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Abstract
Does the social power status of people influence how others speak towards them? Previous

studies said yes, but they overlooked the effect low-level linguistic features. We find that after
controlling for low-level features (utterance length), the effect of power on alignment vanishes
or is reversed.

Introduction
• The social power of interlocutors influences how they align (coordinate, accommodate) towards

each other.

• Qualitative evidence: interviewers & interviewees (Willemyns et al., 1997), teachers & students
(Jones et al., 1999) etc.

• Quantitative evidence: admins & non-admins in Wikipedia talkpages, judges & lawyers in
supreme-court dialogues (Danescu-Niculescu-Mizil et al., 2012).

• A widely accepted conclusion: people align their language use more towards interlocutors of
higher power (e.g., admins, judges) than those of lower power (e.g., non-admins, lawyers).

• However, previous studies overlooked the low-level features that could also affect alignment, e.g.,
lexical information density, syntactic surprisal, temporal clustering (Jaeger and Snider, 2008, 2013;
Xu and Reitter, 2018; Mysln and Levy, 2016), which casts doubt on the conclusion.

• Our work: A two-step model analysis on how reliably social power affects alignment:

– Step 1, a basic model to replicate Danescu-Niculescu-Mizil et al. (2012)’s findings.
– Step 2, an extended model that includes utterance length on top of the basic model, aiming to

examine whether the effect of social power still exists.

Experiment 1: Basic Model
• Alignment is the impact of using certain linguistic elements in the preceding utterance (prime) on

their chance to appear again in the following utterance (target).

• In the language of generalized linear models (GLM), we use the occurrence of linguistic markers
in target as the response variable, and their occurrence in prime as the predictor.

logit(m) = ln
p(m in target)

p(m not in target)
= β0 + β1Ccount + β2Cpower
+ β3Ccount ∗Cpower

(1)

• Here, Ccount is the number of marker m in prime. Cpower is a binary predictor indicating the power
status of prime speaker (high vs. low).

• A linguistic marker m is one of the 14 LIWC1 categories: adverbs, articles, auxiliary verbs, cer-
tainty, conjunctions, discrepancy, exclusive, inclusive, impersonal pronouns, negations, personal
pronouns, prepositions, quantifiers, and tentativeness.

• Datasets: Wikipedia talk-page corpus (Wiki) and a corpus of United States supreme court conver-
sations (SC) (compiled by Danescu-Niculescu-Mizil et al. (2012)).

• Results: z scores of β3 are shown in Table 1. Slopes of Ccount are visualized in Figure 1.

Marker
Ccount ∗ Cpower

SC Wiki

adv 6.16*** -0.40
art 4.60*** 1.27
auxv 5.81*** -0.83
certain 1.94† 2.84**

conj 6.79*** 0.39
discrep 8.03*** 0.25
excl 2.94** 2.16*

incl 5.24*** 2.15*

ipron 10.22*** 1.90†

negate 5.49*** 3.11**

ppron 1.29 -1.13
prep 6.87*** -0.19
quant 4.14*** -0.04
tentat 4.52*** -0.78

Table 1: Wald’s z-score and significance level (∗∗∗ for p < 0.001, ∗∗ for p < 0.01, ∗

for p < 0.05, and † for 0.05 < p < 0.1) of the interaction term, Ccount ∗ Cpower.
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Figure 1: The predicted probability against Ccount, grouped by Cpower. Divergent
slopes indicate significant interaction: high power speakers have larger slopes than
low power ones.

• Therefore, we have replicated the previous finding from Danescu-Niculescu-Mizil et al. (2012):
significant β3 of Ccount ∗Cpower indicates that the β of Ccount depends on Cpower, i.e., the strength
of alignment varies with the power levels of speakers (high vs. low).

• However, this affirmative finding is not safe, because only one predictor, Cpower, is included in the
model, which we will show in Experiment 2.

Experiment 2: Extended Model
• Does the interaction term Ccount ∗ Cpower remain significant after including other predictors that

represent low-level linguistic features?

• We add utterance length (number of words) as an additional predictor to the model, CpLen.

logit(m) = ln
p(m in target)

p(m not in target)
= β0 + β1Ccount + β2Cpower + β3CpLen
+ β4Ccount ∗Cpower
+ β5Ccount ∗ CpLen
+ β6Cpower ∗ CpLen
+ β7Ccount ∗ Cpower ∗ CpLen

(2)

• Our goal: to examine whether β4 remains significant and in same direction as β3 in Experiment 1.

• Results: Full model coefficients are shown in Table 2.

Table 2: Model coefficients of all terms in Equation 2. Notice that the β4 of
Ccount ∗ Cpower is negative in SC and non-significant in Wiki

Corpus Predictor β z

SC

Intercept 0.360 2.40*
Ccount 0.213 26.92***
Cpower -0.060 -3.39***
CpLen 0.080 13.03***
Ccount ∗Cpower -0.103 -9.95***
Ccount ∗ CpLen -0.066 -15.35***
Cpower ∗ CpLen 0.231 25.25***
Ccount ∗ Cpower ∗ CpLen 0.036 4.79***

Wiki

Intercept 0.330 1.40
Ccount 0.149 31.11***
Cpower -0.074 -10.52***
CpLen 0.179 40.80***
Ccount ∗Cpower 0.001 0.14
Ccount ∗ CpLen 0.022 6.13***
Cpower ∗ CpLen 0.042 5.52***
Ccount ∗ Cpower ∗ CpLen -0.010 -1.61

Figure 2: The predicted probability against Ccount, grouped by Cpower. Notice
that the differences in slopes (between high power and low power) are much
smaller than Figure 1.
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• Surprisingly, the coefficient of Ccount ∗ Cpower is negative in SC, and non-significant in Wiki,
which is inconsistent with the positive coefficients in Experiment 1.

• Further illustration of how the interaction Ccount ∗ Cpower diminishes after including CpLen to the
model: cluster CpLen to two discrete values, long and short, and then plot the regression lines
grouped by the combination of CpLen and Cpower (shown in Figure 3).
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Figure 3: The predicted probability against Ccount, grouped
by the 4 combinations of CpLen and Cpower. The slope dif-
ference between colors (long vs. short utterance) is much
bigger than between line-types (high vs. low power).
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• Thus, CpLen is a more determinant factor of alignment than Cpower.

Discussion and Conclusions
• Our findings suggest that the previously reported effect of power on linguistic alignment is not

reliable. Instead, alignment is more sensitive to certain low-level features (e.g., utterance length).

• We do not deny the existence of accommodation caused by social perception, but we want to em-
phasize the difference between the priming-induced alignment and the intentional accommodation.

• The dynamics of LIWC categories in probability space is more likely to be a case of automatic
alignment, rather than accommodation. Therefore, we suggest future work on social aspects of
language use should consider higher levels of linguistic elements.
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