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Abstract

Large-scale Vision-Language Models (LVLMs)
output text from images and instructions,
demonstrating capabilities in text generation
and comprehension. However, it has not been
clarified to what extent LVLMs possess the abil-
ity to understand the knowledge necessary for
explaining images, the complex relationships
between various pieces of knowledge, and how
they integrate these understandings into their
explanations. To address this issue, we propose
a new task: the artwork explanation genera-
tion task, along with its evaluation dataset and
metrics for quantitatively assessing the under-
standing and utilization of knowledge about
artworks. This task is apt for image description
based on the premise that LVLMs are expected
to have pre-existing knowledge of artworks,
which are often subjects of wide recognition
and documented information. It consists of two
parts: generating explanations from images and
titles of artworks, and generating explanations
using only images, thus evaluating the LVLMs’
language-based and vision-based knowledge.
Alongside, we release a training dataset for
LVLMs to learn explanations that incorporate
knowledge about artworks. Our findings in-
dicate that LVLMs not only struggle with in-
tegrating language and visual information but
also exhibit a more pronounced limitation in
acquiring knowledge from images alone'.

1 Introduction

In the field of Vision & Language (V&L), Large
Language Models (LLMs) (Touvron et al., 2023;
Chiang et al., 2023; Bai et al., 2023a; Jiang et al.,
2023) have been combined with visual encoders
to create Large-scale Vision-Language Models
(LVLMs) (Li et al., 2023b; Liu et al., 2024a; Bai
et al., 2023b; Ye et al., 2023b). These models have
achieved success in various V&L benchmarks (Li

!The datasets (ExpArt=Explain Artworks) are available at
https://huggingface.co/datasets/naist-nlp/ExpArt

u Impressionism

perspective

Employ sfumato, as da Vinci did,
using a soft brush to blend colors
for a gradient that captures
Renaissance depth and realism.

| want to paint a renaissance style
painting, how do | get a gradient?

Figure 1: An example of creative assistance using an
LVLM, harnessing comprehensive artistic knowledge
for guidance.

et al., 2023a; Fu et al., 2024; Liu et al., 2024b; Bai
et al., 2023c). Despite these advancements, tasks
like Visual Question Answering (VQA) (Zhang
et al., 2022b; Yue et al., 2023), Image Captioning
(Agrawal et al., 2019; Lin et al., 2014), and query-
ing models about artwork-related information (Gar-
ciaet al., 2020; Cetinic, 2021; Bai et al., 2021) have
primarily focused on assessing models’ abilities to
handle isolated pieces of knowledge. These tasks,
while valuable, do not fully capture the complex-
ity of synthesizing and explaining interconnected
knowledge in real-world scenarios (Kawaharazuka
et al., 2024), nor the difficulty of generating coher-
ent text to explain this knowledge. Current evalua-
tions often result in superficial image descriptions,
lacking extensive background knowledge and inter-
relationships between subjects.

A pertinent example of this limitation can be ob-
served in the context of creative support for paint-
ings and photographs. As shown in Figure 1, these
models must produce explanations that integrate
knowledge of the artwork’s theme, historical con-
text, associated works, and artistic movement, high-
lighting a gap in current capabilities. Since this task
goes beyond simply recognizing disparate knowl-
edge, it is crucial for LVLMs to deeply understand
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Type

Template

Instruction

Output

Section

Explain the {Section} of this
artwork, {Title}.

Explain the History of this
artwork, Mona Lisa.

Of Leonardo da Vinci’s works, the
Mona Lisa is the only portrait whose
authenticity...

Subsection

Explain the {Subsection} about
the {Section} of this artwork,
{Title}.

Explain the Creation and date
about the History of this
artwork, Mona Lisa.

The record of an October 1517 visit by
Louis d’Aragon states that the Mona
Lisa...

Sub subsection

Explain the {Sub subsection}
about the {Subsection} of the

Explain the Creation about the
Creation and date of the History

After the French Revolution, the paint-
ing was moved to the Louvre, but

{Section} in this artwork,
{Title}.

in this artwork, Mona Lisa.

spent a brief period in the bedroom of
Napoleon (d. 1821) in the....

Table 1: Examples of instructions for the proposed task. Blue indicates the artwork title, and red indicates the
corresponding Wikipedia sections. Complete prompt templates are provided in Appendix E.4.

the interrelationships of artwork knowledge to inte-
grate them into explanations comprehensively.

To address this gap, we propose a new task and
evaluation metrics designed to measure LVLMs’
capability in generating comprehensive explana-
tions about artworks. Our task requires LVLMs to
generate explanations in response to given instruc-
tions, based on input images and titles of artworks.

We have constructed a dataset from about 10,000
English Wikipedia articles of artworks for this
task and also release a training dataset to facili-
tate LVLMs in learning to generate explanations in-
volving artistic knowledge. Furthermore, we have
evaluated LVLMs currently achieving the highest
performance in various V&L benchmarks. The re-
sults show that while the LVLMs retain the artistic
knowledge inherited from their base LLMs, they
do not adequately correlate this knowledge with
the provided visual information.

2 LVLMs

LVLMs (Li et al., 2023b; Liu et al., 2024a; Bai
etal., 2023b; Ye et al., 2023b) integrate a Vision En-
coder (Li et al., 2023b) trained through contrastive
learning to process visual information with Large
Language Models (LLMs) (Touvron et al., 2023;
Chiang et al., 2023; Bai et al., 2023a; Jiang et al.,
2023). This integration requires further training
to effectively combine vision and language capa-
bilities. As a result, these LVLMs significantly
outperform conventional pre-trained models, even
those with over ten times more parameters (Alayrac
et al., 2022; Driess et al., 2023).

However, it is unclear whether the knowledge
from the LLM and the Vision Encoder are appro-
priately aligned by the additional network layers in
LVLMs (Chen et al., 2024a). Generating explana-
tions that involve knowledge about art especially

requires careful and systematic alignment and uti-
lization of the information from both the Vision
Encoder and the LLM. This challenge motivates us
to design a new task for LVLMs.

3 Task and Evaluation Metrics

3.1 Task

Our task requires LVLMs to generate explanations
following instructions with images and titles. Ex-
amples of the instructions are shown in Table 1. As
demonstrated by these examples, each instruction
is categorized into three hierarchical levels, Section,
Subsection, and Sub subsection, determined by the
corresponding positions in Wikipedia articles (See
§3). The proposed task addresses the following
two settings with or without titles:

With Title In the context of creative assistance,
the title often contains the author’s intent for the
artwork, and it is desirable to generate explanations
considering this intent. In this setting, both the im-
age and its title are inputs, testing whether LVLMs
can generate appropriate explanations based on
both language and visual information.

Without Title As shown in Figure 1, there are
cases where a title does not exist potentially be-
cause the artwork is in the process of creation. This
setting tests whether LVLMs can generate appro-
priate explanations using only visual information
from images. Additionally, analyzing the perfor-
mance changes with and without titles allows us to
verify the LVLMs’ pure vision-based knowledge.
Furthermore, to thoroughly assess the generaliza-
tion capabilities of LVLMs, we compare two cases:
1) a seen case in which images are observed during
finetuning, and 2) an unseen case in which images
are not observed during finetuning.



4

Image h
~~~~ Rank  Title iTitle
Section T —
1 Mona Lisa ection
2 Girl with a Pearl Earring Entities
_______ =
~eal 3 The Scream
This article is about the painting. Fom Qther uses, see. A G . Image
> uernica D
Girl with a Pearl Ea disambigua
irl with a Pearl Earring (disam ug,mmnm\ . Title
Girl with a Pearl Earring (Dutch: Meisje met de ~ 5 Venus de Milo " {
02l St . Section I
parep1)2) is an oil painting by Dutch Golden Age 7 Sunflower L
painter Johannes Vermeer, dated ¢, 1665. Going by untlowers Entities
various names over the centuries, it became known by 7 David -
its present title towards the end of the 20th century T
after the earring worn by the girl portrayed there.1Sl The 8 The Last Supper
work has been in the collection of the Mauritshuis in 9 Café Terrace at Night FUNN A, A \
'
The Hague since 1902 and has been the subject of '
i and cinematic 10 The Starry Night Templates '
Section I 1 test )
= '
~~~~ Y
description of a "head" that was not meafNg be a l
portrait. It depicts a European girl wearing "eXdi¢ Vo 4 Unseen
dress", an "oriental turban'’, and what appears o B @ | | argist X Johannes Vermeer
very large pearl as an earring."] The subject of the %, | | year ‘\ .
painting is unknown, with it being possible either that% Type r\me
she was a real model, or that Vermeer created a morel | | yoqium
generalised and mysterious woman, perhaps \] [ Movement ~ Dutcholden Age painting
representing a Sibyl or biblical figure.[*) There has beery | . . '\
‘ '\ Dimensions 44.5 cm %\39 cm (17.5in
speculation that she is the artist's eldest daughter, N x150n) N
Maria, though this has been dismissed as an Lo Waurishuis, Thagague, 4
anachronism by some art historians, 5116’ < _Netherlands . ,'
(= Ao
K ST Abstraction /
+ Girl with a Pearl Earring, Dutch, oil painting, Dutch Golden Age, Description J
1 Painter Johannes Vermeer, Mauritshuis, The Hague, tronie, turban, B \‘ Painting /¢
h = = o -
1 pearl, earring, Sibyl Conservation ===

Figure 2: Workflow diagram illustrating the methodology for dataset creation from Wikipedia articles on artworks,
involving selection, filtering, data balancing, and instructional templating for LVLM training and evaluation.

Train Dev  Test (Seen) Test (Unseen)
Images 7,704 963 2,407 963
Instruction 18,613 2,677 2,485 2,597

Table 2: Number of images and instructions in the cre-
ated dataset. Details are provided in Appendix E.3.

