Sequence-to-sequence Models for **Cache Transition Systems**

Xiaochang Peng¹, Linfeng Song¹, Daniel Gildea¹ and Giorgio Satta²

AMR

"John wants to go"

AMR

After **its** competitor invented the front loading washing machine, the CEO of the American **IM company** believed that each of **its** employees had the ability for innovation, and formulated strategic countermeasures for innovation in the industry.

Transition-based AMR parsing

- There has been previous work (Sagae and Tsujii; Damonte et al.; Zhou et al.; Ribeyre et al.; Wang et al.) on transition-based graph parsing.
- Our work introduces a new data structure "cache" for generating graphs of certain *treewidth*.

Introduction to treewidth

Introduction to treewidth

large tree width

Tree decomposition

- Configuration $c = (\sigma, \eta, \beta, E)$
 - Stack σ : place for temporarily storing concepts
 - Cache η: working zone for making edges, fixed size corresponding to the treewidth.
 - Buffer β : unprocessed concepts
 - E: set of already-built edges

- Actions
 - SHIFT PUSH(i): shift one concept from buffer to rightmost position of cache, then select one concept (index i) from cache to stack.

- Actions
 - POP: pop the top from stack and put back to cache, then drop the right-most item from cache.

UNIVERSITY of ROCHESTER

- Actions
 - Arc(i, l, d): make an arc (with direction d, label l) between the right-most node to node i. Arc(i,-,-) represents no edge between them.

Action taken: Initialization

Action taken: SHIFT, PUSH(1)

Hypothesis: PER

Action taken: Arc(1, -, -), Arc(2, -, -)

Hypothesis: PER

Action taken: SHIFT, PUSH(1)

Hypothesis: PER

want-01

UNIVERSITY of ROCHESTER

Action taken: Arc(1, -, -), Arc(2, L, ARG0)

Action taken: SHIFT, PUSH(1)

Action taken: Arc(1, L, ARG0), Arc(2, R, ARG1)

UNIVERSITY of ROCHESTER

Action taken: POP POP POP

Sequence to sequence models for cache transition system

- Concepts are generated from input sentences by another classifier in the preprocessing step.
- Separate encoders are adopted for input sentences and sequences of concepts, respectively.
- One decoder for generating transition actions.

Seq2seq (soft-attention+features)

Seq2seq (hard-attention+features)

UNIVERSITY of ROCHESTER

Experiments

- Dataset: LDC2015E86
 - 16,833(train)/1,368(dev)/1,371(test)
- Evaluation: Smatch (Cai et al., 2013)

AMR Coverage with different cache sizes

Development results

Model	Ρ	R	F	cache size	Ρ	R	F
Soft	0.55	0.51	0.53	4	0.69	0.63	0.66
Soft+feats	0.69	0.63	0.66	5	0.70	0.64	0.67
Hard+feats	0.70	0.64	0.67	6	0.69	0.64	0.66

Impact of various components

Impact of cache size

Main results

Model	Р	R	F
Buys and Blunsom (2017)			0.60
Konstas et al. (2017)	0.60	0.65	0.62
Ballesteros and Al-Onaizan (2017)			0.64
Damonte et al. (2016)			0.64
Wang et al. (2015a)	0.70	0.63	0.66
Flanigan et al. (2016)	0.70	0.65	0.67
Wang and Xue (2017)	0.72	0.65	0.68
Lyu and Titov (2018)			0.74
Soft+feats	0.68	0.63	0.65
Hard+feats	0.69	0.64	0.66

Accuracy on reentrancies

Model	Р	R	F
Peng et al., (2018)	0.44	0.28	0.34
Damonte et al., (2017)			0.41
JAMR	0.47	0.38	0.42
Hard+feats (ours)	0.58	0.34	0.43

Reentrancy example

Sentence: I have no desire to live in any city .

Conclusion

- Cache transition system based on a mathematical sound formalism for parsing to graphs.
- The cache transition process can be well-modeled by sequence-to-sequence models.
 - Features from transition states.
 - Monotonic hard attention.

Thank you for listening! Questions

