

A Rank-Based Similarity Metric for Word Embeddings

Enrico Santus, Hongmin Wang, Emmanuele Chersoni, Yue Zhang

Computer Science and Artificial Intelligence Lab, MIT

University of California Santa Barbara

Aix-Marseille University

Singapore University of Technology and Design

Motivation

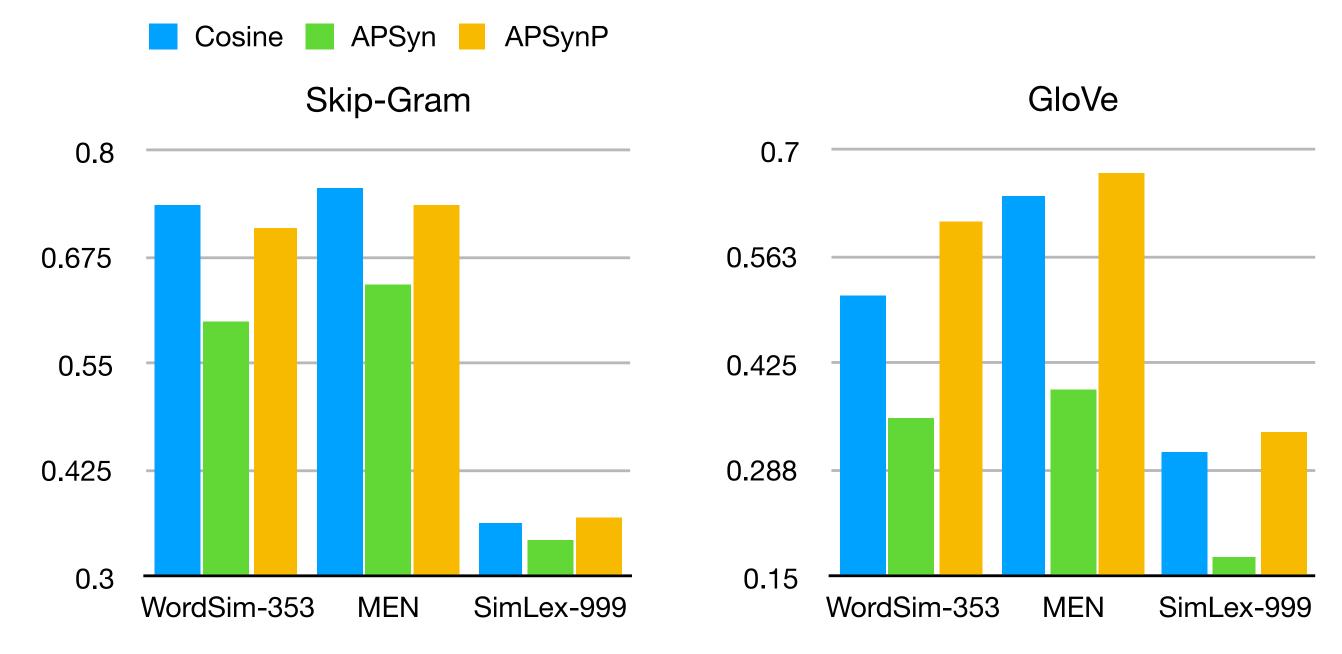
- **Distributional Semantic Models** build *high-dimensional* and *sparse* representations from co-occurrence statistics
- Semantic similarity is measured by vector cosine, which treats all features equally
- Rank-based metrics have been successfully applied to DSMs, but not yet on *low-dimensional* and *dense* Word Embeddings

APSynP: Rank-Based Metric

- Hypotheses:
 - Similarity = sharing a high number of relevant features
 - Dissimilarity = either non-sharing relevant features or sharing non-relevant features
 - Clustering = cluster members share their salient semantic dimensions to increase cluster cohesiveness
- APSyn for Sparse and High Dimensional Vectors:

$$APSyn(w_x, w_y) = \sum_{i=0}^{i=N} \frac{1}{AVG(r_{s_x}(f_i), r_{s_{s_y}}(f_i))}$$

- Maps the average feature ranks to a non-linear function, emphasizing the contribution of top-ranked feature
- Performs well on synonymy detection and similarity estimation, and SOTA results in thematic fit estimation
- Contribution of lower ranks are negligible
- APSynP for Dense and Low dimensional Vectors:


$$APSynP(w_x, w_y) = \sum_{i=0}^{i=|f|} \frac{1}{AVG(r_{s_x}(f_i)^p, r_{s_y}(f_i)^p)}$$

- N = |f| (removing a parameter)
- Adding a smoothing parameter, which can be tuned but tends to be constant (p=0.1) across all experiments
- Preserving the non-linear weight allocation across the average feature ranks during the summation
- Ranks of all features contributing to the final score

Similarity Estimation

- Spearman Correlation between system-generated scores and human judgments
- Benchmark: WordSim-353, MEN, SimLex-999

Outlier Detection

- Benchmark: 8-8-8 dataset
- 64 sets of 8 words + 1 outlier for the evaluation.

$$OPP = \frac{\sum_{W \in D} \frac{OP(W)}{|W| - 1}}{D} \times 100$$

$$Accuracy = \frac{\sum_{W \in D} OD(W)}{D} \times 100$$

- Pairwise Comparisons: outlier has the lowest average similarity score with the other words in the cluster
- Cluster Prototype: outlier has the lowest similarity score with the average vector of the other N-1 words

	Skip-Gram				GloVe			
	UMBC		Wiki		UMBC		Wiki	
	OPP	Acc.	OPP	Acc.	OPP	Acc.	OPP	Acc.
CC-Cos	92.6	64.1	93.8	70.3	81.6	40.6	91.8	56.3
	Pairwise							
APSyn	93.0	67.2	94.0	68.8	78.7	40.6	89.3	53.1
APSynP	94.0	68.8	94.5	73.4	81.8	42.2	92.8	61.0
	Prototype							
PT-Cos	93.4	65.6	93.8	68.8	80.3	40.6	90.6	54.7
APSyn	92.6	70.3	91.0	62.5	81.6	40.6	88.7	54.7
APSynP	94.0	<u>70.3</u>	94.9	73.4	82.2	43.8	92.0	60.9

Contributions

- *APSynP*, a rank-based similarity measure adapted with a smoothing parameter for word embeddings
- Setting N=|f| and using a constant parameter makes APSynP unsupervised
- Comparable or better performances than cosine and APSyn on similarity estimation, clustering and outlier detection
- Pilot studies suggest that other rank-based metrics can outperform vector cosine in multiple settings

Reference

- Jose Camacho-Collados and Roberto Navigli. 2016. Find the Word that Does not Belong: A Framework for an Intrinsic Evaluation of Word Vector Representations. In Proceedings of ACL Workshop on Evaluating Vector Space Representations for NLP
- Enrico Santus, Emmanuele Chersoni, Alessandro Lenci, Chu-Ren Huang, and Philippe Blache. 2016a. Testing Apsyn against Vector Cosine on Similarity Estimation. In Proceedings of PACLIC.