3.2 Evaluation Metrics

Since our task is a kind of natural language gen-
eration (NLG), we utilize popular metrics in NLG
for evaluation, i.e., BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and BERTScore (Zhang*
et al., 2020). To further focus on the ability to
generate explanations for artworks, we propose the
following three evaluation metrics:

Entity Coverage We evaluate how accurately the
generated text includes relevant entities (see §4)
related to the artwork mentioned in the reference
description, using two evaluation settings: exact
match and partial match (Li et al., 2022a).

Entity F1 We evaluate the frequency of occur-
rence of entities related to the artwork found in
the generated and reference explanations by F1.
Inspired by ROUGE, we consider the highest fre-
quency of occurrence of any entities within either
the generated explanation or the reference as the
upper limit of occurrence frequency to calculate
precision and recall.

2For the formulas of each metric, see Appendix C.

Entity Cooccurrence This metric evaluates not
only the coverage of individual entities but also
how their interrelations are contextually combined
to form a coherent explanation. Specifically, it
considers pairs of entities that co-occur within a
sentence and its preceding and following n sen-
tences, and measures the coverage of these pairs
to assess how well the model understands and in-
tegrates relationships among relevant knowledge.
By setting n to exceed the number of sentences
in the generated explanation, co-occurring entity
pairs can be captured across the entire text. To
discourage long and redundant explanations, we
incorporate a length penalty inspired by BLEU (Pa-
pineni et al., 2002), but designed for the opposite
purpose. Unlike BLEU’s brevity penalty, which
penalizes excessively short generations, our length
penalty assigns a penalty to long outputs relative to
the reference text. This design encourages models
to generate concise explanations while maintaining
accurate and contextually integrated knowledge.

4 Dataset Creation

The process of dataset creation, illustrated in Fig-
ure 2, involved the following steps. Detailed
dataset statistics are provided in Appendix E.

STEP 1: We collected all the artwork articles
from the English Wikipedia that have an infobox
(about 10,000), divided them into sections, and cre-
ated descriptive texts. Additionally, hyperlinked



LVLM Setting  Size BLEU ROUGE BertScore _ PN COV. poiiy FI Entity Cooccurrence Avg. Length
1 2 L exact partial n=0 n=1 n=2 n=c0
With Title (Language information + Visual information)
mPLUG-OwI2 Unseen 7B 1.16 268 59 17.1 833 13.3 21.1 15.6 161 138 135 129 100
LLaVA-NeXT (Vicuna-7B) Unseen 7B 0.81 165 3.7 11.0 80.8 9.0 14.1 10.6 0.83 074 0.73 0.69 119
LLaVA-NeXT (Vicuna-13B)  Unseen 13B 1.18 170 4.1 10.8 80.5 11.5 16.4 13.1 .12 1.04 1.02 0.99 133
LLaVA-NeXT (Yi-34B) Unseen 34B 0.72 139 33 9.5 80.2 18.5 27.8 16.1 026 022 021 0.19 869
Qwen-VL-Chat Unseen 7B 1.64 282 6.8 174 83.5 17.8 26.3 20.8 190 166 1.63 157 155
Qwen-VL-Chat (FT) Unseen 7B 396 272 108 214 84.2 19.7 272 22.0 4.86 435 423 413 153
GPT-4-Vision Unseen - 2.40 286 7.6 16.3 83.3 28.4 371 31.6 3.02 3.00 298 3.05 264
Without Title (Visual information)

mPLUG-OwI2 Unseen 7B 021 233 358 150 82.3 4.0 10.5 43 026 029 026 024 91

LLaVA-NeXT (Vicuna-7B) Unseen 7B 0.13 16.0 221 10.6 80.1 1.8 6.3 1.8 0.07 0.10 0.10 0.11 125
LLaVA-NeXT (Vicuna-13B)  Unseen 13B 0.17 166 235 110 80.8 2.1 7.1 22 0.07 0.08 0.08 0.07 164
LLaVA-NeXT (Yi-34B) Unseen 34B 0.15 1.5 188 8.1 78.7 3.5 10.5 2.8 0.03 0.03 0.02 0.02 903
Qwen-VL-Chat Unseen 7B 047 248 450 154 82.5 7.5 14.6 8.4 0.56 0.60 0.58 0.55 128
Qwen-VL-Chat (FT) Unseen 7B 2.07 245 17179 18.6 834 129 19.6 14.7 225 203 200 196 153
GPT-4-Vision Unseen - 0.10 23.1 443 132 81.9 11.6 19.0 12.3 1.18 135 137 134 223

Table 3: Results of LVLMs under the With Title and Without Title settings. Bold fonts indicate the best scores for
each metric. Avg. Length denotes the average number of generated tokens (see Figure 4).

texts within the articles were extracted as entities
related to the artwork. Each descriptive text is ac-
companied by four pieces of information: the title,
the hierarchy of sections (i.e., Section, Subsection,
Sub subsection), the image, and the entities.

STEP 2: We filtered out sections that did not
contribute directly to the understanding of artwork,
articles without images, and texts not specific to
individual art pieces or artworks to ensure the rele-
vance and quality of the content for analysis.

STEP 3: To prevent biases that may arise due
to the notoriety of the artworks included in the
LVLM’s training data, we shuffled the data. First,
we ranked the data using six metrics: page views,
number of links, number of edits, number of ref-
erences, number of language versions, and article
length. We then evenly split the data into test, de-
velopment, and training sets at a ratio of 1:1:8 to
maintain the average ranking across these sets (Ta-
ble 2). As described in §3, for the Seen set, we
used training images with no overlap in reference
text to prevent leakage. For the Unseen set, neither
images nor reference texts are from the training set.

STEP 4: The sorted data for each set were then
formatted into instructions using the templates de-
scribed in Section 3.1. To diversify the training
data, we prepared seven different templates in-
spired by Longpre et al. (2023) for model training.

5 Evaluation

5.1 Setup

We evaluated four models: mPLUG-OwI2 (Ye
et al., 2023b), LLaVA-NeXT (Liu et al., 2024a),
Qwen-VL-Chat (Bai et al., 2023b), and GPT-

4-Vision (OpenAl et al., 2024), along with an
instruction-tuned version of Qwen-VL-Chat (FT),
fine-tuned by our dataset with LoRA (Dettmers
et al., 2022a).> As shown in Table 2, the data is
divided based on images. In the Few-shot setting,
by utilizing this data division, to prevent answer
leakage in Few-shot samples, for test (Seen) evalua-
tions, samples were selected from the test (Unseen)
set, and vice versa for test (Unseen) evaluations.

5.2 Results

With and Without Title Table 3 shows the re-
sults. In the "With Title" setting, GPT-4-Vision
achieved the highest performance in Entity Cov-
erage and Entity F1, with Qwen-VL-Chat (FT),
Qwen-VL-Chat, and LLaVA-NeXT (Yi-34B-Chat)
also showing strong performance. Notably, Qwen-
VL-Chat (FT) reached the highest precision in En-
tity Cooccurrence, showcasing its exceptional abil-
ity to accurately contextualize knowledge within
generated text. This proves the superiority of our
instruction-tuning dataset. Additionally, consider-
ing the average reference token length is 174 in
the unseen setting, the significantly lower perfor-
mance of LLaVA-NeXT (Yi-34B-Chat) indicates
excessive token lengths may result in redundant
text, which is unsuitable for generating concise
explanations. In the "Without Title" setting, Qwen-
VL-Chat (FT) outperformed GPT-4-Vision across
all metrics, indicating that our dataset enables ac-
curate knowledge association and generation from
visual information. Comparative analysis of the
models’ performance in scenarios with and without
titles indicated a consistent drop in performance

3Further details for the evaluation setup and results for
other models are described in Appendix D and Appendix A.



