
Supplementary Material: Learning Semantic Correspondences in
Technical Documentation

Kyle Richardson and Jonas Kuhn
Institute of Natural Language Processing

University of Stuttgart
{kyle,jonas}@ims.uni-stuttgart.de

1 Dataset Information

We report additional details about our dataset col-
lection.

1.1 Credits

Standard Library Documentation Figure 1
shows additional details of the different standard
datasets, including pointers to the original source
of the documentation, the standard library version
numbers, and other details. To our knowledge,
none of these datasets, excluding the Java Stan-
dard Library set from (Deng and Chrupała, 2014),
have been used for the types of NLP experiments
that we describe in the main paper.

Technical Manuals We also show information
about the Unix dataset first reported in (Richard-
son and Kuhn, 2014). We are the first to report
semantic parsing results using this dataset, since
their original paper is only about the data resource.

1.2 Java Documentation Comparison

While we use the data (including the original
splits) from Deng and Chrupała (2014) and ap-
ply some of the same baseline models, we made a
few changes to their original evaluation, thus mak-
ing our results not directly comparable. First, they
train their models on the full documentation string,
which we found to not have any advantage over
just using the first sentence in the description (as
we do for all other datasets). Secondly, they eval-
uate by ranking each example over a subset of the
components in the validation/test splits, whereas
we rank over all known components in the over-
all API (as also done in all other cases). We also
made small differences changes to how tokeniza-
tion is done in order to match the other datasets.

Despite these differences, as well as differences
in the implementations of the baseline translation
models, we were still able to reproduce (and in
some cases improve) their original results.

1.3 Non-English Datasets

The documentation collections in languages other
than English come exclusively from the PHP
documentation set. Currently, these languages
include: French, Spanish, Japanese, Russian,
Turkish, and German (see paper for more de-
tails). More information about the transla-
tions, which are derived from the English orig-
inal documentation set, can be found here:
http://doc.php.net/tutorial/

1.4 Document Feature Information

Figure 1. shows information about the addi-
tional document-level features associated with
each dataset.

Class information Some documentation sets in-
clude assertions about related functions or utili-
ties, in the form of see also sections or links to
other parts of the API. Such information can also
be found in quick reference manuals or language
cheat sheets available online, as well as from html
structure.This information is used to define fea-
tures in our discriminative model (see details in
main paper).

Examples are shown in Figure 2. Since the
datasets differ in terms of resources, the features
used for each dataset are shown in gray.

Parameter descriptions In many datasets, the
function documentation include additional textual
descriptions of the function parameters. For the
baseline translation models, these can add these
fragmented pairs to the parallel training data. We
also use this information as features in our dis-
criminative model.

Return descriptions Similarly, some documen-
tation also contains textual descriptions of return
values, which can be used in the same way as de-
scribed above.

Document Features
Dataset Version Source(s) class info. param. return section

Java SE 6.0 (Deng and Chrupała, 2014) main data see-also ✓ ✓ ✓
Ruby 2.3.0 ruby-doc.org/core-2.3.0/ main data

ruby-doc.org/stdlib-2.3.0/ main data fun. links ✓ × ×
PHP 3.0 php.net/download-docs.php main data see-also ✓ ✓ ✓

Python 2.7.11
docs.python.org/2.7/library/ main data
docs.python.org/2/reference/ background
docs.python.org/2.7/library/ (numpy) num. library

× × × ✓
html – – –

html ✓ ✓ ×

Elisp 25.1

gnu.org/software/emacs/manual main data
wikemacs.org/wiki/Emacs Lisp Cheat Sheet background
github.com/magnars/s.el (s.el) string library
github.com/magnars/dash.el (dash.el) list library

× ✓ × ✓
html – – –

html × × ×
html × × ×

Haskell 4.8.1 hackage.haskell.org/package/base-4.8.1.0main data × × × ✓

Clojure 1.7

clojure.org/api/api main data
clojuredocs.org/ main data
clojure.org/api/cheatsheet background
github.com/weavejester/medley (medley) fun. library
github.com/Raynes/fs (fs) file-sys library
github.com/ztellman/gloss (gloss) byte library
github.com/clj-time/clj-time (clj-time) time library

× × × ✓
see-also × × ×
html – – –

× × × ×
× × × ×
× × × ×

C 2.24 gnu.org/software/libc/manual/ main data
en.cppreference.com/w/c main data

× × × ✓
html ✓ ✓ ✓

MIT Scheme 9.2 https://www.gnu.org/software/mit-scheme main data html × × ×
Unix – (Richardson and Kuhn, 2014) main data see-also ✓ × ✓

Figure 1: Further details of our corpus collection, including any background resources (background) or
third party libraries (shown under double line) that were used. The last column shows additional doc-
ument features used in our experiments. Class refers to information about general classes of functions,
and param and return specify if the additional textual description of parameter values and return values
(respectively) are included.

