Perplexity on Reduced Corpora — Analysis of Cutoff by Power Law

Hayato Kobayashi Yahoo Japan Corporation

Cutoff

- Removing low-frequency words from a corpus
- Common practice to save computational costs in learning

Language modeling

Needed even in a distributed environment, since the feature space of k-grams is quite large [Brants+ 2007]

Topic modeling

• Enough for roughly analyzing topics, since low-frequency words have a small impact on the statistics [Steyvers&Griffiths 2007]

Question

- How many low-frequency words can we remove while maintaining sufficient performance?
 - More generally, how much can we reduce a corpus/model using a certain strategy?
- Many experimental studies addressing the question
 - [Stoleke 1998], [Buchsbaum+ 1998], [Goodman&Gao 2000],
 [Gao&Zhang 2002], [Ha+ 2006], [Hirsimaki 2007], [Church+ 2007]
 - Discussing trade-off relationships between the size of reduced corpus/model and its performance
- No theoretical study!

This work

First address the question from a theoretical standpoint

- Derive the trade-off formulae of the cutoff strategy for kgram models and topic models
 - Perplexity vs. reduced vocabulary size
- Verify the correctness of our theory on synthetic corpora and examine the gap between theory and practice on several real corpora

Approach

- Assume a corpus follows Zipf's law (power law)
 - Empirical rule representing a long-tail property in a corpus
- Essentially the same approach as in physics
 - Constructing a theory while believing experimentally observed results (e.g., gravity acceleration g)

 (v_0, θ)

 $\sin(2\theta)$

g

We can derive the landing point of a ball by believing g. Similarly, we try to clarify the trade-off relationships by believing Zipf's law.

Outline

Preliminaries

- Zipf's law
- Perplexity (PP)
- Cutoff and restoring
- PP of unigram models
- PP of k-gram models
- PP of topic models
- Conclusion

Zipf's law

Empirical rule discovered on real corpora [Zipf, 1935]

 Word frequency f(w) is inversely proportional to its frequency ranking r(w)

Perplexity (PP)

- Widely used evaluation measure of statistical models
 - Geometric mean of the inverse of the per-word likelihood on the held-out test corpus

- PP means how many possibilities one has for estimating the next word
 - Lower perplexity means better generalization performance

Cutoff

Removing low frequency words

• $f(remaining word) \ge f(removed word)$ holds

Constant restoring

- Infer the prob. of the removed words as a constant
 - Approximate the result learned from the original corpus

Outline

Preliminaries

- Zipf's law
- Perplexity (PP)
- Cutoff and restoring

PP of unigram models

- PP of k-gram models
- PP of topic models
- Conclusion

Perplexity of unigram models

Predictive distribution of unigram models

 $p'(w') = \frac{f(w')}{N'}$ Reduced corpus size

- Optimal restoring constant
 - Obtained by minimizing PP w.r.t. a constant λ , after substituting the restored probability $\hat{p}(w)$ into PP

Corpus size

$$\lambda^* = \frac{\underline{N - N'}}{(\underline{W - W'})N'}$$
Vocab. size Reduced vocab. size

Theorem (PP of unigram models)

 For any reduced vocabulary size W', the perplexity PP₁ of the optimal restored distribution of a unigram model is calculated as

$$\hat{PP}_{1}(W') = H(W) \exp\left(\frac{B(W')}{H(W)}\right)$$
$$\left(\frac{W - W'}{H(W) - H(W')}\right)^{1 - \frac{H(W')}{H(W)}}$$
$$H(X) := \sum_{x=1}^{X} \frac{1}{x} \quad \text{Harmonic series}$$
$$B(X) := \sum_{x=1}^{X} \frac{\ln(x)}{x} \quad \text{Bertrand series (special form})$$

Approximation of PP of unigrams

H(X) and B(X) can be approximated by definite integrals

- $H(X) \approx \ln X + \gamma$ $B(X) \approx \frac{1}{2} \ln^2 X$ Euler-Mascheroni const.
- Approximate formula $\tilde{PP}_1(W')$ is obtained as $\tilde{PP}_1(W') = \sqrt{W} \ln W \exp \frac{(\ln W' - \ln W)^2}{2 \ln W}$
- $\tilde{PP}_1(W')$ is quasi polynomial (quadratic)
 - Behaves as a quadratic function on a log-log graph