LVLM Setting  Size BLEU ROUGE BertScore MY CO¥.  poiiy FI Entity Cooccurrence Avg. Length
1 2 L exact partial n=0 n=1 n=2 n=c0
With Title (Language information + Visual information)
Qwen-VL-Chat Unseen 7B 1.64 282 6.8 17.4 83.5 17.8 26.3 20.8 190 166 163 1.57 155
Qwen-VL-Chat One-shot Unseen 7B 1.96 276 7.6 18.0 84.0 18.0 26.0 20.9 271 234 230 221 98
Qwen-VL-Chat Three-shot Unseen 7B 247 272 85 18.7 844 19.3 273 22.8 365 314 305 297 77
Qwen-VL-Chat (FT) Unseen 7B 3.96 272 108 214 84.2 19.7 272 22.0 4.86 435 423 413 153
Qwen-VL-Chat (FT) One-shot Unseen 7B 3.96 269 106 21.1 84.0 19.7 27.0 22.0 475 420 4.02 397 154
Qwen-VL-Chat (FT) Three-shot  Unseen 7B 3.85 269 106 21.0 84.2 19.5 26.8 222 471 401 394 386 128
Qwen-VL-Chat Seen 7B 1.69 279 6.7 17.3 83.4 16.2 245 19.8 1.87 157 154 147 153
Qwen-VL-Chat One-shot Seen 7B 2.02 273 75 17.8 84.0 17.4 253 20.8 295 249 245 236 95
Qwen-VL-Chat Three-shot Seen 7B 2.34 265 822 183 84.3 17.9 25.8 21.3 343 272 269 261 74
Qwen-VL-Chat (FT) Seen 7B 4.13 27.6 114 218 84.5 19.8 274 235 547 443 430 4.19 133
Qwen-VL-Chat (FT) One-shot Seen 7B 4.06 274 11.1 216 84.4 19.8 27.3 22.7 543 445 440 430 134
Qwen-VL-Chat (FT) Three-shot Seen 7B 4.05 272 11.1 215 84.6 19.5 27.0 224 522 421 419 4.10 113
Without Title (Visual information)
Qwen-VL-Chat Unseen 7B 0.47 248 450 154 82.5 7.5 14.6 8.4 056 0.60 058 055 128
Qwen-VL-Chat One-shot Unseen 7B 0.65 234 481 153 83.0 8.6 154 9.7 .15 1.10 1.04 1.12 87
Qwen-VL-Chat Three-shot Unseen 7B 0.69 222 495 150 83.3 9.3 15.6 10.4 121 122 1.17 111 70
Qwen-VL-Chat (FT) Unseen 7B 207 245 779 18.6 834 12,9 19.6 14.7 225 203 200 1.96 153
Qwen-VL-Chat (FT) One-shot Unseen 7B 1.95 241 750 183 83.3 12.6 19.2 14.3 200 192 186 1.84 152
Qwen-VL-Chat (FT) Three-shot Unseen 7B 2.03 243 7.67 184 83.6 12.9 19.6 14.6 240 200 194 191 131
Qwen-VL-Chat Seen 7B 0.40 244 432 152 82.5 5.6 12.7 6.9 040 041 037 035 124
Qwen-VL-Chat One-shot Seen 7B 0.53 225 445 148 83.0 72 13.9 8.6 072 072 070 0.66 82
Qwen-VL-Chat Three-shot Seen 7B 0.69 222 495 150 83.3 9.3 15.6 10.4 121 122 1.17 1.11 68
Qwen-VL-Chat (FT) Seen 7B 2.09 249 8.00 18.9 83.8 124 19.4 15.0 219 185 182 178 127
Qwen-VL-Chat (FT) One-shot Seen 7B 1.99 244 772 185 83.6 11.5 18.7 14.0 1.89 155 151 1.48 130
Qwen-VL-Chat (FT) Three-shot Seen 7B 2.03 243 774 184 83.8 11.6 18.5 139 1.89 149 145 142 117

Table 4: Results of Fine-tuning and Few-shot settings for LVLMs. Bold fonts indicate the best scores.

LLM Entity Cov. Entity F1 Entity Cooccurrence Avg. Length
exact partial n=0 n=1 n=2 n=00
With Title (Language information)
LLaMA2 185 273 20.8 1.04 088 082 0.81 366
Vicuna 7B 123 186 14.1 143 133 132 1.23 129
Vicuna 13B 194 28.1 23.0 2.16 199 1.89 1.77 209
Yi-34B-Chat 17.9 254 13.0 093 086 0.83 0.81 745
Qwen-Chat 7.6 11.8 8.5 0.52 043 041 040 106
GPT-4 317  40.2 323 2.54 250 2.53 2.59 374

Table 5: Results of LLMs (Unseen). Notations are the
same as Table 3.

across the board. This observation shows the chal-
lenges of generating text based solely on visual
inputs. All models, including advanced ones like
GPT-4-Vision, heavily depend on text-based cues.

LLMs vs. LVLMs Table 5 shows the results
of explanation generation in the With Title setting
without images for text-only LLMs®*. The results
indicate that GPT-4 (OpenAl et al., 2023) achieves
the highest accuracy across all metrics, demonstrat-
ing strong knowledge about artworks, followed by
LLaMAZ2 (Touvron et al., 2023), Vicuna (Chiang
et al., 2023) and Yi-34B-Chat (Al et al., 2024) **in
this setting**. Conversely, Qwen-Chat (Bai et al.,
2023a) performs lower. Additionally, the compar-
ison of Tables 3 and 5 reveals the extent of text-
only LLM knowledge retention through integrated
vision and language learning. Knowledge about
artworks is compromised in other LVLMs due to
integrated learning of vision and language. On the
other hand, Qwen-VL-Chat achieves a 10% perfor-

4Since LLMs do not handle visual information, we evalu-
ate them using titles as textual cues.

mance boost in titled settings, signaling successful
synthesis of vision and language knowledge.

Few-shot vs. Fine-tuning  The results in Table 4
show that Fine-tuning outperforms the pure model
and Few-shot settings. While Few-shot settings
improve with more shots, they do not reach Fine-
tuning. Considering the average token length of
174 in the reference sentences, the reduced length
in Few-shot settings suggests a focus on essential
terms but yields less comprehensive explanations.
In contrast, Fine-tuning allows the model to learn
vocabulary and the format for generating coher-
ent explanations, leading to better performance.
However, the lack of differences between Seen and
Unseen settings in Fine-tuning indicates that align-
ment of visual and textual information requires
simultaneous learning of images and descriptions.

6 Conclusion

We introduced a new task, artwork explanation gen-
eration, and its dataset and metrics to quantitatively
evaluate the artistic knowledge comprehension and
application. Using LVLMs, we assessed their re-
tention and utilization of artworks knowledge from
base LLMs, with or without artwork titles. Our
findings indicate that while LVLMs maintain much
of the artistic knowledge from their LLM counter-
parts, they do slightly lose some in practice. Fur-
thermore, the challenges in generating text solely
based on visual inputs clearly show a significant
dependency on text-based cues.



Limitations

Our research elucidates the intricacies of integrat-
ing visual and language abilities within LVLMs,
yet it encounters specific limitations that define the
scope of our findings.

Data Source A principal limitation is our re-
liance on the diverse authorship and open editing
model of Wikipedia as our data source. Variations
in detail, writing style, and information density
across entries may lead to inconsistencies in the
dataset, potentially skewing model performance
and affecting the universality of our conclusions.
Additionally, we did not filter out generic entities
such as "artwork" to avoid bias. However, more
specific entity filtering may improve dataset rele-
vance to artworks. Moreover, relying on Wikipedia
limits our dataset to well-known artworks, omitting
lesser-known but culturally significant works not
featured on the platform, thereby missing a broader
spectrum of artistic significance.

Human Evaluation While our current study
does not include human evaluation, it is crucial
to assess whether the models can provide insights
beyond Wikipedia and to evaluate LVLM expla-
nations from an expert perspective for real-world
applications. Another LVLM-based image ex-
planation task, image review generation (Saito
et al., 2024), conducts human evaluation using non-
expert annotators. Unlike their work, our task re-
quires expert knowledge to judge the quality of
generated explanations. Thus, due to the cost, ex-
pert evaluation of generated explanations across
various genres is left for future work.

Integration of Vision and Language Representa-
tions Simultaneously, our study identifies a cru-
cial limitation in the process of integrating Vision
Encoders with LLMs, particularly highlighting the
models’ reliance on textual cues to generate text
from visual inputs. Kamigaito et al. (2023) report
the same issue when predicting infoboxes, which
are kinds of summaries for Wikipedia articles. This
observation underscores the difficulty of retaining
language knowledge during the integration, a prob-
lem we acknowledge without offering concrete so-
lutions. This gap clearly shows the pressing need
for future research to not only further investigate
these issues but also to develop innovative method-
ologies that ensure the preservation of language
knowledge amidst the integration of visual and lan-
guage abilities.

Insufficient Artwork Knowledge in LVLMs
The limited improvement in entity coverage by
LoRA indicates the difficulty of injecting artwork
knowledge into LVLMs. As a solution, we can
consider injecting external knowledge into LVLMs.
Chen et al. (2024b) introduce using knowledge
graphs (KGs) as a solution. However, KGs are
commonly sparse and we may need to complete
them by KG completion (KGC), a task to complete
missing links in KGs. Traditional KGC methods
(Nickel et al., 2011; Bordes et al., 2013) are em-
pirically (Ruffinelli et al., 2020; Ali et al., 2021)
and theoretically (Kamigaito and Hayashi, 2021,
2022; Feng et al., 2024) investigated in detail, and
thus, these are solid whereas the pre-trained-based
KGC models can outperform them (Wang et al.,
2022). On the other hand, Sakai et al. (2023)
point out the leakage problem of the pre-trained-
based KGC models and the actual performance of
them is uncertain. Retrieval-Augmented Gener-
ation (RAG) (Lewis et al., 2020) can be another
solution if LVLMs can accept lengthy input (Zong
et al., 2024).

Ethical Considerations

In our study, we meticulously curated our dataset
derived from English Wikipedia. During the data
creation phase, we individually inspected each ex-
tracted image, carefully removing those clearly
unsuitable for public disclosure, ensuring no in-
appropriate images were included. Additionally,
while English Wikipedia’s editors actively elimi-
nate unnecessarily offensive content to compile an
encyclopedia, as outlined on their official pages
regarding offensive material®, bias in sources, and
the use of biased or opinionated sources® 7, it is
acknowledged that English Wikipedia allows the
inclusion of biased information sources. Conse-
quently, our dataset might also reflect the inherent
biases present in the original English Wikipedia
content. Note that in this work, we used an Al
assistant tool, ChatGPT, for coding support.
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A Supplemental Results

A.1 Detailed Evaluation of LVLMs in ’Seen’
Data Settings

Table 8 presents the results of Large-scale Vision-
Language Models including ’seen’ settings, with
bold type highlighting the highest score for each
metric within each group. In this study, we as-
sessed the generalizability of data and the preci-
sion of models fine-tuned on ’seen’ and 'unseen’
data during their training phase to ascertain if the
fine-tuning process enhanced the models’ accuracy
for images encountered during training. Despite
the images being part of the training dataset, with
sections meticulously segregated to prevent data
leakage, our validation revealed no significant dif-
ferences in accuracy between ’seen’ and “unseen’
settings. This finding confirms the general applica-
bility of the data and suggests that simply viewing
images, without integrating them with relevant con-
textual knowledge, does not inherently contribute
to accuracy improvement. This highlights the im-
portance of a holistic learning approach where im-
ages are paired with pertinent information to truly
boost the performance of the models.
Furthermore, it is generally impractical to create
datasets that combine images corresponding to the
vast amounts of text data seen during the training of
LLMs and to acquire these through additional inte-
grated learning. Additionally, during the integrated
learning process from LLM to LVLM, the focus
is on learning pairs of individual images and their
descriptions. To develop the ability to individu-
ally recognize knowledge objects and explain them
based on that recognition, as well as to understand
the relationships between objects and generate com-
prehensive explanations, it is considered necessary
to use enhancement methods such as RAG and new
integrated learning techniques for LVLMs.

