
Supplemental Material

A Optimization of Z and E through
Alternating Direction Method of
Multipliers

The alternating direction method of multipliers
(ADMM) has been used in areas such as machine
learning, data mining and image processing in re-
cent years (Boyd et al., 2011). This optimization
approach aims to find the optimum value for opti-
mization problems which follow the form given in
Equation 12, with more than one variable that are
linearly related:

min
x,y

f(x) + g(y) (12)

s.t. Ax+By = c,

where f(.) and g(.) are convex functions, and
A, B and c are constant matrices. ADMM
considers the augmented Lagrangian form as
L(x, y, λ) = f(x) + g(y) + λT (Ax+By − c) +
σ
2 ‖Ax+By−c‖2. λ is a variable in the dual space,
and σ > 0 is a penalty parameter to set the im-
portance of penalizing the constraint. At the t-th
iteration, ADMM alternates between minimizing
the Langrangian function L(x, y, λ) with respect
to the main variables x and y (denoted xt and yt),
as given in Equation 13:

xt = min
x

L(x, yt−1, λt−1);

yt = min
y

L(xt, y, λt−1). (13)

Then, λ is updated by means of gradient ascent in
the dual space, such as in Equation 14:

λt = λt−1 + σ(Axt +Byt − c). (14)

The standard ADMM algorithm has a conver-
gence rate of O(1/T), where T is the number of
iterations (He and Yuan, 2012). In past years, the
authors of (Beck and Teboulle, 2009) and (Nes-
terov, 2004) proposed methods to accelerate gra-
dient descent based methods leading to similar ac-
celerated approaches for ADMM, which results in
a faster O(1/T 2) convergence rate.

The ADMM method is an appropriate choice to
find the optimum value for Z and E in Equation
8. Therefore, we can write the Langrangian form
of the problem as in Equation 15:

L(Z, λ)

= ‖Z‖1 + α‖E‖2,1 + λ(Y − (YsZ + E))

+
σ

2
‖Y − (YsZ + E)‖2F (15)

The λ parameter is the Lagrangian multiplier
updated by means of gradient ascent. The penalty
parameter σ is a positive parameter, which accord-
ing to fine grained validation tests, we increase by
multiplying in ρ = 1.1 in order to penalize the
error more for this constraint.

Zt+ 1
2

= ((Y T
s Ys)

−1(Y T
s (Y − Et) +

λ

σ
Y T
s))

Zt+1 = argmin
Z

(
1

σ
‖Z‖1 +

1

2
‖Z − Zt+ 1

2
‖2
)

Et+ 1
2

= (Y − YsZt) +
λ

σ
(16)

Et+1 = argmin
E

(
α‖E‖2,1 +

1

2
‖E − Et+ 1

2
‖2
)

Algorithm 4 Optimization of affinity matrix Z.
Input: label matrix Y .
Initialization: λ = 0, ρ = 1.1, ε = 10−6.
Repeat:

1: Update Z, E;
2: Update Lagrangian multiplier λ;
3: Update penalty parameter: σ = ρσ;

Until convergence condition ‖Y −(Y Z+E)‖∞ <
ε
Output: Z.

B Proof of Theorems

Proof of Theorem 4:

Proof. ∆cut(k|S) =
∑

i∈V \S wi,k −
∑

i∈S wk,i.
This function is monotone for |S| � |V |. For
R ⊆ S,

∑
i∈V \S wi,k ≤

∑
i∈V \R wi,k, and

−
∑

i∈S wk,i < −
∑

i∈R wk,i. Then ∆cut(k|S) ≤
∆cut(k|R).

Proof of Theorem 5:

Proof. Since the first term is a submodular term,
we only need to prove that the second penalty
term is a submodular term. ∆pen(k|S) =
−λ
∑

i∈S(wi,k + wk,i). Therefore, if R ⊆ S,
∆pen(k|S) ≤ ∆pen(k|R). The penalized max-cut
function is a submodular function and monotone
for non-large values of λ.

