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1 Introduction

In this supplementary paper we provide details
about the model, additional experiments and for-
mulation of the proposed baselines.

2 Model Details

2.1 Seq2Seq Models

Parameter Value
Max grad norm 1.0

Batch size 16

Cell type LSTM

LSTM Layers (Depth) 2

Hidden size 256

Embedding size 300

Vocabulary size 20,000

Dropout None

Attention Model Luong-general

Bidirectional Encoder True

Max length 20

Learning Rate (Optimizer) 0.0002

Desired Paraphrases (k) 20

Table 1: SEQ2SEQ

Given a sequence of inputs X = (x1, . . . , xT ),
where T is the input sequence length, the goal
of the sequence-to-sequence model is to esti-
mate the conditional probability P(Y |X), where
Y is the corresponding output sequence Y =
(y1, . . . , yT ′). The input sequence length T may
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differ from the output sequence length T ′. We
choose the attention model (Luong et al., 2015;
Bahdanau et al., 2014), which is based on the
encoder-decoder framework proposed by (Cho
et al., 2014; Sutskever et al., 2014). The en-
coder as well as the decoder is modeled using a
recurrent neural network (RNN). We use a Long-
short term memory unit (LSTM) (Hochreiter and
Schmidhuber, 1997) as it helps in learning prob-
lems with long range temporal dependencies. The
encoder LSTM takes as input the tokens of the
sentence whose paraphrase needs to be generated
and produces a sequence of encoder hidden states
hi : i ∈ {1 . . . T}. At each time step, the de-
coder receives the word embedding of the previous
word, a decoder state st and the attention distribu-
tion calculated using the weighted sum of encoder
states:

ct =
T∑
i=1

αtihi, αti =
exp η(st−1, hi)∑T
j=1 exp η(st−1, hj)

to produce the corresponding paraphrase token y′t

2.2 Determinantal Point Processes (DPP)

Consider the problem of sampling S points from
Y associated with a similarity matrix K ∈
Rn×n, that is symmetric, real and positive semi-
definite (PSD). Determinantal point processes
(DPP) (Kulesza et al., 2012) are elegant proba-
bilistic models that capture negative correlation
and help in efficient sampling which follow the
distribution given by:

P (S ⊆ Y ) = det(KS)

Assume the following q and φ functions:

q(x, s) =
1

|x|
∑
wi∈x

argmax
wj∈s

ψ(vwi ,vwj ) (1)



φ(xi, xj) =
1

|xi|
∑

wk∈xi

argmax
wm∈xj

ψ(vwk
,vwm)

(2)
Note that s is the source sentence, xi, xj are gen-
erated candidates. We calculate the kernel ma-
trix, L(xi, xj , s) = q(xi, s)φ(xi, xj)q(xj) Note
that this function is not symmetric. In order to
make it symmetric we operate on the final kernel
K = 1

2(L+ L>)

2.3 Subset selection via Simultaneous Sparse
Recovery

Consider the problem of finding k points from a
collection of |V | = N data points which pre-
serve the essential characteristics of the set V =
{v1, . . . , vN} . Assume that we can form a non-
negative dissimilarity matrix D ∈ RN×N such
that each element dij is indicative of how well a
data point i is suited to be a representative of data
point j. Elhamifar et al. (2012) propose a method
to select a subset of points from V that can well
encode all the data points based on the dissimilar-
ity matrix D.
To do so, consider variables zij ∈ Z associated
with dissimilarities dij . Each element zij can be
interpreted as the probability that data point i is a
representative of j.They formulate the problem as
the following row-sparsity regularized trace mini-
mization program on Z ∈ RN×N :

min tr(D>Z) + λ ‖Z‖1,q
s.t Z ≥ 0,1>Z = 1>, ‖Z‖1,∞ ≤ k

(3)

where k denotes the cardinality constraint, tr(·) de-
notes the trace operator, ‖Z‖1,q ,

∑N
i=1 ‖zi‖q

and 1 denotes an all-one N -dimensional vector. A
set of representative points can be obtained by op-
timizing the above function and selecting indices
corresponding to the non-zero rows of the sparse
matrix Z∗.

We start with selecting the top 3k most probable
subsequences in each time step and then we use
sparse subset selection to select k diverse subse-
quences which are fed into the decoder for the next
time step. To use sparse subset selection we need
to form a dissimilarity matrix D. In contrast to
DPP the matrix need not be positive semi-definite.
In addition, elements dij , need not necessarily sat-
isfy triangle inequality and the matrix D can be
asymmetric as well. We use an alternate formu-
lation of Sparse subset selection (Elhamifar et al.,

Figure 1: Effect of varying the trade-off coefficient λ
in DiPS on various diversity metrics.
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Figure 2: Effect of varying the trade-off coefficient λ
in DiPS on BLEU score for twitter dataset.

2016) to select k-samples from a given ground set:

min tr(D>Z)

s.t ‖Z‖1,∞ ≤ k, Z ≥ 0,1>Z = 1>,
(4)

We use the following equation to compute dis-
similarity between two sequences:

Dij = 1− φ(xi, xj)

3 Experiments: Ablation

In this section, we highlight the importance of us-
ing each submodular component towards genera-
tion of high quality paraphrases.
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Figure 3: Effect of varying the trade-off coefficient λ
in DiPS on BLEU score for quora dataset.
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Figure 4: Effect of varying the trade-off coefficient λ in
DiPS for individual combinations of submodular com-
ponents.
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