A.2 Extended Analysis of Additional LVLMs

In our research, we expanded our experimental
investigation beyond the models outlined in the pri-
mary section to include Blip2 (Li et al., 2023b),
mPLUG_Owl (Ye et al., 2023a), LLaVA-NeXT
(Mistral) (Liu et al., 2024a), LLaVA-1.5 (Liu et al.,
2023a,b), InstructBlip (Dai et al., 2023), and Yi-6B
(Al et al., 2024), integrating image and language in
a manner similar to the initially described models.
Utilizing the same experimental framework as the
initial tests, we conducted a thorough assessment.
The results, as outlined in Table 9, revealed that

these additional models did not exceed the accu-
racy levels of those featured in the main analysis
(refer to Section 5). Additionally, a comparative ex-
amination of configurations with and without titles
showed a uniform decline in efficacy, emphasizing
the difficulty of deriving knowledge and translating
it into explanatory text generation based purely on
image data.

A.3 Detailed Performance Metrics for Base
LLMs With Title Context

Table 10 presents the results of an evaluation in-
volving the base LLM models of the LVLMs
discussed in Tables 3 and 9. This evaluation
additionally included tests on base models such
as FLAN-T5-XL(Chung et al., 2022), FLAN-T5-
XXL, OPT(Zhang et al., 2022a), LLaMA(Touvron
et al., 2023) Mistral(Jiang et al., 2023), and Yi-6B,
which were not featured in the main analysis. Since
Language Models (LMs) are incapable of process-
ing image information, the evaluation was confined
to the "With Title’ setting that incorporates textual
information. Within this context, GPT-4 showcased
superior performance across all tested configura-
tions, with Mistral, Vicuna-13B, and LLaMA?2 also
demonstrating strong results.

Consistent with the data presented in Table 3,
the base model for LLaVA-NeXT (Yi-34B) yielded
output sequences with excessively token lengths
compared to its counterparts, mirroring the behav-
ior of its LVLM version. This tendency for produc-
ing longer output is illustrated when compared with
other models (as depicted in Figure 3 ). Further-
more, when examining the accuracy of the LVLMs
tested in Table 9 alongside the base models in re-
lation to our task proposal, there is a discernible
decline in precision across nearly all models. Qwen
is the exception, which highlights the nuanced chal-
lenges in effectively merging image and textual
data. This complexity stands as a pivotal challenge
for the evolution of sophisticated LVLMs.

B Title generation

In our task, the titles of artworks are a crucial el-
ement of knowledge related to the artworks. To
maintain the integrity of the analysis between the
settings with and without titles setting, we in-
tentionally omitted titles from entity recognition.
However, we recognized the need to understand
the performance of models in generating titles of
artworks based solely on visual information. There-



fore, we conducted an additional experiment in
which we presented the models with the prompt
'"Please answer the title of this artwork' along
with 963 images from the "Unseen" test set and
evaluated the accuracy of title generation under two
settings: Exact and Partial. Tables 11, 12 and 13
display the accuracy results of the main models and
those from additional experiments, respectively.

The results showed that GPT-4-Vision achieved
the highest performance with an exact match
setting at 8.97%, followed by Qwen-VL-Chat
(FT) and Qwen-VL-Chat with good performances.
Other models scored 2% or less, highlighting the
difficulty of generating titles. Additionally, none
of the LLaVA-NeXT models were able to correctly
generate a single title.

Furthermore, Table 14 shows the actual artwork
titles generated by the top five models with the best
accuracy in the exact match setting. The "Rank" in
the table is used to distribute the dataset evenly at
the time of its creation (refer to Section 3), between
famous and less famous paintings, to prevent bias.
From the table, we can infer that a higher propor-
tion of famous artworks with higher ranks were
generated, indicating that the models have a better
grasp of more famous artworks.

C Evaluation Metrics Formulation

This section elaborates on the evaluation met-
rics proposed in Section 3.2 using mathemati-
cal expressions. An explanation consisting of
n sentences generated by the model is denoted
as G = {g1, " ,9n}, and a reference expla-
nation consisting of m sentences is denoted as
R = {ri, -+ ,rm}. The function Entity(-) is de-
fined to extract entities contained in the input text.
The notation |G| represents the total number of
tokens in the generated explanation, and |R| rep-
resents the total number of tokens in the reference
explanation.

Entity Coverage (EC) is calculated as follows:

EC(G,R) = Cov(G,R) (1)

Here, Cov(G, R) is a function returning the pro-
portion of entities in R that are covered by G. For
partial matches, the Lowest Common Subsequence
(LCS) is employed to calculate the longest match-
ing length ratio in the generated explanation rela-
tive to the length of the reference entity.

Entity F1 (EF;) is computed as follows:

2xXx PxR

EFhh=—— 2
" PYR )
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where #(e;, G), #(e;, R) are functions that count
the occurrences of entity e; in GG and R respectively,
and Countciip(e;, G, R) returns the lesser frequency
of occurrence of e; in either G or R.

Entity Cooccurrence (ECooc) is calculated by
applying a length penalty LP (Eq. 6) to the co-
occurrence coverage:

ECooc(G, R)
=LP(G,R) x Cov(Co(G),Co(R)). (5)

Here, LP(G, R) is defined as:

LP(G,R) = exp < max (0.0, ||§|| - >> .
(6)

This penalty is inspired by BLEU’s brevity penalty
(Papineni et al., 2002), but is designed for the oppo-
site purpose: it penalizes overly long generations to
discourage redundancy. Note that LP(G,R) =1
when |G| < |R|, and it decays exponentially only
when |G| > |R|. The function C'o(-) returns pairs
of co-occurring entities within a context window
comprising a sentence and its adjacent n sentences.
Sentence segmentation was performed using the
NLTK sentence splitter for this purpose.

D Details of experimental setting

D.1 LVLM details

Model Base Model

BLIP2 (OPT) OPT Salesforce/blip2-opt-6.7b

BLIP2 (FLAN-T5-XL) FLAN-T5-XL Salesforce/blip2-flan-t5-x1
BLIP2 (FLAN-T5-XXL) FLAN-T5-XXL  Salesforce/blip2-flan-t5-xx1
InstructBLIP (FLAN-T5-XL) FLAN-T5-XL Salesforce/instructblip-flan-t5-x1
InstructBLIP (FLAN-T5-XXL) FLAN-T5-XXL = Salesforce/instructblip-flan-t5-xxI
InstructBLIP (Vicuna-7B) Vicuna-7B Salesforce/instructblip-vicuna-7b

HuggingFace Name/OpenAl API

InstructBLIP (Vicuna-13B) Vicuna-13B Salesforce/instructblip-vicuna-13b
Yi-VL-6B Yi-6B-Chat 01-ai/Yi-VL-6B
mPLUG-Owl LLaMA MAGAer13/mplug-owl-llama-7b
mPLUG-OwI2 LLaMA2-7B MAGAer13/mplug-owl2-llama2-7b
LLaVA-1.5 Vicuna-13B liuhaotian/llava-v1.5-13b
LLaVA-NeXT (Vicuna-7B) Vicuna-7B liuhaotian/llava-v1.6-vicuna-7b
LLaVA-NeXT (Vicuna-13B) Vicuna-13B liuhaotian/llava-v1.6-vicuna-13b
LLaVA-Next (Mistral) Mistral liuhaotian/llava-v1.6-mistral-7b
LLaVA-NeXT (Yi-34B) Yi-34B liuhaotian/llava-v1.6-34b
Qwen/Qwen-VL-Chat

Qwen-VL-Chat Qwen

GPT-4-Vision gpt-4-1106-vision-preview




D.2 LLM details

Model HuggingFace Name
FLAN-T5-XL google/flan-t5-x1
FLAN-T5-XXL google/flan-t5-xxl1

OPT facebook/opt-6.7b

LLaMA openlm-research/open_llama_7b
LLaMA2 meta-llama/Llama-2-7b

Mistral mistralai/Mistral-7B-Instruct-v0.2
Vicuna-7B Imsys/vicuna-7b-v1.5
Vicuna-13B Imsys/vicuna-13b-v1.5
Qwen-Chat Qwen/Qwen-7B-Chat

Yi-6B 01-ai/Yi-6B

Yi-34B 01-ai/Yi-34B

GPT-4 gpt-4-1106-preview

D.3 Fine-tuning and Inference settings

Hyper Parameter Value
torch_dtype bfloat16
seed 42
max length 2048
warmup ratio 0.01
learning rate le-5
batch size 4
epoch 1
lorar 64
lora alpha 16
lora dropout 0.05

lora target modules  c_attn, attn.c_proj, wl, w2

Table 6: The hyper-parameters used in the experiment,
and others, were set to default settings. The imple-
mentation used Transformers (Wolf et al., 2020) and
bitsandbytes (Dettmers et al., 2022b).

In this study, to ensure a fair comparison of
performance across multiple models, all experi-
ments were conducted on a single NVIDIA RTX
6000 Ada GPU, with 8-bit quantization utilized
for model generation. However, due to resource
constraints, LLaVA-NeXT (Yi-34B-Chat) model
was loaded and inferred in 4-bit mode. To stan-
dardize the length of tokens generated across all
models, the maximum token length was set to 2048.
The same settings were applied to each model for
performance comparison purposes.

