gastroenterol-
ogy (16.9% — 66.2%), where success depends
more on clinical judgment and contextual interpre-
tation than on direct computation. A full compar-
ison across models of varying parameter scales is
included in the appendix.

Model scale further differentiates performance
across domain types. In narrative-heavy, guideline-
driven specialties (e.g., Hepatology/Gastroenterol-
ogy, Infectious Disease, General Practice/Family
Medicine), larger models within the same family
(e.g., Qwen, LLaMA) exhibit stronger clinical re-
call and decision-making, reflecting the benefits
of broader contextual reasoning. Conversely, in
deterministic, calculation-intensive domains (e.g.,
Endocrinology & Metabolism, Obstetrics & Gy-
necology), even smaller models paired with code
execution approach the performance ceiling. Be-
yond this point, increasing model size yields di-
minishing returns and may occasionally introduce
over-generation or minor regressions.

E Error Type Results of other Models

Including Llama3.1-8B-Instruct, we evaluated a
total of four models under both Zero-shot CoT
and MedRaC: two reasoning models (GPT-4o-
mini, Qwen3-4B) and two general-purpose models
(Llama3.1-8B-Instruct, Qwen3-8B). The results are
consistent with the trend observed for Llama3.1-
8B-Instruct. In addition, we find that reasoning
models show greater improvements in value extrac-
tion.

Error Type Counts for Llama3.1-8B-Instruct
Zero-Shot CoT vs. MedRaC

Zero-Shot CoT
= MedRaC

Formula Unit  Demographic Arithmetic _ Variable  Missing  Rounding  Clinical

Figure 4: Error Type Counts for Llama3.1-8B-Instruct

Error Type Counts for GPT-40-mini
Zero-Shot CoT vs. MedRaC

Zero-Shot CoT
= MedRaC

Count
w
8
3

Formula Unit  Demographic Arithmetic  Variable  Missing  Rounding  Clinical

Figure 6: Error Type Counts for gpt-40-mini

Error Type Counts for Qwen3-4B
Zero-Shot CoT vs. MedRaC

Zero-Shot CoT
700 = MedRaC

Count

Formula Unit  Demographic Arithmetic _ Variable  Missing  Rounding  Clinical

Figure 7: Error Type Counts for qwen3-4B

Error Type Counts for Qwen3-8B
Zero-Shot CoT vs. MedRaC

Zero-Shot CoT
= MedRaC

Count

Formula Unit Demographic Arithmetic _ Variable  Missing

Figure 8: Error Type Counts for qwen3-8B

F Additional Ablation Results

We additionally report the evaluation of the code
component by GPT-4.1 and GPT-40-mini.
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Specialty MedRaC CoT MedPrompt Self-Refine One-shot

198/219 87/219 15/219 977219 169/219

Nephrology (90.41%) (39.73%) (6.85%) 44.29%) (77.17%)

166/236 76/236 8217236 103/236  153/236

Cardiology (70.34%) (32.20%) (34.75%) (43.64%)  (64.83%)
45/59 17759 17759 25/59 44 /59

Thrombosis/Hematology (76.27%) (28.81%) (28.81%) (42.37%) (74.58%)

78 /100  40/100 33/100 54 /100 93/100

Pulmonology & Critical Care (78.00%) (40.00%) (33.00%) (54.00%)  (93.00%)
43 /65 11/65 8/65 23 /65 50/ 65

Hepatology/Gastroenterology (66.15%) (16.92%) (12.31%) (35.38%) (76.92%)

110/122 80/122 41/122 91/122 105/ 122

Endocrinology & Metabolism (90.16%) (65.57%) (33.61%) (74.59%) (86.07%)
38/40 36/40 27740 36/40 27740

Obstetrics & Gynecology (95.00%) (90.00%) (67.50%) (90.00%)  (67.50%)
26/39 16/39 8739 10/ 39 19/39

Infectious Disease (66.67%) (41.03%) (20.51%) (25.64%)  (48.72%)
26/40 2/40 22 /40 4/40 22740

Clinical Pharmacology (65.00%) (5.00%) (55.00%) (10.00%)  (55.00%)
8/20 2/20 1/20 3/20 9/20

General Practice/Family Medicine (40.00%) (10.00%) (5.00%) (15.00%)  (45.00%)

Table 8: Correct counts and percentages across specialties (best per specialty in bold).

