

GNEG: Graph-Based Negative Sampling for word2vec

Zheng Zhang^{1,2} and Pierre Zweigenbaum¹

¹LIMSI, CNRS, Université Paris-Saclay ²LRI, Université Paris-Sud, CNRS, Université Paris-Saclay

1. Motivation

Limsi Cill

- Negative Sampling (NEG) is an important component in word2vec:
 As an approximation to Noise Contrastive Estimation (NCE), NEG brings a significant speed-up and achieves very good performance on distributed word representation learning.
- But NEG is not targeted for training words, noise distribution is only based on the unigram distribution (word count):

$$P_n(w) = \frac{U(w)^{\frac{3}{4}}}{\sum_{i=1}^{|vocab|} U(w_i)^{\frac{3}{4}}}$$

• We hypothesize that taking into account global, corpus-level information and generating a

Corpora

• We use the skip-gram negative sampling model with window size 5, vocabulary size 10000, vector dimension size 200, number of iterations 5 and negative examples 5 to compute baseline word embeddings.

3. Experiments

- Our graph-based negative sampling models share the parameters of the baseline.
- All four models are trained on an English Wikipedia dump from April 2017 of three sizes: about 19M tokens, about 94M tokens (both are for detailed analyses and non-common parameters grid search in each of the three graph-based models) and around 2.19 billion tokens.

different noise distribution for each target word better satisfies the requirements of negative examples for each training word than the original frequency-based distribution.

2. Graph-Based Negative Sampling

Build the graph-based negative sampling noise distribution in 3 steps!

Step 1: "Making the dough" - Generate an undirected weighted word co-occurrence network from the corpus and get the adjacency matrix *A* from it for the future use.

The history of natural language processing generally started in the 1950s. The histori of natur languag process gener start in the 0000s.

Evaluation Datasets

We evaluate the resulting word embeddings:

- on word similarity tasks using WordSim-353 (Finkelstein et al., 2001) and SimLex-999 (Hill et al., 2014) (correlation with humans).
- on the word analogy task (Mikolov et al., 2013a) (% correct).

Statistical Significance

- Steiger's Z tests (Steiger, 1980) for WordSim-353 and SimLex-999
- Approximate randomization (Yeh, 2000) for the word analogy task

4. Results

weight = $1 \times number \ of \uparrow + 1 \times number \ of \uparrow$ undirected

distance=1

Distance=2

(d_{max},

Efficient Generation and Processing of Word Co-occurrence Networks Using corpus2graph Zheng ZHANG, Ruiqing YIN, Pierre ZWEIGENBAUM, In Proceedings of NAACL 2018 Workshop on Graph-Based Algorithms for Natural Language Processing, New Orleans, US

Step 2: "Creating the toppings" - Three methods to generate basic noise distribution matrices on the word co-occurrence network.

Option 1 Directly using the training word context distribution *A* extracted from the word cooccurrence network.

- Zero co-occurrence case: Some vocabulary words may never co-occur with a given training word, which makes them impossible to be selected for this training word.
- Solution: Replacing all zeros in matrix with the minimum non-zero value of their corresponding rows.

Option 2 Calculating the difference between the original unigram distribution and the training word context distribution.

• For zeros and negative values in the matrix, we reset them to the minimum nonzero value of the corresponding rows.

distribution	d _{max}	<i>p</i>	others
bigram	3	0.25	$replace_zeros = T$
difference	3	0.01	
Random walk	5	0.25	$t = 2, no_self_loops = T$

Training time

$8 + 2.5 \text{ hours}^*$

word2vec corpus2graph

*Trained on the entire Wikipedia corpus using 50 logical cores on a server with 4 Intel Xeon E5-4620 processors.

Option 3 Performing t-step random walks on the word co-occurrence network.

- Using the t-step random walk transition matrix as the final noise distribution matrix
- Two versions: with/without self-loops

Step 3: "Baking" - Based on the previous results, use the power function to adjust the distribution and then normalize all rows of the adjusted matrix to get the final noise distribution.

$P_n(w_u, w_v) = \frac{(B_{uv})^p}{\sum_{i=1}^{|B_u|} (B_{ui})^p}$

5. Future work

- Graph-based context words selection
- Graph-based training words reordering for word2vec
- Word co-occurrence matrix factorization for distributed word representation learning

RESEARCH POSTER PRESENTATION DESIGN **www.PosterPresentations.**