D.4 Training Datasets

Table 19 lists the datasets employed to train the
models addressed in this study.

E Details of our created dataset

E.1 Dataset section distribution

Table 7 provides a comprehensive breakdown of
various types of sections within the dataset, along
with their frequency counts. In designing the test
set for the "seen" setting, we meticulously consid-
ered the distribution of these sections. Through an
analysis of the frequency of each section type, we
managed to evenly split the data. This strategic
approach ensured that the test set was constructed
with a balanced representation of each section type,
aiming for a more equitable and thorough evalua-
tion process. Due to this methodology, the division
of the test set into "seen" and "unseen" portions was
based on the distribution of section types, rather
than the number of images. Consequently, the num-
ber of images in the "seen" and "unseen" parts of
the test set may not be equal (refer to Table 2). This
was a deliberate choice to prioritize a balanced rep-
resentation of section types over an equal count of
images, enhancing the relevance and fairness of the
evaluation process.

E.2 Omitted sections

The following sections have been omitted from this
document:

* References

* See also

* External links

* Sources

* Further reading

* Bibliography

* Gallery

* Footnotes

* Notes

* References Sources

* Bibliography (In Spanish)
* Bibliography (In Italian)

* Bibliography (In German)
* Bibliography (In French)
* Images

* Links

* List

* Notes and references

* List by location



These sections were deemed unsuitable for the
task of generating descriptions of artwork in this
study and were therefore removed.

E.3 Dataset Statistics

We report detailed statistics of instruction templates
and hierarchical levels for the Train, Dev, and Test
splits, complementing the dataset summary in the
main text. Dev and Test employ a single controlled
template with Title-Included and Title-Excluded
variants, while Train introduces seven linguistic
templates following the same structural format. Ta-
ble 18 summarizes the resulting distributions.

E.4 Detailed Prompt Templates

As summarized in Table 18, we employ different
prompt template designs across the Train, Dev, and
Test splits to support both robust training and con-
trolled evaluation. For training, we use seven lin-
guistically diverse templates (Table 17) to reduce
sensitivity to superficial prompt variations. These
templates were selected from an initial pool of 49
candidates, generated by combining seven base
structures with seven verbs (e.g., explore, explain,
discuss), based on instruction adherence and an-
swer correctness during model selection.

In contrast, the Dev split adopts a single unified
template across all hierarchy levels (Section, Sub-
section, Sub subsection) to suppress stylistic vari-
ation and facilitate controlled analysis (Table 16).
The Test split follows the same template design
as Dev (Table 15), enabling evaluation on unseen
artworks without introducing prompt-style distri-
bution shifts.

E.5 Train Dataset Example

As shown in Figures 5 and 6, we adopted the format
for fine-tuning Qwen (Bai et al., 2023a) and modi-
fied the template presented in E.4 into the form of
figures. This format was used for model training
and dataset publication.

E.6 Entity Distribution

Figures 7 and 8 present the entity distribution
within our datasets. The minimal difference in
data distribution between seen and unseen cases
suggests that the partitioning method described in
Step 3 of Section 4 is effective.

F License

In our study we created a dataset from Wikipedia
articles of artworks. The each image is available

under the Creative Commons License (CC) or other
licenses. Specific license information for each im-
age can be found on the Wikipedia page or the
image description page for that image. The images
in this study are used under the terms of these li-
censes, and links to the images are provided in the
datasets we publish so that users can download the
images directly. The images themselves are not
directly published. Therefore, our data does not
infringe upon the licenses.



Type Frequency

Abstract 9632
Description 2747
History 1869
Background 666
Provenance 517
Reception 346
Description History 341
Analysis 337
Painting 218
Artist 189
Historical Information 187
Composition 168
Subject 138
Legacy 127
Exhibitions 115
Interpretation 110
Condition 97
In Popular Culture 94
Information 84
Design 83
Style 78
Influence 68
Creation 65
Description Style 63
Related Works 63
Acquisition 60
Context 59
Versions 51
Other Versions 51
Literature 50
Symbolism 50
The Painting 50
Attribution 50
Details 46
Notes References 45
Exhibition History 41
Location 40
Interpretations 40
Critical Reception 39
Historical Context 39
Iconography 38
Subject Matter 37
Influences 37
Exhibition 37
Commission 36
Overview 34
Analysis Description 34
Citations 33
Painting Materials 32
Controversy 32
Restoration 32

Table 7: Frequency count of data types in the dataset.



LVLM Setting  Size BLEU ROUGE BertScore PP €OV gy FI Entity Cooccurrence Ave. Length
1 2 L exact partial n=0 n=1 n=2 n=c0
With Title (Language information + Visual information)

mPLUG-OwI2 Unseen 7B .16 268 59 17.1 833 133 21.1 15.6 1.61 138 135 129 100
LLaVA-NeXT (Vicuna-7B) ~ Unseen 7B 0.81 165 37 11.0 80.8 9.0 14.1 10.6 0.83 074 073 0.69 119
LLaVA-NeXT (Vicuna-13B)  Unseen 13B 1.18 170 4.1 10.8 80.5 11.5 16.4 13.1 .12 1.04 1.02 099 133
LLaVA-NeXT (Yi-34B) Unseen 34B 0.72 139 33 9.5 80.2 18.5 27.8 16.1 026 022 021 0.19 869
Qwen-VL-Chat Unseen 7B 1.64 282 6.8 17.4 83.5 17.8 26.3 20.8 190 1.66 1.63 1.57 155
Qwen-VL-Chat (FT) Unseen 7B 3.96 272 108 214 84.2 19.7 272 22.0 486 435 423 413 153
GPT-4-Vision Unseen - 240 286 7.6 163 833 284 371 31.6 3.02 3.00 298 3.05 264
mPLUG-OwI2 Seen 7B 1.14 266 59 170 833 125 20.3 15.1 1.54 129 124 117 94

LLaVA-NeXT (Vicuna-7B) Seen 7B 078 165 35 106 80.7 7.9 13.0 9.4 0.74 0.66 0.63 0.59 114
LLaVA-NeXT (Vicuna-13B) Seen 13B 1.14 170 4.0 10.8 80.5 103 15.5 12.4 132 1.08 1.01 096 127
LLaVA-NeXT (Yi-34B) Seen 34B 0.73 137 32 9.4 80.1 17.4 26.7 15.4 026 024 022 021 872
Qwen-VL-Chat Seen 7B 1.69 279 6.7 17.3 83.4 16.2 24.5 19.8 1.87 157 154 147 153
Qwen-VL-Chat (FT) Seen 7B 4.13 27.6 114 21.8 84.5 19.8 274 23.5 547 443 430 419 133
GPT-4-Vision Seen - 232 283 74 162 83.2 264 349 29.7 282 271 267 263 254

Without Title (Visual information)

mPLUG-OwI2 Unseen 7B 0.21 233 358 15.0 82.3 4.0 10.5 4.3 026 029 026 024 91

LLaVA-NeXT (Vicuna-7B) Unseen 7B 0.13 16.0 221 10.6 80.1 1.8 6.3 1.8 0.07 0.10 0.10 0.11 125
LLaVA-NeXT (Vicuna-13B)  Unseen 13B 0.17 16.6 235 110 80.8 2.1 7.1 22 0.07 0.08 0.08 0.07 164
LLaVA-NeXT (Yi-34B) Unseen 34B  0.15 115 1.88 8. 78.7 35 10.5 2.8 0.03 0.03 002 0.02 903
Qwen-VL-Chat Unseen 7B 047 248 450 154 82.5 7.5 14.6 8.4 0.56 0.60 0.58 0.55 128
Qwen-VL-Chat (FT) Unseen 7B 207 245 779 186 834 12.9 19.6 14.7 225 203 200 196 153
GPT-4-Vision Unseen - 0.10 231 443 132 81.9 11.6 19.0 123 1.18 135 137 134 223
mPLUG-OwI2 Seen 7B 0.14 226 337 146 82.2 29 9.2 32 0.19 0.14 0.13 0.12 86

LLaVA-NeXT (Vicuna-7B) Seen 7B 0.11 154 195 102 80.0 1.0 5.6 1.2 0.05 0.04 0.06 0.06 123
LLaVA-NeXT (Vicuna-13B)  Seen 13B 0.11 160 210 10.7 80.7 1.2 6.0 1.4 0.03 0.03 0.03 0.03 154
LLaVA-NeXT (Yi-34B) Seen 34B  0.10 1.1 .71 79 78.6 2.1 9.2 1.9 0.01 0.01 001 001 909
Qwen-VL-Chat Seen 7B 040 244 432 152 825 5.6 12.7 6.9 040 041 037 035 124
Qwen-VL-Chat (FT) Seen 7B 209 249 8.00 189 83.8 124 194 15.0 219 185 1.82 178 127
GPT-4-Vision Seen - 074 224 414 128 81.8 9.3 16.7 10.5 091 091 086 0.84 212

Table 8:

Results of LVLMs including ’seen’ settings. Notations are the same as Table 3.



