This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Massively multilingual models are known to have limited utility in any one language, and to perform particularly poorly on low-resource languages. By contrast, targeted multinguality has been shown to benefit low-resource languages. To test this approach more rigorously, we systematically study best practices for adapting a pre-trained model to a language family. Focusing on the Uralic family as a test case, we adapt XLM-R under various configurations to model 15 languages; we then evaluate the performance of each experimental setting on two downstream tasks and 11 evaluation languages. Our adapted models significantly outperform mono- and multilingual baselines. A regression analysis reveals that adapted vocabulary size is relatively unimportant for low-resource languages, and that low-resource languages can be aggressively up-sampled during training at little detriment to performance in high-resource languages. These results introduce new best practices for performing language adaptation in a targeted setting.
We introduce a Masked Segmental Language Model (MSLM) for joint language modeling and unsupervised segmentation. While near-perfect supervised methods have been developed for segmenting human-like linguistic units in resource-rich languages such as Chinese, many of the world’s languages are both morphologically complex, and have no large dataset of “gold” segmentations for supervised training. Segmental Language Models offer a unique approach by conducting unsupervised segmentation as the byproduct of a neural language modeling objective. However, current SLMs are limited in their scalability due to their recurrent architecture. We propose a new type of SLM for use in both unsupervised and lightly supervised segmentation tasks. The MSLM is built on a span-masking transformer architecture, harnessing a masked bidirectional modeling context and attention, as well as adding the potential for model scalability. In a series of experiments, our model outperforms the segmentation quality of recurrent SLMs on Chinese, and performs similarly to the recurrent model on English.