Proposed PD-sparse LEML CPLST CS ML-CSSP
Bibtex

nDCG@1 64.56±0.79 61.29±0.65 62.54±0.52 62.38±0.63 58.87±0.61 44.98±1.15
nDCG@3 60.11±0.53 55.83±0.57 58.22±0.42 57.63±0.56 52.19±0.56 44.67±1.01
nDCG@5 62.18±0.49 57.35±0.49 60.53±0.38 59.71±0.42 53.25±0.54 47.97±0.98

Delicious
nDCG@1 65.13±0.39 51.82±1.40 65.67±0.73 65.31±0.88 61.36±0.38 63.04±1.29
nDCG@3 60.51±0.39 46.00±1.12 61.77±0.50 61.16±0.45 57.66±0.34 57.91±1.15
nDCG@5 57.12±0.35 42.02±1.01 58.47±0.47 57.80±0.49 54.44±0.32 53.36±0.94

Mediamill
nDCG@1 84.25±0.27 81.86±4.08 84.01±0.31 83.35±0.33 83.82±5.92 78.95±0.23
nDCG@3 75.33±0.26 70.21±2.37 75.23±0.25 74.21±0.24 75.29±4.99 68.97±0.28
nDCG@5 72.03±0.21 63.71±1.73 71.96±0.18 70.55±0.17 71.92±4.03 62.88±0.26

Eurlex
nDCG@1 81.04±0.80 76.43±1.04 63.40±1.58 72.28±0.99 58.52±1.06 62.09±2.12
nDCG@3 71.29±0.86 64.31±0.72 53.56±1.47 61.64±1.02 48.67±0.75 51.63±1.31
nDCG@5 65.64±0.84 58.78±0.70 48.47±1.24 55.92±0.97 40.79±0.65 47.11±1.10

Wiki10-31k
nDCG@1 86.05 82.14 73.47 - - -
nDCG@3 79.11 72.63 64.92 - - -
nDCG@5 72.26 64.33 58.69 - - -

Table 5: nDCG@k on the small-scale datasets with k=100. Best in bold and not significantly different to best at
p=0.05 in italics

C nDCG Results

The most well-known and frequently used mea-
sures for the large-scale multi-label learning prob-
lem are the precision-at-k and the normalized dis-
counted cumulative gain-at-k (nDCG-at-k), which
represent the accuracy over the highly ranked pre-
dictions. Precision-at-k results are reported in the
main text, nDCG results are reported here.

The normalized discounted cumulative gain-at-
k (nDCG-at-k), which represent the accuracy over
the highly ranked predictions, is shown in Tables
5 and 6. Precision-at-k results are reported in the
main text, nDCG results are reported here.

P@k :=
1

k

∑
l∈rankk(ŷ)

yl. (17)

DCG@k :=
∑

l∈rankk(ŷ)

yl
log(l + 1)

. (18)

nDCG@k :=
DCG@k∑min(k,‖y‖0)

l=1
1

log(l+1)

. (19)

Proposed SLEEC FastXML
Bibtex

nDCG@1 64.56 65.08 63.42
nDCG@3 60.11 60.47 59.51
nDCG@5 62.18 62.64 61.70

Delicious
nDCG@1 65.13 67.59 69.61
nDCG@3 60.51 62.87 65.47
nDCG@5 57.12 59.28 61.90

Mediamill
nDCG@1 84.25 87.82 84.22
nDCG@3 75.33 81.50 75.41
nDCG@5 72.03 79.22 72.37

Eurlex
nDCG@1 81.04 79.26 71.36
nDCG@3 71.29 68.13 62.87
nDCG@5 65.64 61.60 58.06

Wiki10-31k
nDCG@1 86.05 85.88 84.31
nDCG@3 79.11 72.98 75.35
nDCG@5 72.26 62.70 63.36

Table 6: nDCG@k on the ensemble-based nonlinear
models. Best in bold and not significantly different to
best in italics.

fpen fscore fpen + αfscore +Outliers
Bibtex

nDCG@1 60.98 63.27 63.29 64.55
nDCG@3 54.15 57.16 57.49 60.11
nDCG@5 56.45 58.86 59.66 62.18

Mediamill
nDCG@1 81.12 81.83 84.25 84.25
nDCG@3 71.03 73.76 75.12 75.33
nDCG@5 68.65 70.40 71.79 72.03

Delicious
nDCG@1 62.71 62.71 64.33 65.14
nDCG@3 58.31 58.31 59.71 60.54
nDCG@5 55.04 55.04 56.16 57.15

Eurlex
nDCG@1 56.60 3.84 56.60 81.04
nDCG@3 42.07 3.27 42.07 71.29
nDCG@5 36.61 3.27 36.61 65.64

Table 7: Ablation Study