ROUGE Entity Cov. Entity Cooccurrence

LVLM Setting  Size BLEU BertScore Entity F1 Avg. Length
1 2 L exact partial n=0 n=l n=2 n=oc0
With Title (Language information + Visual information)
BLIP2 (OPT) Unseen 6.7B  0.00 0.1 00 0.1 76.4 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.01
BLIP2 (FLAN-T5-XL) Unseen 3B 0.00 9.7 28 8.3 80.6 52 8.5 1.4 005 003 003 0.03 20
BLIP2 (FLAN-T5-XXL) Unseen 11B 0.01 28 05 2.6 76.5 0.7 2.4 0.5 0.01 000 0.00 0.00 21
mPLUG-Owl Unseen 7B 0.17 150 24 101 81.8 43 8.6 4.7 035 038 040 037 12
LLaVA-1.5 Unseen  13B 1.61 208 52 132 81.5 134 19.4 15.8 1.56 134 133 126 139
LLaVA-NeXT (Mistral) Unseen 7B 132 241 57 159 824 12.3 19.6 14.9 144 118 L.15 1.06 140
InstructBLIP (FLAN-T5-XL) Unseen 3B 070 169 52 13.0 83.2 8.5 13.8 6.6 080 062 059 0.56 28
InstructBLIP (FLAN-T5-XXL) Unseen 1IB 1.00 164 46 120 81.7 8.6 13.8 9.3 .00 075 0.73 0.71 54
InstructBLIP (Vicuna-7B) Unseen 7B 144 235 62 157 833 12.6 19.2 14.2 1.79 150 144 138 58
InstructBLIP (Vicuna-13B) Unseen  13B 1.11 259 62 172 83.6 11.8 18.8 13.7 142 1.19 116 1.09 50
Yi-VL-6B Unseen 6B 1.07 262 57 16.6 82.9 12.9 20.8 15.1 1.37 124 127 121 147
Qwen-VL-Chat Unseen 7B 164 282 68 174 83.5 17.8 26.3 20.8 190 1.66 1.63 157 155
Qwen-VL-Chat (FT) Unseen 7B 396 272 108 214 84.2 19.7 272 22.0 486 435 423 413 153
GPT-4-Vision Unseen - 240 286 76 163 83.3 284 371 31.6 3.02 3.00 298 3.05 264
BLIP2 (OPT) Seen 6.7B  0.00 20 0.0 1.2 715 0.0 1.8 0.0 0.00 0.00 0.00 0.00 0.01
BLIP2 (FLAN-T5-XL) Seen 3B 0.01 99 30 85 80.7 52 83 1.7 0.07 003 0.03 0.03 17
BLIP2 (FLAN-T5-XXL) Seen 11B 0.01 29 05 2.7 76.5 0.9 2.6 0.6 0.04 003 003 0.03 21
mPLUG-Owl Seen 7B 0.14 154 24 103 81.9 45 9.3 4.8 037 029 028 0.26 13
LLaVA-1.5 Seen 13B 1.69 207 53 13.1 81.5 12.5 18.4 15.0 1.85 137 134 130 128
LLaVA-NeXT (Mistral) Seen 7B 1.41 241 56 160 82.3 11.6 19.1 144 149 116 1.06 1.01 145
InstructBLIP (FLAN-T5-XL) Seen 3B 0.78 169 52 13.0 83.2 8.5 14.0 7.1 092 069 066 0.63 29
InstructBLIP (FLAN-T5-XXL) Seen 11B 0.10 166 47 122 81.8 8.7 14.1 9.3 1.11 090 0.87 084 54
InstructBLIP (Vicuna-7B) Seen 7B 153 239 63 158 833 124 19.5 143 1.77 147 142 137 62
InstructBLIP (Vicuna-13B) Seen 13B 1.11 255 6.1 169 83.5 10.2 17.3 12.5 126 1.08 1.01 097 51
Yi-VL-6B Seen 6B 1.00 258 55 163 82.7 115 19.9 13.6 1.00 0.80 0.78 0.75 149
Qwen-VL-Chat Seen 7B 169 279 67 173 83.4 16.2 24.5 19.8 1.87 1.57 154 147 153
Qwen-VL-Chat (FT) Seen 7B 413 276 114 218 84.5 19.8 274 235 547 443 430 4.19 133
GPT-4-Vision Seen - 232 283 74 162 83.2 26.4 349 29.7 282 271 267 263 254
Without Title (Visual information)
BLIP2 (OPT) Unseen 6.7B  0.00 41 0.00 4.1 79.8 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.01
BLIP2 (FLAN-T5-XL) Unseen 3B 0.01 89 147 15 81.2 2.1 5.0 1.1 0.01 000 0.00 0.00 15
BLIP2 (FLAN-T5-XXL) Unseen 11B 0.00 25 016 24 75.8 0.6 1.7 0.2 0.00 0.00 0.00 0.00 18
mPLUG-Owl Unseen 7B 0.14 18.1 2359 119 82.1 22 72 2.4 0.13 0.10 0.08 0.08 21
LLaVA-1.5 Unseen  13B 0.21 17.8 270 11.7 81.4 2.7 7.9 2.6 0.11 015 015 0.15 158
LLaVA-NeXT (Mistral) Unseen 7B 016 21.1 277 14.1 81.3 23 8.0 23 008 011 012 0.12 132
InstructBLIP (FLAN-T5-XL) Unseen 3B 0.08 13.0 2.17 10.0 824 2.7 6.6 23 0.13  0.07 0.08 0.07 28
InstructBLIP (FLAN-T5-XXL) Unseen 11B 0.16 125 211 93 81.1 3.0 6.9 2.7 0.16 0.13 011 0.11 41
InstructBLIP (Vicuna-7B) Unseen 7B 049 229 447 152 829 6.4 129 7.1 055 058 056 049 83
InstructBLIP (Vicuna-13B) Unseen  13B 039 235 431 158 82.8 4.8 11.5 52 037 033 031 028 85
Yi-VL-6B Unseen 6B 037 234 4.08 15.1 82.0 5.4 12.2 57 035 036 035 0.34 158
Qwen-VL-Chat Unseen 7B 047 248 450 154 82.5 75 14.6 8.4 056 060 058 0.5 128
Qwen-VL-Chat (FT) Unseen 7B 207 245 779 18.6 834 12.9 19.6 14.7 225 2.03 2.00 1.96 153
GPT-4-Vision Unseen - 0.10 231 443 132 81.9 11.6 19.0 12.3 1.18 135 137 134 223
BLIP2 (OPT) Seen 6.7B  0.00 23 000 23 78.4 0.0 2.1 0.0 0.00 0.00 0.00 0.00 0.03
BLIP2 (FLAN-T5-XL) Seen 3B 0.00 9.0 150 7.6 81.4 1.7 4.5 1.0 0.01 0.01 0.01 001 13
BLIP2 (FLAN-T5-XXL) Seen 11B 0.00 26 016 25 75.7 0.4 1.6 0.2 0.00 0.00 0.00 0.00 18
mPLUG-Owl Seen 7B 0.08 184 264 121 82.1 1.9 6.9 25 0.08 005 004 0.04 23
LLaVA-1.5 Seen 13B 0.13 177 255 116 81.3 1.3 6.4 1.4 0.07 005 005 0.04 154
LLaVA-NeXT (Mistral) Seen 7B 0.08 207 250 139 81.3 1.3 7.0 1.4 0.04 004 004 0.03 125
InstructBLIP (FLAN-T5-XL) Seen 3B 0.05 125 199 96 824 1.9 59 1.9 0.04 006 0.06 0.06 26
InstructBLIP (FLAN-T5-XXL) Seen 11B 0.10 123 195 9.1 81.1 23 6.3 22 0.08 008 007 0.07 37
InstructBLIP (Vicuna-7B) Seen 7B 043 227 431 151 83.0 49 11.4 58 036 030 029 0.27 82
InstructBLIP (Vicuna-13B) Seen 13B 037 233 427 157 82.7 33 10.0 4.0 0.17 016 016 0.15 85
Yi-VL-6B Seen 6B 033 230 386 1438 81.9 4.1 11.2 4.7 0.19 0.16 015 0.14 162
Qwen-VL-Chat Seen 7B 040 244 432 152 82.5 5.6 12.7 6.9 040 041 037 035 124
Qwen-VL-Chat (FT) Seen 7B 209 249 8.00 18.9 83.8 124 19.4 15.0 219 185 182 1.78 127
GPT-4-Vision Seen - 074 224 414 128 81.8 9.3 16.7 10.5 091 091 086 0.84 212

Table 9: Comprehensive Results of Secondary (LVLMs). This includes models not highlighted in the main findings,
with the gray lines representing the three models that achieved the best performance in the main evaluation. Bold
type signifies the highest scores for each metric within their respective groups.
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Figure 3: Average token lengths for 18 evaluated LVLMs on an unseen set, where yellow represents the *With Title’
setting, bleu indicates the *Without Title’ setting, and red signifies the average token length for the base language
model of the LVLM with titles. The length of the unseen reference sentence is 174 tokens.
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Figure 4: Average token lengths for Qwen’s Few-shot and Fine-tuning settings on an unseen set, where yellow
represents the *With Title’ setting, bleu indicates the *Without Title’ setting, and red signifies the average token

length for the base language model of the LVLM with titles. The length of the unseen reference sentence is 174
tokens.



