Neural Adversarial Training for Semi-supervised Japanese **Predicate-argument Structure Analysis**

Shuhei Kurita, Daisuke Kawahara and Sadao Kurohashi

Kyoto University, Japan

Introduction & Task

We propose a novel GAN-like model: generator and validator networks that enable the model to learn from an unlabeled corpus.

- Japanese predicate-argument structure (PAS) analysis is a task to find an argument for each case of a predicate.
- PAS analysis relies on the numerous pairs of predicates and their arguments depending on their contexts. However, annotated corpora for PAS analysis are very limited.
- Our validator scores the generator outputs and enables the generator to learn predicate and argument pairs from unlabeled corpora.
- タクシー<u>がNOM</u> 客<u>をACC</u> 駅にDAT 送った takushi-ga kyaku-wo eki-ni okutta. A taxi carried passengers to the station. (2) その 列車は 荷物をACC 運んだ。 sono ressha-wa nimotsu-wo hakonda. The train also carried baggages (3) タクシー<u>がNOM</u> 客<u>をACC</u> 乗せた とき 事故<u>にDAT</u> 巻き込まれた。 takushi-ga kyaku-wo noseta toki jiko-ni makikomareta When the taxi picked up passengers, it was involved in the accident. (4) この列車には乗れません。 kono ressha-ni-wa noremasen.

	Predicate	NOM	ACC	DAT	
	送った	タクシー	客	駅	
	okutta	takushi	kyaku	eki	
	sent/carried	taxi	passenger	station	
	運んだ	「 列車	荷物		
	hakonda	ressha	nimotsu	NULL	
	carried	_ train _	baggage		
	乗せた	タクシー	客		
a.	noseta	takushi	kyaku	NULL	
	picked up	taxi	passenger		
	巻き込まれた	「タクシー】		事故	
	makikomareta	takushi	NULL	jiko	
	was involved	_ taxi _		$\operatorname{accident}$	
	乗れません	「あなた]		列車	
	noremasen	anata	NULL	ressha	
	can not take	you		train	

 $p_{\mathrm{arg}_3,\mathrm{pred}}^{\mathrm{case}_k}$

(1, 1, 1)

You can not take this train Examples of Japanese PAS analysis. For predicates in a sentence, the model predicts NOM, ACC and DAT case roles of arguments.

Model

Our entire model consists of the generator network that predicts the arguments for each predicate and the validator network that scores the outputs of the generator network.

t

т

train

Bi-LSTM

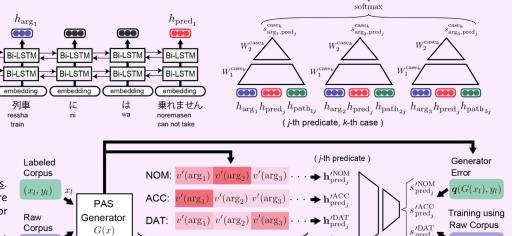
Т

Bi-LSTM

т

この

this


embedding

Generator

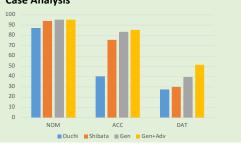
- · The generator consists of two neural networks: the bi-LSTM based sentence encoder and the FNNs for argument selection.
- There are three ENNs for NOM ACC and DAT cases.

Validator & Overall Model

- We propose the validator network that has inputs from the generator network and outputs the validity of the generator outputs.
- The generator and the validator networks are coupled by the weighted sum of the validator embeddings (attention mechanism).
- We firstly train the generator by a supervised method. Then we train the validator and the generator using this validator

Attention mechanism to

validator embeddings v'(*)


Experiments & Results

- We use the KWDLC dataset [Hangyo+ 12] for evaluations, following [Hangyo+ 13, Shibata+ 16].
- We evaluate our model in two tasks: case analysis and zero anaphora resolution.
- Gen is the generator network trained with the supervised learning method, while Gen+Adv is the proposal model trained with the validator, compared with [Ouchi+15, Shibata+ 16].

Case Analysis

 x_{ul}

· We obverse large increases of scores in ACC and DAT cases. They have fewer training instances and relies on external knowledge resources of predicates and arguments.

FNN of

Validator V(x)

 $\mathbf{h}'_{\mathrm{pred}_i}$

 $p_{\arg_2, \operatorname{pred}_j}^{\operatorname{case}_k}$

 $p_{\arg_1, \operatorname{pred}_j}^{\operatorname{cacc}_k}$

Zero Anaphora Resolution

Conclusion

We propose novel adversarial training model for PAS analysis. Our validator enables the generator to learn from an

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville and Y. Bengio. Generative adversarial nets (2014). [2] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen and X. Chen. Improved techniques for training gans (2016).
[3] H. Ouchi, H. Shindo, K. Duh and Y. Matsumoto. Joint case argument identification for japanese predicate argument structure analysis (2015). [4] T. Shibata, D. Kawahara, and S. Kurohashi. Neural network-based model for japanese predicate argument structure analysis (2016). [5] M. Hangyo, D. Kawahara and S. Kurohashi. Building a diverse document leads corpus annotated with semantic relations (2012)

unlabeled corpus as an external knowledge resource. We achieve SOTA scores in all cases of KWDLC.

References