

Encouraging Paragraph Embeddings to Remember Sentence Identity Improves Classification Tu Vu, Mohit lyyer

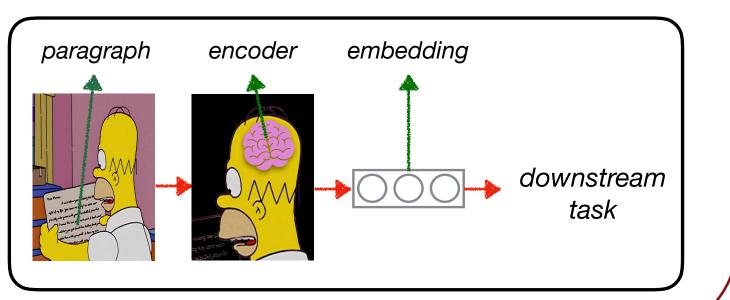
code at <u>github.com/</u> tuvuumass/scope

What are paragraph embeddings?

Encode a given paragraph into **a single** fixed-length vector representation

Applications

- ★ text classification
- ★ document retrieval
- \star semantic similarity and relatedness



How can we examine what linguistic properties they encode?

Linguistic Probe Tasks extended to the paragraph level

predict a simple linguistic

Sentence Content binary classification

predict whether

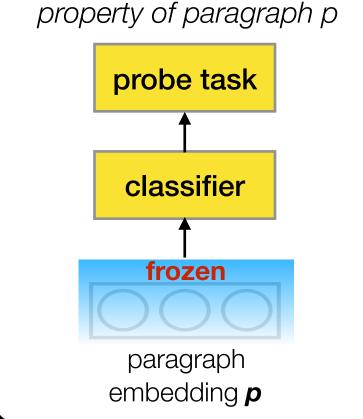
Sentence content substantially boosts accuracy and generalization, outperforming reconstruction

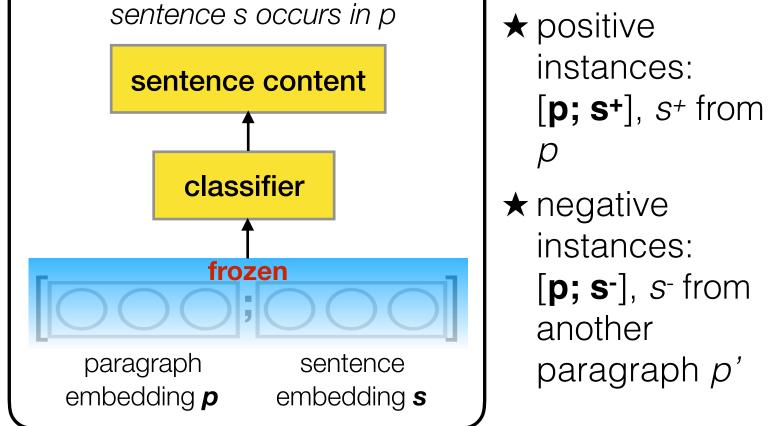
Without fine-tuning, CNN-SC outperforms CNN-R by a large margin on both in-domain and out-of-domain data

Pre-training	CNN-R	CNN-SC		
On Yelp	67.4	90.0		
On Wikipedia	61.4	65.7		
Wall-clock speedup	1X	4X		
Yelp test accuracy				
\star four times faster to train				

CNN-SC outperforms baseline models that do not use external data, including CNN-R

Model	Yelp	DBPedia	Yahoo		
purely supervised w/o external data					
ngrams TFIDF	95.4	98.7	68.5		
Large Word ConvNet	95.1	98.3	70.9		
Small Word ConvNet	94.5	98.2	70.0		
Large Char ConvNet	94.1	98.3	70.5		
Small Char ConvNet	93.5	98.0	70.2		
SA-LSTM (word level)	NA	98.6	NA		
Deep ConvNet	95.7	98.7	73.4		
CNN (Zhang et al., 2017)	95.4	98.2	72.6		
pre-training + fine-tuning w/o external data					
CNN-R (Zhang et al., 2017)	96.0	98.8	74.2		
CNN-SC (ours)	96.6	99.0	74.9		
pre-training + fine-tuning w/ external data					
ULMFiT (Howard and Ruder, 2018)	97.8	99.2	NA		





 \star classification tasks \star agnostic to the embedding method

Motivation: word identity information is correlated with downstream sentence-level classification performance (Conneau et al., 2018)

How well do they encode the identity of the sentences within a paragraph?