ROUGE Entity Cov. Entity Cooccurrence

LVLM Setting  Size BLEU BertScore Entity F1 Avg. Length
1 2 L exact  partial n=0 n=l n=2 n=o00
With Title (Language information + Visual information)
FLAN-T5-XL Unseen 3B 0.66 154 623 13.1 83.6 10.2 154 10.6 1.36 088 0.84 0.3 20
FLAN-T5-XXL Unseen 11B 0.00 20 009 1.8 76.2 3.3 22 0.3 0.00 0.00 0.00 0.00 63
OPT Unseen 6.7B 0.34 83 160 73 76.8 12.0 18.9 8.4 0.15 0.12 0.12 0.11 872
LlaMA Unseen 7B 0.48 94 199 8.1 71.7 16.4 23.7 11.3 0.15 0.14 0.13 0.11 876
LLaMA2 Unseen 7B 1.81 240 592 149 82.4 18.5 27.3 20.8 1.04 0.88 0.82 0.81 366
Mistral Unseen 7B 1.82 251 641 152 82.7 21.8 31.2 234 1.33 130 127 125 345
Vicuna-7B Unseen 7B 1.14 209 487 13.1 82.7 12.3 18.6 14.1 143 133 132 123 129
Vicuna-13B Unseen  13B 235 284 734 177 83.4 19.4 28.1 23.0 216 199 189 1.77 210
Qwen-Chat Unseen 7B 0.60 120 250 74 79.5 7.6 11.8 8.5 052 043 041 040 106
Yi-6B-Chat Unseen 6B 0.93 140 355 109 79.3 14.2 214 11.9 055 050 048 046 717
Yi-34B-Chat Unseen  34B 1.00 13.1 350 104 79.1 17.9 254 12.9 093 086 0.83 0.8l 745
GPT-4 Unseen - 220 262 7.00 149 82.5 31.7 40.2 323 254 250 253 259 374
FLAN-T5-XL Seen 3B 0.67 15.1 630 129 83.4 9.0 14.5 9.5 134 095 085 0381 22
FLAN-T5-XXL Seen 11B 0.01 89 148 1715 81.2 2.1 5.0 1.1 0.01 0.00 0.00 0.00 66
OPT Seen 6.7B 0.35 83 163 72 76.8 114 18.4 9.0 0.08 0.06 0.05 0.05 877
LlaMA Seen 7B 0.51 9.3 201 80 77.8 15.7 23.1 11.0 0.17 0.13 0.12 0.10 877
LLaMA2 Seen 7B 1.87 243 6.03 15.1 82.5 19.0 28.1 21.4 1.10 092 0.85 084 357
Mistral Seen 7B 1.91 25.1 640 152 82.6 20.3 29.5 22.5 133 111 1.03 098 334
Vicuna-7B Seen 7B 0.98 19.6 442 123 82.6 10.0 159 11.8 1.03 092 0.86 0.83 111
Vicuna-13B Seen 13B 1.91 25.1 637 152 82.6 20.3 29.5 22.5 1.33 111 1.03 098 334
Qwen-Chat Seen 7B 0.62 119 247 173 79.4 7.4 11.7 8.3 0.64 052 051 048 104
Yi-6B-Chat Seen 6B 0.99 146 374 112 79.6 13.9 21.3 12.6 0.64 0.60 0.57 055 698
Yi-34B-Chat Seen 34B 1.00 129 341 103 79.0 17.6 24.8 12.7 092 085 081 0.79 750
GPT-4 Seen - 220 260 690 148 82.5 29.7 38.3 31.0 250 230 232 231 369

Table 10: Comprehensive Performance of Base Language Models with title Integration. This table showcases the
performance of primary models, both featured and not featured in the main analysis, across ’seen’ and ’unseen’
settings, evaluated using additional metrics such as BLEU, BERTscore, and ROUGE.

mPlug_owl2 LlaVA-NeXT (Vicunal3B) LlaVA-NeXT (Vicuna7B) LLaVA-NeXT (Yi34B) Qwen-VL-Chat Qwen-VL-Chat (FT) GPT-4-Vision

Exact match 1.6% 0.0% 0.0% 0.0% 4.0% 5.7% 8.97%
Partial match 54.2% 39.9% 27.5% 66.3% 53.6% 66.7 % 64.0%

Table 11: LVLM Primary Group Analysis of Title Generation Accuracy from Image Information.

Setting BLIP2 (OPT) BLIP2 (FLAN-T5-XL) BLIP2 (FLAN-T5-XXL) mPLUG_Owl LLaVA-1.5 InstructBLIP (FLAN-T5-XL)
Exact match 0.0% 1.04% 1.25% 1.97% 0.0% 0.93%
Partial match 0.10% 49.6% 49.1% 37.0% 40.3% 44.0%

Table 12: LVLM Complementary Group Analysis of Title Generation Accuracy Using Only Image Information
(Part 1).

Setting InstructBLIP (FLAN-TS5-XXL) InstructBLIP (Vicuna-7B) Instruct Blip (Vicuna-13B) LLaVA-NeXT (mistral) Yi-VL-6B
Exact match 1.04% 1.14% 1.14% 0.10% 1.36%
Partial match 50.1% 50.5% 58.1% 47.7% 50.6%

Table 13: LVLM Complementary Group Analysis of Title Generation Accuracy Using Only Image Information
(Part 2).



Title Rank mPLUG-Owl mPLUG-OwI2 Qwen-VL-Chat Qwen-VL-Chat(FT) GPT-4-Vision
Mona Lisa 1 4 v v v v
The Great Wave off Kanagawa 2 v 4 v 4
Vitruvian Man 3 v v v v
Winged Victory of Samothrace 4 v v v
Girl with a Pear] Earring 5 v v v v v
The Wedding at Cana 6 v v v v
The Anatomy Lesson of Dr. Nicolaes Tulp 7 v v v
Apollo Belvedere 9 v v v

Homeless Jesus 11 v v v
Raphael Rooms 12 v
Almond Blossoms 13 v v v
The Death of General Wolfe 14 v v v v
The Persistence of Memory 15 v v v v v
Doni Tondo 19 v
The Turkish Bath 20 v v
Look Mickey 26 v v v v v
The Seven Deadly Sins and the Four Last Things 27 v v v v
The Conspiracy of Claudius Civilis 28 v
La Belle Ferronniére 31 v
The Gross Clinic 32 v v
The Wedding Dance 33 v v v
Sacred and Profane Love 35 v
The Sea of Ice 37 v v

The Geographer 41 v v
Equestrian Portrait of Charles V 45 v

The Monk by the Sea 49 v

My Bed 51 v v v
I Saw the Figure 5 in Gold 55 v
Peace Monument 57 v
Littlefield Fountain 58 v v
Music in the Tuileries 59 v
The Cornfield 60 v v
Lovejoy Columns 62 v v
The Allegory of Good and Bad Government 64 v
Sibelius Monument 72 v v
Headington Shark 73 v
The Great Masturbator 75 v
Self-Portrait with Thorn Necklace and Humming- 81 v

bird

Snow Storm: Steam-Boat off a Harbour’s Mouth 83 v
Bathers at Asnieres 84 v v
The Bacchanal of the Andrians 91 v

The Painter’s Studio 95 v

Carnation, Lily, Lily, Rose 97 v
Lady Writing a Letter with her Maid 99 v v
Two Sisters (On the Terrace) 104 v v
Lion of Belfort 112 v
Metamorphosis of Narcissus 114 v
Lady Seated at a Virginal 115 v

Puerta de Alcald 116 v v
The Three Crosses 118 v

Statue of Paddington Bear 119

Our English Coasts 139 v
Hahn/Cock 140 v
The Wounded Deer 144 v v
The Disrobing of Christ 148 v v

Lion of Venice 149 v v v
Cross in the Mountains 153 v
Man Writing a Letter 164 v v

Dying Slave 165 v
Nymphs and Satyr 168 v

Tomb of Pope Alexander VII 172

Greece on the Ruins of Missolonghi 178 v
The Basket of Apples 186 v
James Scott Memorial Fountain 189 v
The Death of General Mercer at the Battle of Prince- 193 v
ton, January 3, 1777

Madonna of the Rabbit 200 v v
Pyramid of Skulls 209 v
Ascending and Descending 220 v
The Madonna of Port Lligat 221 v v
Le Pont de I’Europe 231 v

Continued on next page



Table 14 — continued from previous page

Title Rank mPLUG-Owl mPLUG-OwI2 Qwen-VL-Chat Qwen-VL-Chat(FT) GPT-4-Vision
Bratatat! 240 v

Marie Antoinette with a Rose 247 v v v
The Beguiling of Merlin 256 v v

Blob Tree 258 v v 4 v v
Morning in a Pine Forest 266 v v
Swann Memorial Fountain 271 v
Equestrian Portrait of Philip IV 272 v

Golden Guitar 274 v v v v
The Blind Girl 275 v
The Lament for Icarus 278 v
Love’s Messenger 289 v
Arrangement in Grey and Black, No. 2: Portrait of 304 v

Thomas Carlyle

The Return of the Herd 320 v
Statue of Henry W. Grady 327 v
Young Ladies of the Village 333 v
Why Born Enslaved! 355 v
Apollo Pavilion 358 v
Looking Into My Dreams, Awilda 371 v
Australian Farmer 378 v v v
Bust of Giuseppe Mazzini 379 v
Wind from the Sea 399

Art is a Business 415 v 4

Statue of George M. Cohan 417 v

The Union of Earth and Water 434 v
Frederick the Great Playing the Flute at Sanssouci 440 v
Procession in St. Mark’s Square 441 v
Larry La Trobe 443 v
From this moment despair ends and tactics begin 460 v v

Winter Landscape with Skaters 479 v

Bust of William H. English 489 4 v
Statue of Roscoe Conkling 507 v
Still Life and Street 531 v
Statue of William Blackstone 536

Statue of Chick Hearn 558 v

Happy Rock 587 4 v v

The Revells of Christendome 608 v

Bust of Cardinal Richelieu 629 v
Stag Hunt 634 v

The Drover’s Wife 679 v

My Egypt 684 v
The Viaduct at L’Estaque 731 v
The Repast of the Lion 733 v
Puget Sound on the Pacific Coast 761 v
Diana and Cupid 768 v v
Portrait of Cardinal Richelieu 778 v

Statue of Toribio Losoya 873 v

Statue of Valentin Gémez Farias 877 v

Table 14: List of titles that were actually output by the model with exact settings.