Language Example Classes
Ruby {logger.info, logger.warn, logger.fatal, logger.debug, ... }
Elisp {sin, cos, tan, asin, acos, atan, exp, log, log10, ... }
Unix {iotop,iosnoop,iopattern,iopending, ... }
PHP {ps close image, ps open image file, ps place image, ... }

C {UINT8 MAX UINT16 MAX UINT32 MAX UINT64 MAX UINT FAST8 MAX, ... }

Figure 2: Example classes, or abstract groupings of symbol types, extracted using document-level infor-
mation.

Section descriptions Section descriptions are
module or class level descriptions.

2 Implementation Details

We report some details about our implementation.

Preprocessing For programming languages that
use camel case (e.g., Java), the function represen-
tations we normalized representations by replac-
ing camel case boundaries with white space (e.g.,
myFunction → my function). Similarly,
languages that use other common word delimiters
(e.g., - in the lisp languages) are preprocessing in
a similar fashion.

Haskell type declarations are converted into a
linear form, or a polish notation, by converting
function and container symbols into predicates
(e.g., fn ::(a,b) -> a would be normalized
as: fn $tuple$2 a b a). A similar idea
is used in (Andreas et al., 2013). An example

Haskell representation and tree is show in Figure
3.

Pseudo lexicons When training the translation
models, we found that improvements can be
achieved for latin character language datasets by
adding matching component terms to the parallel
training data. Such as idea is similar to the use of
NP-lists in semantic parsing (e.g., Andreas et al.
(2013)), and is a common trick used in other MT
tasks (MacCartney et al., 2008).

Learning Parameters Standardly, all hyper pa-
rameters in Algorithm 2 are tuned to validation
sets (i.e., number of iterations, learning rate, ..).
Early stopping is done by monitoring training per-
formance after each iteration using validation sets.
Following (Zettlemoyer and Collins, 2009), the
full learning rate α in line 7 is defined as α =
α0

1+c∗o , where o = i + t ∗ n, thus making c and

Data.Tuple.fst :: (a, b) -> a

a3

a

(a, b)2

batuple 2

fst1

fst

Data.Tuple0

Tuple

Tuple

Data

Data

Extract the first component of a pair

Figure 3: An example Haskell linear representa-
tion and tree structure.

α0 the hyper-parameters.

3 Feature Details

Figure 5-6 show all the feature used. Since our
datasets differ in terms of background resources,
the green shows the features used in the top mod-
els for each dataset. While we did not do rigorous
feature testing for this paper, we did notice that
the Hiero rules sometimes negatively effect the re-
sults, and removed these feature accordingly.

Feature Selection A greedy, backward search
selection method is employed for some datasets
where overfitting seemed to be an issue. This is
done in the following way: after training a com-
plete model, features or templates that lead to in-
correct predictions on the validation are greedily
removed, and those whose removal increases the
accuracy on the validation are shut off. The model
is then retrained used the resulting selected set
of features or templates. More details are docu-
mented in our source code release.

Phrase Features Phrase features are extracted
for each input-ouput pair using standard word-
based phrase heuristics over symmetric align-
ments (i.e., alignments from text → components,
components → text). We use the grow-diag
heuristic in all cases, see background in (Koehn,
2009).

Hierarchical phrase rules are extracted us-
ing a SAMT style rule extraction procedure
(Zollmann and Venugopal, 2006). This can
be informally described in the following way:
when extracting phrases of the form X →
english word span|||foreign side (us-
ing standard methods), sub alignments on each
side that match tree patterns are replaced with NTs

that match the name of the tree. The LHS of the
rule X is also replaced, with with the tree name or
the rule that results from combining the inner tree
patterns using a small glue grammar. For example:

function → this function [function] ||| [function]

Each symbol in brackets is a inner alignment-
tree pattern. Given a text and component pair, a
CKY-style chart procedure is used for finding all
rules subject to the alignment.

4 Reproducibility

We are releasing all data reported on in
this paper, as well as all the software used
to complete the experiments. Please check
the first author’s webpage (http://www.ims.uni-
stuttgart.de/institut/mitarbeiter/kyle), and the fol-
lowing Github (https://github.com/yakazimir) for
more information.

