
A Data

A.1 Dataset statistics

Table 8 provides summary statistics for all datasets
used in the paper.

Domain Docs Ent Rel Trig Arg

ACE05 News 511 7 6 - -
ACE05-E News 599 7 - 33 22
SciERC AI 500 6 7 - -
GENIA Biomed 1999 5 - - -
WLP Bio lab 622 18 13 - -

Table 8: Datasets for joint entity and relation extraction
and their statistics. Ent: Number of entity categories.
Rel: Number of relation categories. Trig: Number of
event trigger categories. Arg: Number of event argu-
ment categories.

A.2 ACE event data preprocessing and
evaluation

There is some inconsistency in the ACE event lit-
erature on how to handle “time” and “value” event
arguments, which are not technically named enti-
ties. Some authors, for instance Yang and Mitchell
(2016) leave them in and create new entity types
for them. We follow the preprocessing of Zhang
et al. (2019), who ignore these arguments entirely,
since these authors shared their preprocessing code
with us and report the current state of the art.
We will be releasing code at https://github.
com/dwadden/dygiepp to exactly reproduce
our data preprocessing, so that other authors can
compare their approaches on our data. Due to this
discrepancy in the literature, however, our results
for named entity and event argument classification
are not directly comparable with some previous
works.

In addition, there is some confusion on what
constitutes an ”Event argument identification”. Fol-
lowing Yang and Mitchell (2016) and Zhang et al.
(2019), we say that an argument is identified cor-
rectly if its offsets and event type are correct. Some
other works seem to require require only that an
argument’s offsets be identified, not its event type.
We do not compare against these.

B Graph Propagation

We model relation and coreference interactions sim-
ilarly to Luan et al. (2019), and extend the approach
to incorporate events. We detail the event prop-
agation procedure here. While the relation and
coreference span graphs consist of a single type

of node, the event graph consists of two types of
nodes: triggers and arguments.

The intuition behind the event graph is to pro-
vide each trigger with information about its poten-
tial arguments, and each potential argument with
information about triggers for the events in which
it might participate.2

The model iterates between updating the triggers
based on the representations of their likely argu-
ments, and updating the arguments based on the
representations of their likely triggers. More for-
mally, denote the number of possible semantic roles
played by an event argument (i.e. the number of
argument labels) as LA, BT as a beam of candidate
trigger tokens, andBA as a beam of candidate argu-
ment spans. These beams are selected by learned
scoring functions. For each trigger ht

i ∈ BT and ar-
gument gt

j ∈ BA, the model computes a similarity
vector Vt

A(i, j) by concatenating the trigger and
argument embeddings and running them through
a feedforward neural network. The kth element of
Vt

A(i, j) scores how likely it is that argument gj
plays role k in the event triggered by hi.

Extending Equation 1, the model updates the
trigger hi by taking an average of the candidate
argument embeddings, weighted by the likelihood
that each candidate plays a role in the event:

ut
A→T (i) =

∑
j∈BA

AA→T f(V
t
A(i, j))� gt

j , (2)

where AA→T ∈ Rd×LA is a learned projection
matrix, f is a ReLU function, � is an element-
wise product, and d is the dimension of the span
embeddings. Then, the model computes a gate
determining how much of the update from (2) to
apply to the trigger embedding:

f tA→T (i) = σ
(
WA→T [h

t
i,u

t
A→T (i)]

)
, (3)

where WA→T ∈ Rd×2d is a learned projection ma-
trix and σ is the logistic sigmoid function. Finally,
the updated trigger embeddings are computed as
follows:

ht+1
i = f tA→T (i)�ht

i+(1−f tA→T (i))�ut
A→T (i).

(4)
Similarly, an update for argument span gj is

computed via messages ut
T→A(j) as a weighted

2Event propagation is a somewhat different idea from (Sha
et al., 2018), who model argument-argument interactions using
a learned tensor. We experimented with adding a similar tensor
to our architecture, but did not see any clear performance
improvements.

https://github.com/dwadden/dygiepp
https://github.com/dwadden/dygiepp


average over the trigger spans. The update is com-
puted analgously to Equation 2, with a new train-
able matrix AT→A. Finally, the gate f tT→A(j) and
the updated argument spans gt+1

j are computed
in the same fashion as (3) and (4) respectively.
This process represents one iteration of event graph
propagation. The outputs of the graph propagation
are contextualized trigger and argument represen-
tations. When event propagation is performed, the
final trigger scorer takes the contextualized surro-
gate spans hi as input rather than the original token
embeddings di.