Title-Excluded Template

Type Title-Included Template
Section Explain the {Section} of this artwork, {Title}. Explain the {Section} of this artwork.
Subsection Explain the {Subsection} about the {Section} of this Explain the {Subsection} about the {Section} of this

Sub subsection

artwork, {Title}.
Explain the {Sub subsection} about the {Subsection} of
the {Section} in this artwork, {Title}.

artwork.
Explain the {Sub subsection} about the {Subsection} of
the {Section} in this artwork.

Table 15: Prompt templates used in the Test split. We employ a single controlled template with hierarchical
granularity (Section, Subsection, Sub subsection), each with Title-Included and Title-Excluded variants.

Type Title-Included Template Title-Excluded Template
Section Describe the {Section} of this artwork, {Title}. Describe the {Section} of this artwork.
Subsection Describe the {Subsection} about the {Section} of this Describe the {Subsection} about the {Section} of this

Sub subsection

artwork, {Title}.
Describe the {Sub subsection} about the {Subsection} of
the {Section} in this artwork, {Title}.

artwork.
Describe the {Sub subsection} about the {Subsection} of
the {Section} in this artwork.

Table 16: Prompt templates used in the Dev split. We employ a single controlled template with hierarchical
granularity (Section, Subsection, Sub subsection), each with Title-Included and Title-Excluded variants.

1 {
2 "id": "@ee1_T",
3 "title"”: "Mona Lisa",
4 "conversations”: [
5 {
6 "from": "user"”,
7 "value":
history."
8 }?
9 {
10 "from"”: "assistant",
11 "value”: "Of Leonardo da Vinci’s works,
whose authenticity....”
12 }
13 ]
14 }

"<img>/images/Mona Lisa.jpg</img>\nFocus on Mona Lisa and explore the

the Mona Lisa is the only portrait

Figure 5: Train set format with title.




Template Type Title-Included Template Title-Excluded Template
Section Focus on {Title} and explore the {Section}. Focus on this artwork and explore the {Section}.
Template 1 Subsection In the context of ({Title}, explore the In the context of this artwork, explore the
{Subsection} of the {Section}. {Subsection} of the {Section}.
Sub subsection Focusing on the {Section} of {Title}, explore Focusing on the {Section} of this artwork,
the {Sub subsection} about the {Subsection}. explore the {Sub subsection} about the
{Subsection}.
Section Focus on {Title} and explain the {Section}. Focus on this artwork and explain the {Section}.
Template 2 Subsection In the context of {Title}, explain the In the context of this artwork, explain the
{Subsection} of the {Section}. {Subsection} of the {Section}.
Sub subsection Focusing on the {Section} of {Title}, explain Focusing on the {Section} of this artwork,
the {Sub subsection} about the {Subsection}. explain the {Sub subsection} about the
{Subsection}.
Section Explore the {Section} of this artwork, {Title}. Explore the {Section} of this artwork.
Template 3 Subsection Explore the {Subsection} about the {Section} of Explore the {Subsection} about the {Section} of
this artwork, {Title}. this artwork.
Sub subsection Explore the {Sub subsection} about the Explore the {Sub subsection} about the
{Subsection} of the {Section} in this artwork, {Subsection} of the {Section} in this artwork.
{Title}.
Section Focus on {Title} and discuss the {Section}. Focus on this artwork and discuss the {Section}.
Template 4 Subsection In the context of ({Title}, discuss the In the context of this artwork, discuss the
{Subsection} of the {Section}. {Subsection} of the {Section}.
Sub subsection Focusing on the {Section} of {Title}, discuss Focusing on the {Section} of this artwork,
the {Sub subsection} about the {Subsection}. discuss the {Sub subsection} about the
{Subsection}.
Section How does {Title} elucidate its {Section}? How does this artwork elucidate its {Section}?
Template 5 Subsection In {Title}, how is the {Subsection} of the In this artwork, how is the {Subsection} of the
{Section} elucidated? {Section} elucidated?
Sub subsection Regarding {Title}, how does the {Section}’s Regarding this artwork, how does the {Section}’s
{Subsection} incorporate the {Sub subsection}?  {Subsection} incorporate the {Sub subsection}?
Section Focus on {Title} and analyze the {Section}. Focus on this artwork and analyze the {Section}.
Template 6 Subsection In the context of {Title}, analyze the In the context of this artwork, analyze the
{Subsection} of the {Section}. {Subsection} of the {Section}.
Sub subsection Focusing on the {Section} of {Title}, analyze Focusing on the {Section} of this artwork,
the {Sub subsection} about the {Subsection}. analyze the {Sub subsection} about the
{Subsection}.
Section In {Title}, how is the {Section} discussed? In this artwork, how is the {Section} discussed?
Template 7 Subsection Describe the characteristics of the {Subsection} Describe the characteristics of the {Subsection}

Sub subsection

in {Title}’s {Section}.
When looking at the {Section} of {Title}, how do
you discuss its {Subsection}’s {Sub subsection}?

in this artwork’s {Section}.

When looking at the {Section} of this artwork,
how do you discuss its {Subsection}’s {Sub
subsection}?

Table 17: Prompt templates used in the Train split. Each template is instantiated at three hierarchical levels (Section,
Subsection, Sub subsection), with both Title-Included and Title-Excluded variants to diversify linguistic realizations
while preserving the underlying structural format.

2 "id": "Q@01_NT",

3 "conversations"”: [

4 {

5 "from"”: "user",

6 "value": "<img>/images/Mona Lisa.jpg</img>\nFocus on this artwork and explore
the history."”

7 Bo

8 {

9 "from”: "assistant”,

"0f Leonardo da Vinci’s works, the Mona Lisa is the only portrait

n

10 "value"”:
whose authenticity....

11 }

Figure 6: Train set format without title.



Split  Category Count Ratio (%)

Title-Included Section 2434 44.06
Title-Included Subsection 306 5.54
Title-Included Sub subsection 22 0.40
Dev Title-Excluded Section 2434 44.06
Title-Excluded Subsection 306 5.54
Title-Excluded Sub subsection 22 0.40
Total 5524 100.00
Title-Included Section 4649 44 .47
Title-Included Subsection 538 5.15
Title-Included Sub subsection 40 0.38
Test Title-Excluded Section 4649 44.47
Title-Excluded Subsection 538 5.15
Title-Excluded Sub subsection 40 0.38
Total 10454 100.00
Template 1 5476 14.27
Template 2 5496 14.33
Template 3 5428 14.15
Template 4 5502 14.34
Template 5 5460 14.23
Train Template 6 5502 14.34
Template 7 5498 14.33
Section (all templates) 33582 87.54
Subsection (all templates) 4326 11.28
Sub subsection (all templates) 454 1.18
Total 38362 100.00

Table 18: Template statistics for the Train, Dev, and Test splits. Dev and Test employ a single controlled template
supporting hierarchical granularity (Section, Subsection, Sub subsection) with Title-Included/Excluded variants.
Train follows the same structural template format but introduces seven linguistic variants to avoid overfitting to a
particular prompt style, and we additionally report the distribution of hierarchy levels in Train.

Distribution of Entity Counts

3 . 1
500 9 | : ———————— Avg. entities per record: 8.018913480885312
: : —_— - Max entities in a record: 98
| 1 Min entities in a record": 1
1
I T || ©999000000000000 Most frequent entities": 4
400 : ° Freq. of most frequent entities: 498
I : — — —J Median entities: 6.0
I : Std. dev. of entities: 6.80
1 % of records with <10 entities: 76.14%
> 300 I 1
g i :
3 I : .
o
o 1 |
w 1 .
11
200 1 |
11 :
1
H |
11 '
1 |
100 I : -
1 1
I 1 .
1
1 |
11 :
0 ! 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30+

Number of Entities

Figure 7: Entity distribution within each dataset under the *With Title’ setting.
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Distribution of Entity Counts
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Figure 8: Entity distribution within each dataset under the *without title’ setting.

Data Type

Data Name

mPlug-owl

Qwen-VL-Chat

LLava-v-1.5

Text

Dialogue
Caption

VQA

Grounding?
Ref Grounding

OCR
Image Captioning
Visual Spatial Reasoning

Visual Dialog
Video Question Answering

Image Classification
Knowledge-Grounded Image QA

ShareGPT (Chen et al., 2023)

SlimOrca (Mukherjee et al., 2023)
In-house Data

LLaVA (Liu et al., 2023b)

COCO (Lin et al., 2014)

TextCaps (Sidorov et al., 2020)

SBU (Ordonez et al., 2011)

Coyo (Byeon et al., 2022)

DataComp

CCI2M & 3M (Changpinyo et al., 2021)

LAION-en (Schuhmann et al., 2022) & zh

VQAvV2

GQA (Hudson and Manning, 2019)
OKVQA (Marino et al., 2019)
OCRVQA (Mishra et al., 2019)
A-OKVQA (Schwenk et al., 2022)
DVQA (Kafle et al., 2018)
TextVQA (Singh et al., 2019)
ChartQA (Masry et al., 2022)
A12D

GRIT (Peng et al., 2023)

GRIT

VisualGenome (Krishna et al., 2017)
RefCOCO (Yu et al., 2016)
RefCOCO+ (Yu et al., 2016)
RefCOCOg

SynthDoG-en (Kim et al., 2022) & zh
Common Crawl pdf & HTML
Web CapkFilt (Li et al., 2022b)
NoCaps

Flickr30K (Plummer et al., 2015)
IconQA (Lu et al., 2021)

Visual Dialog

MSVD-QA (Xu et al., 2017)
MSRVTT-QA

iVQA (Liu et al., 2018)

VizWiz (Gurari et al., 2018)
ScienceQA (Lu et al., 2022)

N\N XN

NNX1XXN

SNRXNSXKNXSXXXNXNXNXYN X XXXXXXXN XN ®

4

4

NNXXN N XXX\
N XXX\ N

SNNXXXXXXNXN

Table 19: Details of training datasets.
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