Sparse and Constrained Attention for Neural Machine Translation

Chaitanya Malaviya¹, Pedro Ferreira², André F.T. Martins^{2,3}

¹Carnegie Mellon University, ²Instituto Superior Técnico, ³Unbabel

Adequacy in Neural Machine Translation

Source: und wir benutzen dieses wort mit solcher verachtung

Repetitions Reference: and we say that word *with such contempt*.

Translation: and we use this word with such contempt contempt.

Ein 28-jähriger Koch, der kürzlich nach Pittsburgh Source: gezogen war, wurde diese Woche im Treppenhaus eines örtlichen Einkaufszentrums tot aufgefunden.

Dropped words

A 28-year-old chef who recently moved to Reference: Pittsburgh was found dead in the staircase of a local shopping mall this week.

A 28-year-old chef who recently moved to Translation: Pittsburgh was found dead in the stairçase this week .

Previous Work

- Conditioning on coverage vectors to track attention history (Mi, 2016; Tu, 2016).
- Gating architectures and adaptive attention to control amount of source context (Tu, 2017; Li & Zhu, 2017).
- Reconstruction Loss (Tu, 2017).
- Coverage penalty during decoding (Wu, 2016).

Main Contributions

J'ai mangé le sandwich

- 1. Fertility-based Neural Machine Translation Model (Bounds on source attention weights)
- 2. Novel attention transform function: *Constrained Sparsemax* (Enforces these bounds)
- 3. Evaluation Metrics: REP-Score and DROP-Score

NMT + Attention Architecture

Attention Transform Functions

 Sparsemax: Euclidean projection of z provides sparse probability distributions.

 Constrained Softmax: Returns the distribution closest to softmax whose attention probabilities are bounded by upper bounds u.

s.t.
$$\alpha \leq u$$

Attention Transform Functions

 Sparsemax: Euclidean projection of z provides sparse probability distributions.

$$\operatorname{sparsemax}(\boldsymbol{z}) := \operatorname{arg\,min}_{\boldsymbol{\alpha} \in \Delta^J} \|\boldsymbol{\alpha} - \boldsymbol{z}\|^2$$

- Constrain Sparse and Constrained?
- to softmax whose attention probabilities are bounded by upper bounds u.

$$\operatorname{csoftmax}(\boldsymbol{z}; \boldsymbol{u}) := \operatorname{arg\,min}_{\boldsymbol{\alpha} \in \Delta^J} \operatorname{KL}(\boldsymbol{\alpha} \|\operatorname{softmax}(\boldsymbol{z}))$$

s.t.
$$\alpha \leq u$$

Constrained Sparsemax

Provides sparse and bounded probability distributions.

$$egin{aligned} \mathsf{csparsemax}(oldsymbol{z};oldsymbol{u}) &:= rgmin \|oldsymbol{lpha} - oldsymbol{z}\|^2 \ lpha \in \Delta^J \ ext{ s.t. } oldsymbol{lpha} \leq oldsymbol{u}. \end{aligned}$$

- This transformation has two levels of sparsity: over time steps & over attended words at each step.
- Efficient linear and sublinear time algorithms for forward and backward propagation.

Visualization: Attention transform functions

csparsemax provides sparse and constrained probabilities.

Fertility-based NMT Model

Fertility-based NMT

• Allocate fertilities *f* for each source word as attention budgets that exhaust over decoding.

• Fertility Predictor : Train biLSTM model supervised by fertilities from fast_align (IBM Model 2).

Fertility-based NMT

• Fertilities incorporated as:

$$\alpha_t = \operatorname{csparsemax}(z_t, f - \beta_{t-1})$$
$$u_t$$
$$\beta_{t-1} := \sum_{\tau=1}^{t-1} \alpha_{\tau}$$

 Exhaustion strategy to encourage more attention for words with larger credit remaining:

$$z'_t = z_t + cu_t$$

Experiments

Experiments

- Experiments performed on 3 language pairs: De-En (IWSLT 2014), Ro-En (Europarl), Ja-En (KFTT).
- Joint BPE with 32K merge operations.
- Default hyperparameter settings in OpenNMT-Py.
- Baselines: Softmax, + CovPenalty (Wu, 2016) and + CovVector (Tu, 2016)

Evaluation Metrics: REP-Score & DROP-Score

REP Score:

- Penalizes n-gram repetitions in predicted translations.
- Normalize by number of words in reference corpus.

DROP Score:

- Find word alignments from source to reference & source to predicted.
- % of source words aligned with some word in reference, but not with any word in predicted translation.

Results

BLEU Scores

Lower is better!

REP Scores

DROP Scores

 csparsemax yields sparse set of alignments and avoids repetitions.

Examples of Translations

input	überlassen sie das ruhig uns .
reference	leave that up to us.
softmax	give us a silence .
csparsemax	leave it to us .

input	so ungefähr, sie wissen schon.
reference	like that, you know.
softmax	so , you know , you know .
csparsemax	like that , you know .

input	wir sehen das dazu, dass phosphor wirklich kritisch ist.
reference	we can see that phosphorus is really critical.
softmax	we see that that phosphorus is really critical.
csparsemax	we see that phosphorus is really critical.

More in the paper...

Thank You!

Code: www.github.com/Unbabel/ sparse_constrained_attention

Questions?