
Appendix: Improving Answer Selection and Answer Triggering using
Hard Negatives

Sawan Kumar ∗
Indian Institute of Science, Bangalore

sawankumar@iisc.ac.in

Shweta Garg †
Search Customer Experience, Amazon

shwegarg@amazon.com

Kartik Mehta
India Machine Learning, Amazon

kartim@amazon.com

Nikhil Rasiwasia
India Machine Learning, Amazon
rasiwasi@amazon.com

A Training Details

The models (except for the Transformer encoder
model, details below) in this work are trained
using Keras (V2.2.2). We use Adam optimizer
(Kingma and Ba, 2014) for all the experiments,
with a fixed learning rate of 0.001. Batch size for
training was varied between 250, 500 and 1000.
For all answer selection tasks, we used triplet loss
with margin of 0.2 for InsuranceQA and LargeQA
and 0.05 for SelQA. For the answer triggering
task, we used quadruplet loss, with the margins
m1 and m2 kept fixed to 0.1 and 0.05 respectively.
In each case, we select best epoch and best hyper-
parameter using performance on the development
set. Each variant was run for a total of 200 epochs.

For Max-Pooling and Max-Min-Pooling mod-
els, the word embeddings are randomly initialized
with size 500/1000/2000, and learned as part of
the training.

For LSTM-CNN models, the input embedding
size is kept fixed to 100. The embeddings are ini-
tialized with word2vec (Mikolov et al., 2013) em-
beddings trained on the respective dataset, and are
optimized as well during the training. The dimen-
sion of LSTM output is set to be 141 and 500 CNN
filters of sizes 1,2,3 and 5 are used. The outputs
from CNN is then concatenated after max pooling
to produce the final representation.

For the Transformer encoder, we use pytorch
(V1.2.0)1. We employ the architecture used in
BERT (Devlin et al., 2019) (BERTBASE) as our
base model, which has 12 layers, hidden size of
768 and 12 attention heads. We use the embed-
ding of the first token from the final layer to get the
representation of a sentence. The encoder is ini-
tialized using a pre-trained uncased BERT model.

∗Work done as an intern at Amazon
†Work done at India Machine Learning, Amazon

1We used the library available at https://github.
com/huggingface/pytorch-transformers

0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

7

0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

Max Score

Q
ue

st
io

ns

No correct answer

At least one correct answer

Q
ue

st
io

ns

Figure 1: Distribution of maximum score for a test
question with the candidate answers (SelQA Answer
triggering dataset) Top: Random sampling of nega-
tives, Bottom: Using hard negatives. See Appendix
B for details.

Only the top 4 layers were trained for answer se-
lection, while keeping the other layers frozen. The
training batch size was fixed to 64 with hard neg-
atives, and 32 with random negatives, to accom-
modate the larger size of the parameter set for this
model. Each variant was run for a total of 200
epochs.

Data preprocessing is common across all the
datasets and models, which includes tokenizing,
converting to lowercase and removing words with
frequency less than 2.

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers


B Answer Triggering: Distributions of
Similarities

To understand the performance gains from
hard negatives, we analyze the distributions of
question-answer similarity scores. For the task
of answer triggering on SelQA dataset, Figure
1 shows the distributions of maximum similarity
score of a test question with the answer candidates,
separately for questions with and without a correct
answer in the candidates. We note that employing
hard negatives provides a significant boost with re-
spect to the goal of obtaining consistent similar-
ity scores (incorrect pairs being assigned a smaller
score than correct pairs), as necessary for answer
triggering.

C The Effect of Batch Size

0.425

0.45

0.475

0.5

0.525

0.55

0 500 1000 1500 2000

Batch	size

F1

Figure 2: Performance of the proposed approach (F1)
on the answer triggering task of SelQA dataset with
varying batch sizes.

The proposed approach relies on online selec-
tion of hard negatives from within a batch. As
noted in the main text, this provides several ad-
vantages (Section 4). In this section, we inves-
tigate the impact of the choice of batch size on
the performance of the proposed approach for the
task of answer triggering (Figure 2). Consistent
with our hypothesis, we see an increase in per-
formance when we increase the batch size from
an initial value of 10. This can be understood in
terms of an increase in the hardness of the nega-
tives selected, thus providing more training signal.
Further, we note that while the performance ini-
tially increases with the batch size, it plateaus out
for larger batch sizes. This can be understood in
terms of an increased probability of false negatives
for large batch sizes which offsets the gain from
valid hard negatives. Batch size thus becomes an
important hyper-parameter of the approach.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

