
Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base

Supplementary Notes

Wen-tau Yih Ming-Wei Chang Xiaodong He Jianfeng Gao
Microsoft Research

Redmond, WA 98052, USA
{scottyih,minchang,xiaohe,jfgao}@microsoft.com

Appendix A. Formal search algorithm

Given an input question, the query graph gen-
eration process can be formally defined as a
search problem by a tuple 〈S,A,Π, T, γ〉. S =⋃
{{φ},Se,Sp,Sc} is the set of states, where

each state is an empty graph (φ), a single-node
graph with the topic entity (Se), a core in-
ferential chain (Sp), or a more complex query
graph with additional constraints (Sc). A =⋃
{Ae,Ap,Ac,Aa} is the set of actions. Ae picks

an entity node; Ap determines the core inferential
chain; Ac and Aa add constraints and aggrega-
tion nodes, respectively. Not all the actions are
valid to a given state. We use Π : S → 2A

to denote the legitimate set of actions. Specif-
ically, Π(φ) = Ae; Π(se) = Ap, ∀se ∈ Se;
Π(s) = Ac ∪ Aa, ∀s ∈ Sp ∪ Sc. T (s, a) → s′

is the transition function that maps a state s and
an action a to the next state s′. γ : S → R is the
reward function that depends on the input question
and is defined over the state space.

Staring from s0 = φ, valid actions are itera-
tively applied to the current best state in the pri-
ority queue. The procedure stops when there is
no more state to examine. Algorithm 1 shows
the pseudo code. The search procedure essen-
tially keeps up to N candidate states in the prior-
ity queue (N = 1000 in this work), and explores
as many legitimate states as possible to find the
best query graph, according to the reward func-
tion γ. Obviously, whether the approach can work
in practice depends on the quality of the reward
function, as well as whether the search space can
be effectively controlled.

Appendix B. Implementation detail for con-
straints and aggregations

Based on the observation on the training set
questions, we developed the following rules to de-
termine whether we would consider adding a con-
straint or an aggregation node to a CVT node to

Algorithm 1 Staged query graph generation
Require: Priority queue H with limited size N

1: so ← φ; ro ← −∞
2: H .add(so,ro)
3: while H is not empty do
4: s, r ← H .pop()
5: if r > ro then
6: so ← s; ro ← r;
7: end if
8: for all a ∈ Π(s) do
9: s′ ← T (s, a)

10: H .add(s′, γ(s′))
11: end for
12: end while
13: return so

extend a query graph.

• The constraint entity occurs in the question.

• The constraint predicate indicates the ending
time of the event, but there is no value. (This
indicates that it’s a current event.)

• Some words of the constraint entity’s name
appear in the question.

• The predicate is people.marriage.
type of union. (This indicates whether
the relationship is domestic partnership,
marriage or civil union.)

• The question contains “first” or “oldest” and
the predicate is a “from” predicate (indicating
the starting time of an event).

• The question contains “last”, “latest” or
“newest” and the predicate is a “to” predicate
(indicating the ending time of an event).

For an answer node, we will only add a constraint
node if the predicate is one of

• people.person.gender



• common.topic.notable types

• common.topic.notable for

Features of constraints and aggregations are in-
dicator functions of whether some of the above
rules are true, or simple statistics related to some
rules. Again, these features were developed
through the analysis on the training data. For a
CVT node, the features are:

• Whether the constraint entity appears in the
question.

• Whether it’s a current event: the constraint
predicate indicates the ending time of the
event, but there is no value.

• Whether it’s a current event and the question
has one or more of the keywords “currently”,
“current”, “now”, “present” and “presently”.

• The percentage of the words in the constraint
entity that appear in the question.

• The type of the constraint predicate
people.marriage.type of union.

• Whether the question contains “first” or “old-
est” and the predicate is a “from” predicate,
and the CVT node is the first when ordered
by this “from” property.

• Whether the question contains “last”, “latest”
or “newest” and the predicate is a “to” pred-
icate, and the CVT node is the last when or-
dered by this “to” property.

For the answer node, the features are:

• Gender consistency – male: whether the
constraint predicate is gender and one
of the male keywords {“dad”, “father”,
“brother”, “grandfather”, “grandson”, “son”,
“husband”} appears in the question.

• Gender consistency – female: whether the
constraint predicate is gender and one of
the female keywords {“mom”, “mother”,
“sister”, “grandmother”, “granddaughter”,
“daughter”, “wife”} appears in the question.

• The percentage of the words in the constraint
entity that appear in the question when the
constraint predicate is notable types or
notable for.

Method Prec. Rec. F1

PatChain 46.0 54.5 45.6
+QuesEP 47.8 55.1 46.4
+ClueWeb 48.5 57.9 48.0

Table 4: The system results when only the
inferential-chain query graphs are generated. The
settings here are the same as those in Tab. 3, except
that topic entities are identified using the Freebase
API, instead of our entity linking component.

Appendix C. Freebase API for entity linking

We conducted a similar set of experiments by
replacing our entity linking component with re-
sults from Freebase API, and summarized the re-
sults in Tab. 4. Comparing Tables 3 and 4, we can
see that the negative impact of using an inferior en-
tity linking component is consistent, leading to an
approximately 4-point drop across different mod-
els for matching the core inferential chain.


