
A Supplementary Material

A.1 SGD in Energy-based models
The formula 1 is fundamental for studying the
SGD behavior of Energy-based models, and for
convenience, we provide a derivation here.
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We then have:

r⌘ log p⌘(x|C) = r⌘ logP⌘(x|C)�r⌘ logZ⌘(C)

= r⌘ logP⌘(x|C)

� Ex⇠p⌘(·|C)r⌘ logP⌘(x|C).

A.2 The relevance of finite state automata;
connections and differences with
Reinforcement Learning

The way our synthetic data is produced through
FSA’s may look contrived, but there are good mo-
tivations for using automata in such a study as
ours.

Consider the following problem: you are given
some RNN r that produces sequences x over a vo-
cabulary V , with probabilities r but you would
like to filter out sequences that do not contain a
specific symbol a, while preserving the relative
probabilities of sequences provided by the RNN:
pfiltered(x) / Pfiltered(x) = r(x) I[a 2 x].
There appears to be no obvious way to realize
pfiltered through an RNN, apart from techniques
similar to what we have been describing in our dis-
cussion of Training-2.

The situation is completely different with
FSA’s. If you have a PFSA (Probabilistic FSA)
rpfsa generating sequences x, then you can in-
tersect rpfsa with an automaton that accepts all

sequences containing at least one a, and re-
normalize the intersection through dynamic pro-
gramming, obtaining a new PFSA that generates
the filtered distribution.8 Such dynamic program-
ming, with the capacity to anticipate properties
that need to be satisfied on the global sequence,
is unavailable in the RNN world.

With RNNs, the situation is reminiscent of RL,
with a reward associated with having observed an
a during the production of the sequence. But a
standard RL approach would mean that we would
try to maximize Pfiltered(x), without taking into
consideration the original r(x) that we are filter-
ing from. To be correct, we need to find a policy
⇡✓(x) (similar to an RNN), that tries to approxi-
mate pfiltered(x) in a distributional sense, not in
a maximization sense (see (Bellemare et al., 2017)
for related considerations). This is what we try to
do in Training-2, using motifs as our main case-
study, instead of a single symbol a (which would
not make sense for binary strings).

The advantages of using PFSAs in our study are
multiple. They provide a well-understood com-
parison point to the more complex techniques that
need to be deployed for autoregressive models.
From an operational viewpoint, they also permit,
through dynamic programming, to perform vari-
ous calculations of interest for our study, such as
sampling datasets of arbitrary size and computing
exact entropy and partition functions that can serve
as comparison points for the results obtained with
GAMs. In the present paper, we only exploited
PFSA’s in the context of motifs, but they provide a
much larger class of models that could serve to ex-
pand our understanding of sequence-based energy
based models.

A.2.1 Computing the Entropy of a PFSA
As mentioned earlier, one advantage of using
weigthed finite-state automata for generating syn-
thetic data is that some important quantities, such
as entropy, mean sequence length, or partition
function can be computed by dynamic program-
ming.

Here we only derive a simple iterative method
for computing the entropy of a PFSA, the other
computations are very similar.9

8And this is exactly what we do to produce training data
for our experiments, but using a binary sequence (motif m)
instead of a single symbol a.

9For another technique, and for extensions to the compu-
tation of relative entropy, see (Carrasco, 1997).



We consider a PFSA with transitions of the form
(q, l, q0, w), where q, q

0 are states, l is the label of
the transition from q to q

0 (in our case l 2 {0, 1}),
and w is the probability of the transition. The fact
that the automaton is probabilistic, instead of sim-
ply weighted, means that the sum of w’s associ-
ated with transitions starting at q is equal to 1. We
further assume that the automaton is deterministic,
namely that given q and l uniquely determines the
next state q

0.10

The entropy H(q) of a state q is defined as
H(q)

.
= �

P
x�q p(x|q) log p(x|q), where x � q

denotes a sequence of labels x that ends in a fi-
nal state of the automaton, for which p(x|q) is
computed in the obvious way. The entropy of the
automaton as a whole is then defined as H(qs),
where qs is the initial state of the automaton.

Lemma The entropies of states satisfy the fix-
point equation:
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It is possible to show that the state entropies ac-
tually correspond to the least fixpoint of equation
(7), and this allows a simple iterative algorithm for
computing the state entropies: at time t = 0, for
all states q, we define H

t=0(q)
.
= 0, and then we

iterate until convergence:

H
t+1(q) =

X

(q,l,q0,w)

�w logw + wH
t(q0).

10The case of non-deterministic probabilistic automata ap-
pears much more difficult (Cortes et al., 2008).

A.3 Additional Experiments and Results
(See next pages)



Table 4: Cyclical training vs two stage training for motif 10001011111000, Dm, ft = 1001111;
CE is short for CE(T,⇡✓).

|D| CErs
CErs(cycl)

timers
timers(cycl)

CEsnis
CEsnis(cycl)

timesnis
timesnis(cycl)

500 1.02 1.21 1.02 1.51

1000 1.0 1.48 1.08 2.04

5000 1.04 0.57 1.0 0.57

10000 0.98 1.47 1.02 0.45

20000 0.99 2.65 1.0 0.28

Figure 3: (Cyclical training) Cross-entropy in nats per character, `1 mom and frequency of sampling motif,
depending on the |D|, while all distractive features and motif feature are 1: ft[4:7] = {1111}, ft[1] = 1.



Figure 4: Column 1: Cross-entropy; column 2: `1 mom; column 3: frequency of sampling motif, depending on
the |D|, all distractive features are 1: ft[4:7] = {1111}. Setting: supermotif+submotif, pure D, while varying the
rareness of the motif (Z).



Figure 5: Column 1: Cross-entropy; column 2: `1 mom; column 3: frequency of sampling motif, depending
on the |D|, all distractive features are 1: ft[4:7] = {1111}. Setting: motif+submotif, pure D, while varying the
rareness of the motif (Z).



Figure 6: Column 1: Cross-entropy; column 2: `1 mom; column 3: frequency of sampling motif, depending on
the |D|, all distractive features are 1: ft[4:7] = {1111}. Setting: motif, pure D, while varying the rareness of the
motif (Z).



Figure 7: Column 1: Cross-entropy; column 2: `1 mom; column 3: frequency of sampling motif, depending on
the |D|, all distractive features are 1: ft[4:7] = {1111}. Setting: motif, mixture D, while varying the rareness of
the motif (Z).