Evaluation MedRaC w/o Code
Formula Error (FE) |

DeepSeek-R1 (reasoning) 3.23 31.88
GPT-4.1 2.69 7.02
GPT-40-mini (reasoning) 0.85 16.95
Calculation Correctness (CC) 1

DeepSeek-R1 (reasoning) 97.82 76.52
GPT-4.1 98.97 96.38
GPT-40-mini (reasoning) 99.53 86.95

Table 9: Ablation results of MedRaC with and without
the Code component. FE = Formula Error (lower is
better), CC = Calculation Correctness (higher is better).
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G Case study: Hallucinations in LLM’s answer and how our LLLM Eval pipeline detects
them

Basic record (Row 369, Sodium Correction for Hyperglycemia calculator)

Patient 57-year-old male; Nayeas = 127 mmol/L (127 mEq/L); glucose = 527 mg/dL

Clinical note
Diabetic foot with massive hyperglycaemia and haemodynamic instability (full narrative in
dataset)

Question  “What is the corrected sodium concentration (mEq/L) using the Hillier 1999 equation at
admission?”

Gold-standard reasoning

Hillier’s formula (?):
Nacorr = Napeas + 0.024 (glucose — 100).

127 +0.024 (527 — 100) = 137.248 mEq/L.
Baseline tolerance (dataset,£6.8624): [130.39, 144.11] mEq/L.

LLM original answer (excerpt)
“Corrected sodium (mEq/L) = 127 + 0.016x527 = 127 4 8.432 = 135.432 mEq/L.”

Why the baseline benchmark says “Correct”

The Medcalc benchmark inspects only whether the final number lies within the broad interval above.
Because 135.432 € [130.39, 144.11], the response is labelled “Correct”, even though the equation is
mis-specified.

Our stricter numeric rule

We judge the final figure to the next decimal place beyond the model’s precision (max. two places). The
LLM output has three decimals, so we round to two and require agreement within +0.005:

135.43 — 137.25 | = 1.82 > 0.005,

hence the answer is incorrect despite passing the coarse range check.

Step-by-step LLM Eval verdict

Component Result Key comment

Formula selection Incorrect Used 0.016 x glucose and omitted —100.
Entity extraction Correct Na =127, glucose =527 captured accurately.
Arithmetic steps Correct 0.016 x 527 = 8.432, addition correct.
Final answer (precision-aware)  Incorrect 135.432 # 137.248 under strict tolerance.
Overall Incorrect Hidden equation error & numeric miss flagged.

Clinical significance

A two-point sodium underestimate may appear minor, but in critically ill, haemodynamically unstable
patients, such mis-corrections can drive inappropriate fluid or insulin therapy. Our granular pipeline
reveals both the hallucinated coefficient and the subtle numeric shortfall, preventing a misleading “pass”
and supporting clinically defensible deployment of LLMs.
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H Prompt Templates

In this appendix, we present the exact prompt templates used in our evaluation pipeline. All prompts
follow a structured format consisting of a system message and a user message. For prompts related to
reasoning variants such as Direct, CoT, Oneshot, and Self-Refine, please refer to our released code.

H.1 LLM Evaluation Pipeline Prompt

Prompt for LLM Eval Pipeline

1

2 def _gen_eval_prompt(self, answer, reference, name_of_step):

3 # System message is the same for all steps

4 system_msg = (

6 )

8 # For calculation steps, omit the gold-standard reference entirely
9 if name_of_step == :

0 user_msg = (

I f

.| |
6

8

9 )

0 return system_msg, user_msg

2 # For all other steps, include the gold-standard reference first
user_msg = (

.f_‘

f

9 )

1 if name_of_step ==
2 user_msg += (

8 )
9 elif name_of_step ==
0 user_msg += (
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7 )
8 elif name_of_step in ( , ):
9 user_msg += (

)