PP of unigrams vs. reduced vocab. size

Outline

Preliminaries

- Zipf's law
- Perplexity (PP)
- Cutoff and restoring
- PP of unigram models
- PP of k-gram models
- PP of topic models
- Conclusion

Perplexity of k-gram models

- Simple model where k-grams are calculated from a random word sequence based on Zipf's law
- The model is "stupid"
 - Bigram "is is" is quite frequent

p("is is") = p("is")p("is")

- Two bigrams "is a" and "a is" have the same frequency p("is a") = p("is") p("a") = p("a is")
- Later experiment will uncover the fact that the model can roughly capture the behavior of real corpora

Frequency of a k-gram

Frequency f_k of a k-gram w_k is defined by

$$f_k(w_k) = rac{C_k}{g_k(r_k(w_k))}$$
 Decay function

Decay function g₂ of bigrams is as follows

$$egin{aligned} (g_2(i))_i &:= (g_2(1), \ g_2(2), \ g_2(3), \cdots) \ &= (1 \cdot 1, \ 1 \cdot 2, \ 2 \cdot 1, \ 1 \cdot 3, \ 3 \cdot 1, \cdots) \ &= (1, \ 2, \ 2, \ 3, \ 3, \ 4, \ 4, \ 5, \ 5, \ 6, \cdots) \end{aligned}$$

• Decay function g_k of k-grams is defined through its inverse: $g_k^{-1}(\ell) := \sum_{n=1}^{\ell} d_k(n)$

$$d_k(n) := \sum_{i_1 \cdot i_2 \cdots i_k = n} 1$$

Piltz divisor function that represents # of divisors of n

Exponent of k-gram distributions

Assume k-gram frequencies follow a power law

• [Ha+ 2006] found k-gram frequencies roughly follow a power law, whose exponent π_k is smaller than 1 (k>1)

$$f_k(w_k) \propto r_k(w_k)^{-\pi_k}$$

Optimal exponent in our model based on the assumption

• By minimizing the sum of squared errors between the inverse gradients $g_k^{-1}(r)$ and $r^{1/\pi k}$ on a log-log graph

$$\pi_k = \frac{\ln W}{(k-1)\ln(\ln W) + \ln W}$$

Exponent of k-grams vs. gram size

Corollary (PP of k-gram models)

For any reduced vocabulary size W', the perplexity of the optimal restored distribution of a k-gram model is calculated as

$$\hat{PP}_{k}(W') = H_{\pi_{k}}(W) \exp\left(\frac{B_{\pi_{k}}(W')}{H_{\pi_{k}}(W)}\right)$$

$$\left(\frac{W - W'}{H_{\pi_{k}}(W) - H_{\pi_{k}}(W')}\right)^{1 - \frac{H_{\pi_{k}}(W')}{H_{\pi_{k}}(W)}}$$

$$H_{a}(X) \coloneqq \sum_{x=1}^{X} \frac{1}{x^{a}} \quad \text{Hyper harmonic series}$$

$$B_{a}(X) \coloneqq \sum_{x=1}^{X} \frac{a \ln x}{x^{a}} \quad \text{Bertrand series (another special form}$$

PP of k-grams vs. reduced vocab. size

Additional properties by power-law

- Treat as a variant of the coupon collector's problem
 - How many trials are needed for collecting all coupons whose occurrence probabilities follow some stable distribution
 - There exists several works about power law distributions
- Corpus size for collecting all of the k-grams, according to [Boneh&Papanicolaou 1996] <u>kW^k</u>

