TOWARDS ROBUST AND PRIVACY-PRESERVING TEXT REPRESENTATIONS

Yitong Li, Timothy Baldwin, Trevor Cohn

yitongl4@student.unimelb.edu.au, {tbaldwin,tcohn}@unimelb.edu.au

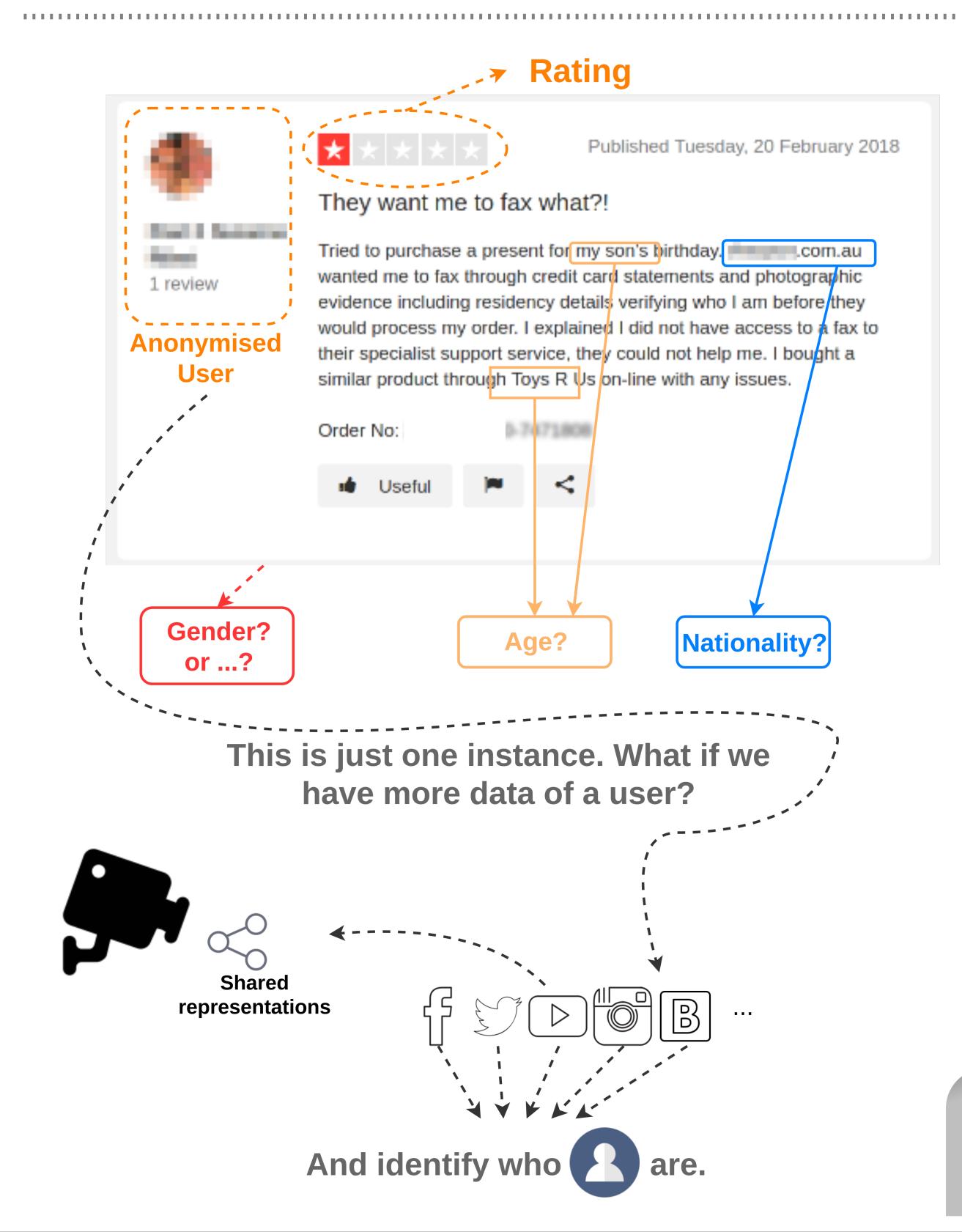
1. Introduction

Background: Written text often provides clues to identify the author, their gender, age, and other important attributes. As a result, the authorship of training and evaluation corpora can have unforeseen consequences, including differing model performance for different user groups, as well as privacy implications.