7 return system_msg, user_msg

H.2 LLM Judge for Error Types

H.2.1 Formula Error

Formula Error Prompts

> | def build_formula_error_prompts(
3 ground_truth_formulas: List[str],
answers: List[str],
5 1) -> List[Tuplelstr, strll:
6 prompts = []
for gt, ans in zip(ground_truth_formulas, answers):
8 system_message = SYS_MSG.format(error_type= )
9 user_message = (
0 f
i f

0 recent
surgery
family history
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s )
9 prompts.append((system_message, user_message))
0 return prompts

H.2.2 Variable Error

Variable Error Prompts

def build_variable_extraction_error_prompts(

4 patient_notes: List[str],

5 questions: List[str],

6 ground_truth_Extracted_values: List[str],

7 answers: List[str],

s |) -> List[Tuplelstr, strll:

9 prompts = []

0 for note, q, gt, ans in zip(patient_notes, questions,
ground_truth_Extracted_values, answers):
system_message = SYS_MSG.format(error_type=

)

2 user_message = (

f’

.f.‘
5 f
6 f
8
9
N |
4
8 )
9 prompts.append((system_message, user_message))
0 return prompts

H.2.3 Misinterpretation Error

Misinterpretation Error Prompts

> |def build_clinical_misinterpretation_prompts(
patient_notes: List[str],

questions: List[str],

5 ground_truth_explanations: List[str],

6 answers: List[str],

7 1) => List[Tuple[str, strl]:
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8 prompts = []

9 for note, q, gt, ans in zip(patient_notes, questions,
ground_truth_explanations, answers):

0 system_message = SYS_MSG.format(error_type=

)

user_message = (

- ~h —h h|

9 )
0 prompts.append((system_message, user_message))
1 return prompts

\

H.2.4 Missing Variable Error

Missing Variable Error Prompts

> |def build_missing_variable_prompts(

3 patient_notes: List[str],

4 questions: List[str],

5 ground_truth_Extracted_values: List[str],

6 answers: List[str],

7 1) => List[Tuple[str, strl]:

8 prompts = []

9 for note, q, gt, ans in zip(patient_notes, questions,
ground_truth_Extracted_values, answers):

0 system_message = SYS_MSG.format(error_type=
)

user_message = (

- —h —h hl
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8 )
9 prompts.append((system_message, user_message))
0 return prompts

H.2.5 Unit Error

Unit Error Prompts

3 |def build_unit_conversion_error_prompts/(

4 patient_notes: List[str],

5 questions: List[str],

6 ground_truth_explanations: List[str],

7 answers: List[str],

8 |) -> List[Tuplel[str, strll:

9 prompts = []

0 for note, q, gt, ans in zip(patient_notes, questions,
ground_truth_explanations, answers):
system_message = SYS_MSG.format(error_type= )
2 user_message = (

- —h —h hl

9 )
0 prompts.append((system_message, user_message))
1 return prompts
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H.2.6 Demographic Error

Demographic Error Prompts

def build_adjustment_coefficient_error_prompts(
patient_notes: List[str],

5 questions: List[str],

6 ground_truth_explanations: List[str],

7 answers: List[str],

g8 |) -> List[Tuplelstr, strll:

9 prompts = []

0 for note, q, gt, ans in zip(patient_notes, questions,

ground_truth_explanations, answers):

system_message = SYS_MSG.format(error_type=

H.2.7 Arithmetic Error

Arithmetic Error Prompts

3 |def build_arithmetic_error_prompts(
4 answers: List[str],

5 ) -> List[Tuplelstr, strll:

6 prompts = []

7 for ans in answers:
8 system_message =
9 user_message = (
0 ‘F

SYS_MSG. format(error_type= )
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6 )
7 prompts.append((system_message, user_message))
8 return prompts

H.2.8 Rounding Error

Rounding Prompts

def build_rounding_error_prompts/(

4 ground_truth_explanations: List[str],
5 answers: List[str],

6 ) =-> List[Tuple[str, strl]l:

7 prompts = []

8 for gt, ans in zip(ground_truth_explanations, answers):
9 system_message = SYS_MSG.format(error_type=
)
0 user_message = (
1 f
2 f
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)

prompts.append((system_message, user_message))

return prompts
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