Probe data

Hotel Reviews (Li et al., 2015; Zhang et al., 2017): 340K/20K/20K paragraphs for train/val/test

Paragraph Embedding Models

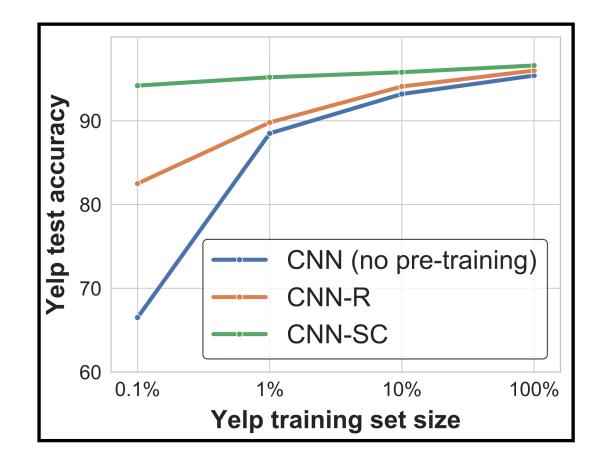
- **★ CNN-R**, originally **CNN-DCNN** (Zhang et al., 2017):
 - convolutional-deconvolutional encoder-decoder model + reconstruction objective • powerful paragraph embeddings

BoW models outperform more complex models on sentence content

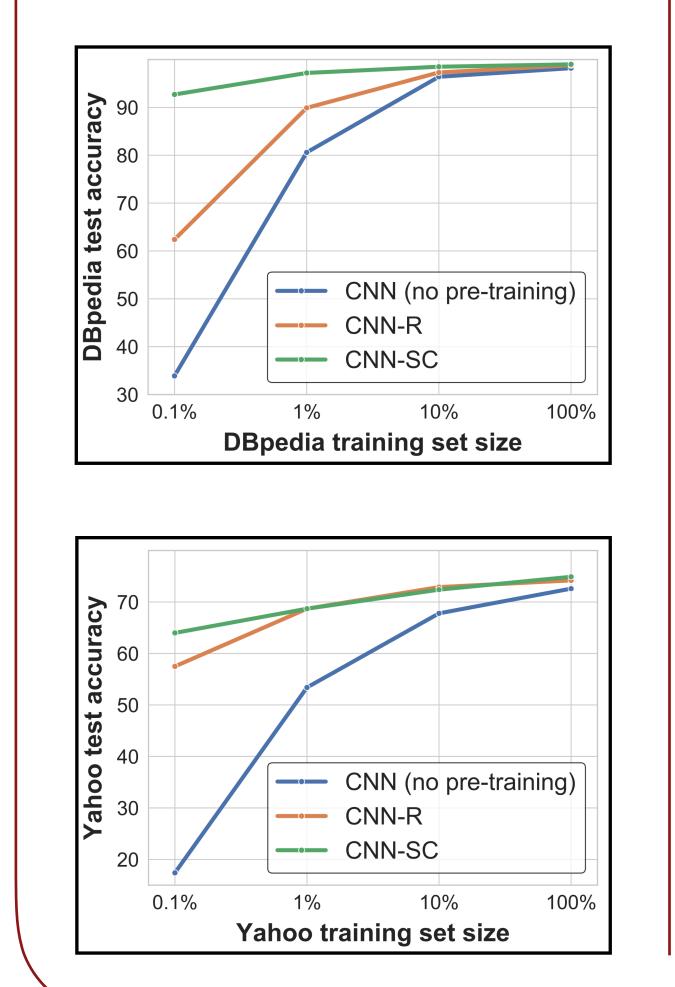
Model	Dimensionaltity	Accuracy			
Random		50.0			
trained on paragraphs from Hotel Reviews					
BoW (CNN-R)	900	87.2			
Doc2VecC	900	90.8			
CNN-R	900	66.4			
LSTM-R	900	65.4			
pre-trained on other datasets					
BOW (Glove)	300	84.6			
BOW (ELMo)	1024	88.1			
Skip-Thoughts	4800	78.9			
InferSent	4096	68.7			

★ better correlation to downstream accuracy

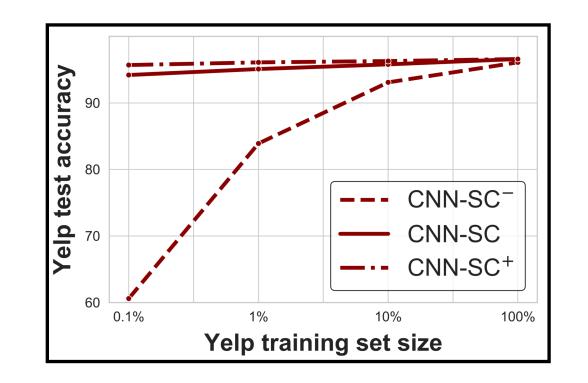
Fine-tuning CNN-SC substantially boosts accuracy and generalization



