Joint Optimization of User-desired **Content in MDS by Learning from User Feedback**

Avinesh P.V.S. and Christian M. Meyer

ION OF INFORMATION FROM HETEROGENEOUS SOURCES

Overview	Interactive Personalized Summarization											
Motivation:												
 No one best summary for all needs 	Precidential What are What were What	Learning from										
• Low <i>k</i> of content selection	Elections in Macron's	user reeuback										
 Automatic methods produce low 	France policies? of Le Pen's win means											

quality summaries compared to humans

Objective:

Creation of user-desired summaries using interactive learning methods.

Contributions:

- **Interactive loop** to integrate feedback
- **AL** and **joint optimization** techniques to collect user feedback

Applications: Journalistic aid, Interactive annotation tool

Interactive Models

Baseline Model*: max $\sum_i w_i c_i$

Novel User Feedback Models

Generic summaries cannot satisfy all needs **Interactive Personalized Summarization**

Best of both the worlds: Automatic (System) and Manual (Human) Summarization

Experiments & Analysis

Evaluate: The coverage of the user-desired content in the summary ≈ Evaluate: To reach the upper bound for a user's reference summary

	ICSI		UB		Accept		JOINT		AL			AL+						
Datasets	R1	R2	SU4	R1	R2	SU4	R1	R2	SU4	R1	R2	SU4	R1	R2	SU4	R1	R2	SU4
Concept Notion: Bigrams																		
DBS	.451	.183	.190	.848	.750	.532	.778	.654	.453	.815	.707	.484	.833	.729	.498	.828	.721	.500
DUC'04	.374	.090	.118	.470	.212	.185	.442	.176	.165	.444	.180	.166	.440	.178	.160	.427	.166	.154
DUC'02	.350	.085	.110	.474	.216	.187	.439	.178	.161	.444	.182	.165	.448	.188	.165	.448	.184	.170

Conclusions

- **Interactively collecting feedback** steers a general summary to a **personalized summary**.
- **JOINT** model **consistently converges** to the upper bound with minimal feedback.
- AL model balances well the trade-off between faster convergence and amount of feedback.
- AL+ model performs well when there is sufficient amount of feedback.
- Future work: Sampling strategies using AL and propagation methodologies

Try it out, get in touch

Code and data: https://github.com/UKPLab/acl2017-interactive_summarizer **Questions or comments**: avinesh@aiphes.tu-darmstadt.de

TECHNISCHE UNIVERSITÄT DARMSTADT

Acknowledgements: This work has been supported by the German Research Foundation as part of the Research Training Group "Adaptive Preparation of Information from Heterogenous Sources" (AIPHES) under grant No. GRK 1994/1.