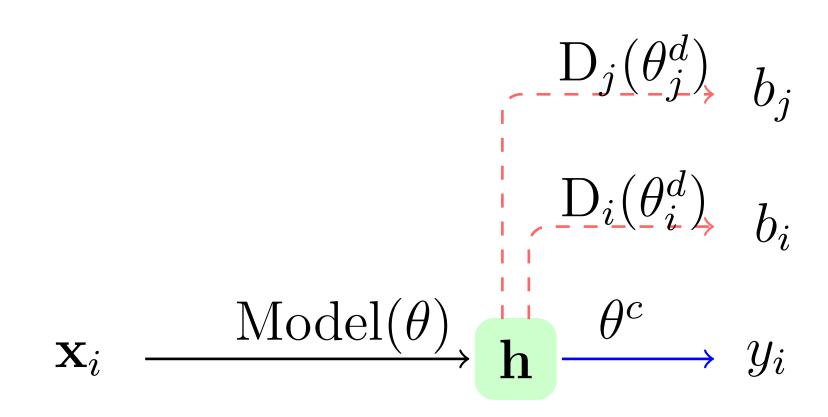
Aim: to learn un-biased representations which protect author's attributes.

Our contribution: propose an approach to obscure important author characteristics at training time, such that representations learned are invariant to these attributes.

2. A Trustpilot Attacker Example



3. Model Architecture



- (\mathbf{x}_i, y_i) : a training instance with two protected attributes b_i and b_j ;
- $D^{\{\cdot\}}(\theta^d)$ = a discriminator, predicting the domain;
- red dashed and blue lines denote adversarial and standard loss.
- \mathcal{X} = cross-entropy loss.

Formulated as:

$$\hat{ heta} = \min_{ heta_M} \max_{\{ heta_{\mathrm{D}i}\}_{i=1}^N} \ \mathcal{X}(\hat{\mathbf{y}}(\mathbf{x}; heta_M), \mathbf{y}) - \sum_{i=1}^N \lambda_i \cdot \mathcal{X}(\hat{b}(\mathbf{x}; heta_{\mathrm{D}i}), b_i)$$

5. Sentiment Analysis

- BASELINE: word-level CNN
- Dataset: TrustPilot dataset derived from Hovy et al. (2015)
- -Target variable: RATING ₁₋₅
- -Three attributes: gender (SEX binary), age (AGE binary), and location (LOC $\{US,UK,GE,DE,FR\}$).
- -Retrieve English reviews, and resample to balance LOC.
- Evaluation:
- -RATING accuracy (higher is better) as main task performance,
- -Discriminator accuracy (majority is better) as attacker.

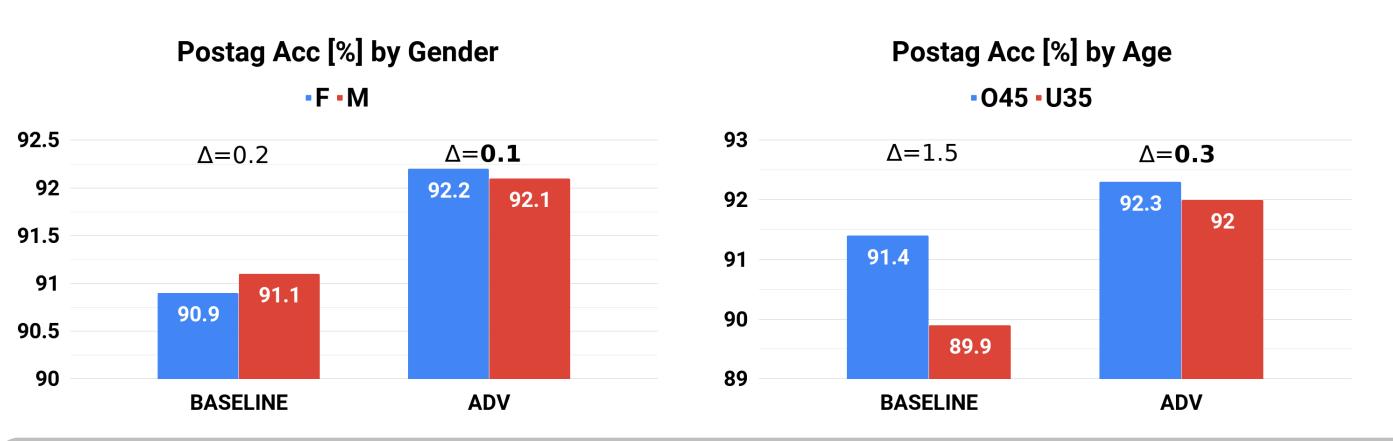
	F_1		Discrim. [%]		
	dev	test	AGE	SEX	LOC
Majority class			57.8	62.3	20.0
BASELINE	41.9	40.1	65.3	66.9	53.4
ADV-AGE	42.7	40.1	61.1	65.6	41.0
ADV-SEX	42.4	39.9	61.8	62.9	42.7
ADV-LOC	42.0	40.2	62.2	66.8	22.
ADV-all	42.0	40.2	61.8	62.5	28.1