• When $\pi_k = 1$, $W \ln^2 W$, otherwise, $1 - \pi_k$

 Lower and upper bound of the number of k-grams from the corpus size N and vocab. size W, according to [Atsonios+ 2011]

$$(\pi_k + 1) \left(1 - e^{-\frac{(1 - \pi_k)N}{W^k - 1} - \ln\frac{W^k - 1}{W^k}} \right) \le \tilde{W}_k \le \frac{\pi_k}{\pi_k - 1} \left(\frac{N}{H_{\pi_k}(W^k)} \right)^{\frac{1}{\pi}} - \frac{N}{(\pi_k - 1)H_{\pi_k}(W^k)} W^{1 - \pi_k}$$

Outline

Preliminaries

- Zipf's law
- Perplexity (PP)
- Cutoff and restoring
- PP of unigram models
- PP of k-gram models
- PP of topic models
- Conclusion

Perplexity of topic models

Latent Dirichlet Allocation (LDA) [Blei+ 2003]

$ heta_{d_i}$	\sim	Dirichlet(lpha)
$z_i heta_{d_i}$	\sim	$Multi(heta_{d_i})$
ϕ_{z_i}	\sim	Dirichlet(eta)
$w_i z_i,\phi_{z_i}$	\sim	$Multi(\phi_{z_i}),$

Learning with Gibbs sampling

[Griffiths&Steyvers 2004]

- Obtain a "good" topic assignment z_i for each word w_i
- Posterior distributions of two hidden parameters

 $\hat{\theta}_{d}(z) \propto n_{z}^{(d)} + \alpha$ $\hat{\phi}_{z}(w) \propto n_{z}^{(w)} + \beta$ $\begin{array}{l} \text{Document-topic distribution} \\ \text{Mixture rate of topic z in document d} \\ \text{Topic-word distribution} \\ \text{Occurrence rate of word w in topic z} \end{array}$

Rough assumptions of φ and $\,\theta$

- Assumption of ϕ
 - \blacktriangleright Word distribution φ_z of each topic z follows Zipf's law

It is natural, regarding each topic as a corpus

• Assumptions of θ (two extreme cases)

=I/T

- Case All: Each document evenly has all topics
- Case One: Each document only has one topic (uniform dist.)

The curve of actual perplexity is expected to be between their values

- Case All: PP of a topic model ≈ PP of a unigram
 - Marginal predictive distribution is independent of d

$$\sum_{z=1}^{T} \frac{\hat{\theta}_d(z)\hat{\phi}_z(w)}{\sum_{z=1}^{T} \frac{n_z^{(w)} + \beta}{T}} \approx f(w)$$

Theorem(PP of LDA models: Case One)

 For any reduced vocabulary size W', the perplexity of the optimal restored distribution of a topic model in the Case
 One is calculated as

$$\hat{PP}_{Mix}(W') = H(W/T) \exp\left(\frac{B(W'/T)}{H(W/T)}\right) \\ \left(\frac{W - W'}{H(W/T) - H(W'/T)}\right)^{1 - \frac{H(W'/T)}{H(W/T)}}$$

T : # of topics in LDA

PP of LDA models vs. reduced vocab. size

Time, memory, and PP of LDA learning

Results of Reuters corpus

corpus	time	memory	perplexity
original	4m3.80s	71,548KB	500
(1/10)	3m55.70s	46,648KB	550
(1/20)	3m42.63s	34,024KB	611

- Memory usage of the (1/10)-corpus is only 60% of that of the original corpus
 - Helps in-memory computing for a larger corpus, although the computational time decreased a little

Outline

Preliminaries

- Zipf's law
- Perplexity (PP)
- Cutoff and restoring
- PP of unigram models
- PP of k-gram models
- PP of topic models
- Conclusion

Conclusion

- Trade-off formulae of the cutoff strategy for k-gram models and topic models based on Zipf'law
 - Perplexity vs. reduced vocabulary size
- Experiments on real corpora showed that the estimation of the perplexity growth rate is reasonable
- We can get the best cutoff parameter by maximizing the reduction rate ensuring an acceptable (relative) perplexity
- Possibility that we can theoretically derive empirical parameters, or "rules of thumb", for different NLP problems

Can we derive other "rules of thumb" based on Zipf's law?

Thank you