References
Jacob Andreas, Andreas Vlachos, and Stephen Clark.

2013. Semantic parsing as machine translation. In
in Proceedings of ACL-2013. pages 47–52.

Huijing Deng and Grzegorz Chrupała. 2014. Seman-
tic approaches to software component retrieval with
English queries. In Proceedings of LREC-14. pages
441–450.

Philipp Koehn. 2009. Statistical Machine Translation.
Cambridge University Press.

Bill MacCartney, Michel Galley, and Christopher D
Manning. 2008. A phrase-based alignment model
for natural language inference. In Proceedings of
EMNLP-2008. pages 802–811.

Kyle Richardson and Jonas Kuhn. 2014. UnixMan cor-
pus: A resource for language learning in the Unix
domain. In Proceedings of LREC-2014.

Luke S. Zettlemoyer and Michael Collins. 2009.
Learning context-dependent mappings from sen-
tences to logical form. In Proceedings of ACL-2009.
pages 976–984.

Andreas Zollmann and Ashish Venugopal. 2006. Syn-
tax augmented machine translation via chart pars-
ing. In Proceedings of the Workshop on Statistical
Machine Translation. pages 138–141.

id descriptions Java Ruby PHPen Python Elisp Haskell Clojure C Unix Scheme

1 model rank positions
2 english unigrams
3 foreign unigrams
4 e/f unigram pairs
5 # unigram matches
6 # unigram containments
7 type of unigram matches
8 # bigram matches
9 # bigram containments
10 foreign output length
11 tree position of unigram contain.
12 tree position bigram matches
13 viterbi alignment pos.
14 tree pos. of alignment
15 phrase instances
16 # known phrases
17 # matching phrases
18 # phrase containments
19 tree position of phrases
20 tree position matching phrases
21 tree position phrase contain.
22 tree position phrase overlap
23 size of phrase word overlap.
24 size of english phrase in matched
25 size of foreign phrase in matched
26 size of english phrases
27 size of foreign phrases
28 size of english overlapping phrases
29 size of foreign overlapping phrases
30 hiero phrase rule
31 # known hiero rules
32 # hiero rules with reordering
33 type of hiero reordering
34 english sides of hiero rules
35 foreign side of hiero rules
36 # unknown hiero rules
37 unigram pair in description
38 # of pairs in description
39 unigram pair in abstract class
40 unigram in see-also pair
41 unigram in see-also pair match
42 tree position of item in description
43 foreign abstract classes seen
44 type of english unigrams in descriptions
45 type of foreign words with descriptions
46 tree position of see-also pair
47 13+37
48 13+14+37
49 5+13+14+37
50 5+14+37
51 15+40
52 31+40
53 english phrases and abstract classes
54 english phrases in descriptions
55 hiero english side and see-also
56 hiero foreign side and see-also

Figure 4: Description of features for our English datasets. Green shading shows that a particular feature
was used in best model.

id descriptions PHPfr PHPes PHPja PHPru PHPtr PHPde

1 model rank positions
2 english unigrams
3 foreign unigrams
4 e/f unigram pairs
5 # unigram matches
6 # unigram containments
7 type of unigram matches
8 # bigram matches
9 # bigram containments
10 foreign output length
11 tree position of unigram contain.
12 tree position bigram matches
13 viterbi alignment pos.
14 tree pos. of alignment
15 phrase instances
16 # known phrases
17 # matching phrases
18 # phrase containments
19 tree position of phrases
20 tree position matching phrases
21 tree position phrase contain.
22 tree position phrase overlap
23 size of phrase word overlap.
24 size of english phrase in matched
25 size of foreign phrase in matched
26 size of english phrases
27 size of foreign phrases
28 size of english overlapping phrases
29 size of foreign overlapping phrases
30 hiero phrase rule
31 # known hiero rules
32 # hiero rules with reordering
33 type of hiero reordering
34 english sides of hiero rules
35 foreign side of hiero rules
36 # unknown hiero rules
37 unigram pair in description
38 # of pairs in description
39 unigram pair in abstract class
40 unigram in see-also pair
41 unigram in see-also pair match
42 tree position of item in description
43 foreign abstract classes seen
44 type of english unigrams in descriptions
45 type of foreign words with descriptions
46 tree position of see-also pair
47 13+37
48 13+14+37
49 5+13+14+37
50 5+14+37
51 15+40
52 31+40
53 english phrases and abstract classes
54 english phrases in descriptions
55 hiero english side and see-also
56 hiero foreign side and see-also

Figure 5: Feature information for our non-English datasets.