• Our method can hide much of the personal information of users, without affecting the sentiment task performance.

https://github.com/lrank/Robust_and_ Privacy_preserving_Text_Representations

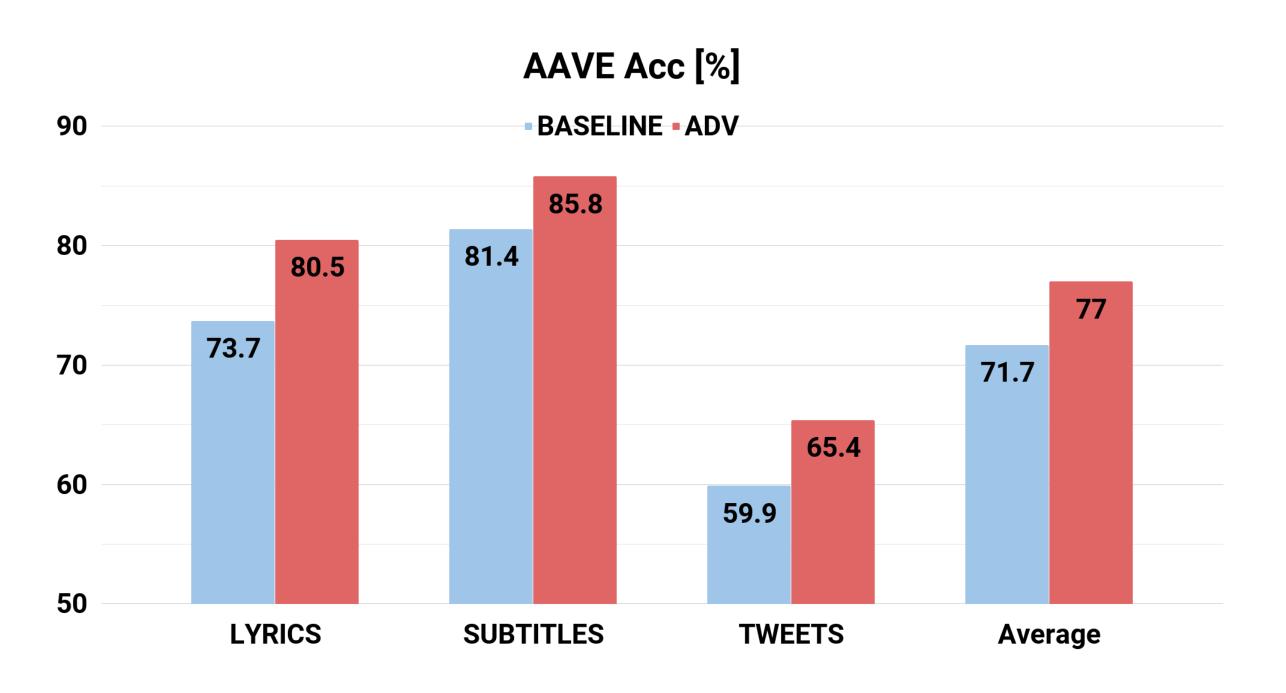
4. POS-tagging

- BASELINE: BI-LSTM trained on Web English Treebank (Bies et al., 2012)
- Two evaluations: in-domain and out-of-domain.
- 1. TrustPilot English POS tagged dataset (Hovy and Søgaard, 2015)
- experiment with two attributes:
- -GENDER: female (F) and male (M)
- -AGE: over-45 (O45) and under-35 (U35)



2. African-American Vernacular English (Jørgensen et al., 2016)

• Three heterogeneous domains: LYRICS, SUBTITLES and TWEETS



Confusion Matrix:

