
Automatic Academic Paper Rating Based on Modularized Hierarchical Convolutional Neural Network

Pengcheng Yang¹, Xu Sun^{1,2}, Wei Li², Shuming Ma² ¹Deep Learning Lab, Beijing Institute of Big Data Research, Peking University ²MOE Key Laboratory of Computational Linguistics, Peking University {yang pc, xusun, liweitj47, shumingma}@pku.edu.cn

Abstract

•Task:

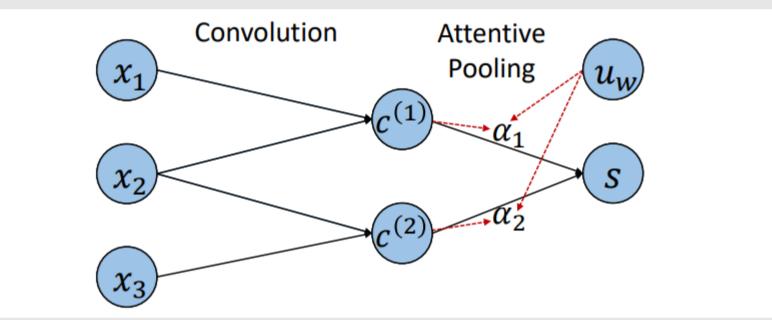
Automatically determine whether to accept an academic paper.

Motivation:

- > More and more academic papers are being submitted to conferences and journals.
- > Evaluating papers by professionals is time-consuming and can cause inequality due to the personal factors.

Proposal:

- \succ A new dataset for automatic academic paper rating.
- \succ A modularized hierarchical convolutional neural network.


MHCNN	67.7%		
CNN	61.3%	C-LSTM	60.8%
Bagging	59.4%	LSTM	60.5%
SVM	61.6%	AdaBoost	58.9%
MNB	58.3%	GNB	58.5%
CART	58.6%	KNN	60.3%
KP	50.0%	Logistic	60.0%

•Conclusion:

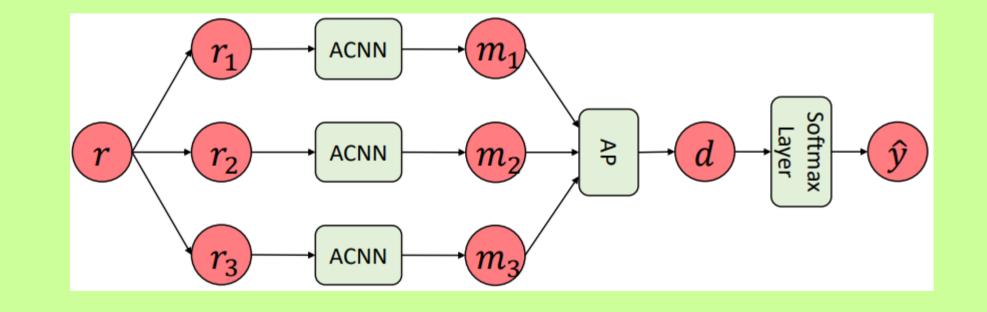
- > The proposed MHCNN outperforms all baselines.
- \succ The modularized hierarchical structure and attention mechanism are of great help to improve accuracy.

Attention-Based Convolutional Neural Network

•Model:

Ablation Study

• Result:


Models	Accuracy	Decline
MHCNN	67.7%	
w/o Attention	66.8%*	$\downarrow 0.9\%$
w/o Module	61.3%*	$\downarrow 6.4\%$

•Conclusion:

 (x_1, x_2, \dots, x_m) is the input sequence, u_w is parameter vector, s is the high slevel representation of the whole sequence.

- \succ Either the modularized hierarchical structure or the attention mechanism is of great help to improve accuracy.
- \succ The modularized hierarchical structure of the model is beneficial to obtain better representations by incorporating structure knowledge of the source paper.

Modularized Hierarchical Convolutional Neural Network • Model:

ACNN denotes attention-based CNN and AP denotes attentive pooling. r_i and m_i represent the token sequence and high sssslevel representation of the *i*-th module, respectively. d denotes the final representation of the source paper.

Comparison of Various Parts of the Source Paper

• Result:

Contexts	Accuracy	Decline
Full data	67.7%	
w/o Title	66.6%*	↓1.1%
w/o Abstract	65.5%*	↓2.2%
w/o Authors	64.6%*	↓3.1%
w/o Introduction	65.7%*	↓2.0%
w/o Related work	66.0%*	↓1.7%
w/o Methods	66.2%*	↓1.5%
w/o Conclusion	65.0%*	↓2.7%

•Conclusion:

- \succ Except for *authors*, the two most significant modules affecting acceptance are *conclusions* and *abstract*.
- > The impact of the *title* is the smallest.

Proposed Model

•Modularize:

The source paper $r \rightarrow$ Several modules (r_1, r_2, \cdots, r_l) .

- •Module representation:
 - \succ Input the token sequence r_i .
 - \rightarrow ACNN: word level —> sentence level —> module level.
 - \succ Output the module sslevel representation m_i .
- •Aggregation and classification:
 - \succ Aggregate (m_1, m_2, \cdots, m_l) to d.
 - \succ Perform classification based on d.

Conclusions

•We propose the task of automatically rating academic papers and build a new dataset for this task.

•We propose a modularized hierarchical convolutional neural network model that considers the overall information of the source paper. Experimental results show that the proposed method outperforms the baselines by a large margin.

•we find that the conclusion and abstract parts have the most influence on whether the source paper can be accepted when setting aside the factor of authors.