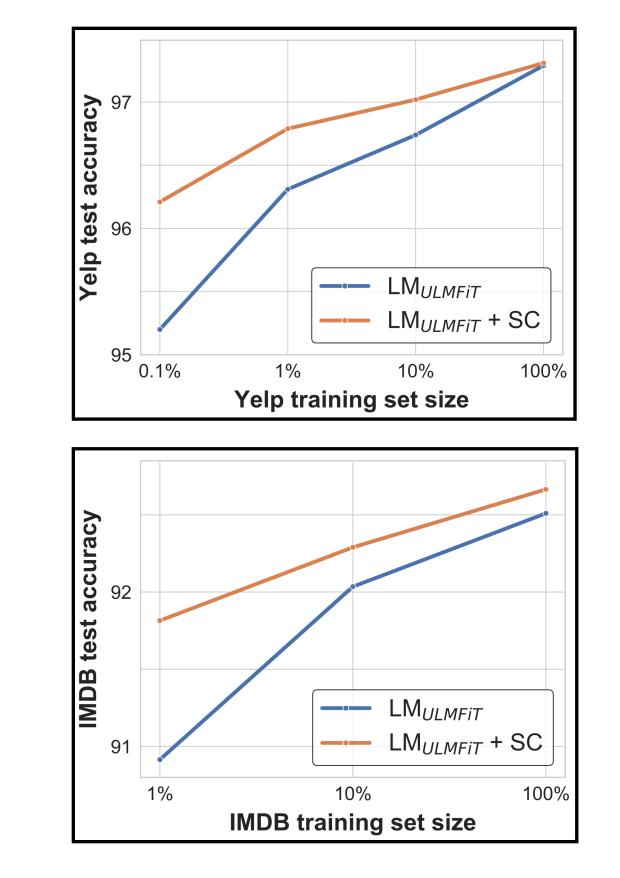
On Yelp, with only 500 labeled examples, it outperforms training from scratch on 200x more data



CNN-SC implicitly learns to distinguish between class labels



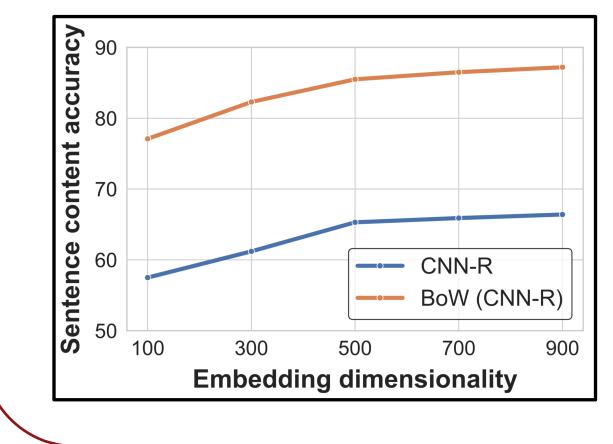
Sentence content learns <u>complementary information to</u> language modeling (LM)



★ BOW (CNN-R)

• average of CNN-R's word vectors

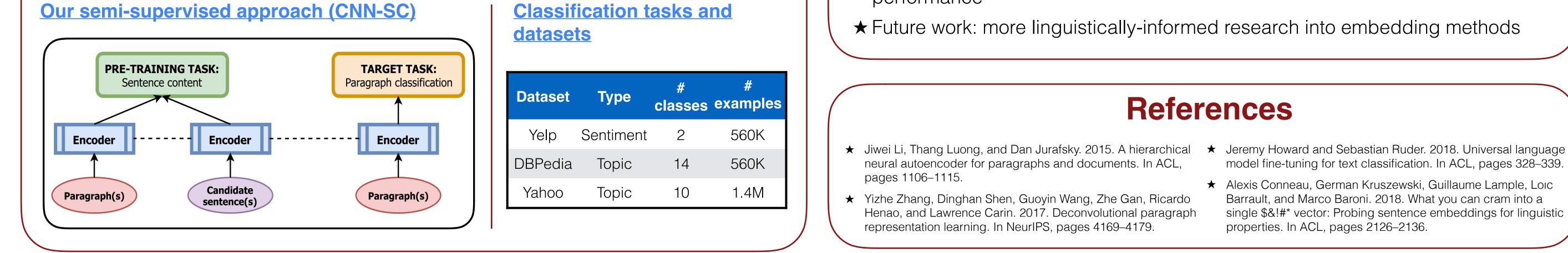
BoW (CNN-R) outperforms CNN-R on sentence content across dimensions

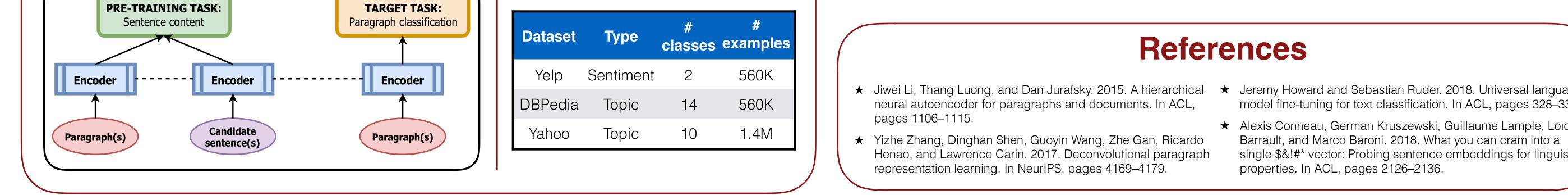


BoW (CNN-R) relies more heavily on low-level matching than CNN-R

Setting	CNN-R	BOW (CNN-R)
Without s+ excluded from p	61.2	82.3
With s+ excluded from p	57.5	61.7

Sentence content as a pretraining task





Conclusions

- ★ BoW models outperform more complex models on our sentence content probe
- ★ Incorporating probe objectives into downstream models might help improve performance