C CorefProp visualizations

Figure 3 shows confusion matrices for cases where
CorefProp corrects and introduces a mistake on
SciERC named entity recognition. It tends to cor-
rect mistakes where the base model either missed
an entity, or was overly specific – classifying an
entity as a Material or Method when it should have
been classified with the more general label Other-
ScientificTerm. Similarly, CorefProp introduces
mistakes by assigning labels that are too general,
or by missing predictions.

Figure 4 shows a visualization of the coreference
attention weights for a named entity in the GENIA
data set. The acronym “v-erbA” is correctly iden-
tified as a protein, due to a span update from its
coreference antecedent “v-erbA oncoprotein”.

D Statistical significance of results

For a subset of the results in Table 1, we evalu-
ated statistical significance by re-training a model
with 5 random seeds and computing the mean and
standard error of the mean of the F1 scores. For
ensemble models (trigger detection), we trained 3
ensembles instead of 5 due to the large computa-
tional demands of training ensemble models. Due
to the large number of experiments performed, it
was impractical to perform these tests for every
experiment. We report means and standard errors
in Table 9. For most results, our mean is more
than two standard errors above the previous state
of the art; those results are significant. Our event
argument results are not significant. For trigger
classification, our mean F1 is a little less than two
standard errors above the state of the art, indicating
moderate significance.

(a) CorefProp corrects a mistake.

(b) CorefProp makes a mistake.

Figure 3: Confusion matrix of cases in the SciERC dev
set where coreference propagation changed a predic-
tion from incorrect to correct (Fig. 3a), or correct to
incorrect (Fig. 3b). CorefProp leads to more cor-
rections than mistakes, and tends to make less specific
predictions (i.e. OtherScientificTerm).

E Implementation Details

Learning rate schedules For BERT finetuning,
we used BertAdam with a maximum learning rate
of 1×10−3 for the task specific layers and 5×10−5
for BERT. For the learning rate schedule, we had
an initial warmup period of 40000 batches for the
BERT parameters, and 20000 batches for the task
specific layers. Following the warmup period, we
linearly decayed the learning rate.

For event extraction models with no finetuning
we found that SGD with momentum performed
better than Adam. We used the PyTorch implemen-
tation of SGD, with an initial learning rate of 0.02,
momentum of 0.9, weight decay of 1× 10−6 and
a batch size of 15 sentences. We cut the learning
rate in half whenever dev set F1 had not decreased



(a) To classify the mention of v-erbA in Sentence 4, the model
can share information from its coreference antecedents (in red).

v - erbA overexpression
c - erbA function
the erbA
the erbA target gene
the erbA target gene CAII
CAII
The v - erbA oncoprotein
erythrocyte - specific genes

(b) Coreference attention weights. Darker is larger. The
biggest update comes from The v-erbA oncoprotein

Figure 4: CorefProp aggregates information from
informative text spans. By using the representation
of the span v-erbA oncoprotein in Sentence 2 to update
the representation of v-erbA in sentence 4, the model is
able to correctly classify the latter entity mention as a
protein.

for 3 epochs.
For all models, we used early stopping based on

dev set loss.

Hyperparameter selection We experimented
with both BERTBASE and BERTLARGE on all tasks.
We found that BERTLARGE provided improvement
on event extraction with a final LSTM layer, but
not on any of the other tasks or event extraction
with BERT fine-tuning. In our final experiments
we used BERTBASE except in the one setting men-
tioned were BERTLARGE was better.

We experiment with hidden layer sizes of 150,
300, and 600 for our feedforward scoring functions.
We found that 150 worked well for all tasks except
event extraction, where 600 hidden units were used.

Event extraction modeling details For event ex-
traction we experimented with a final “decoding”
module to ensure that event argument assignments
were consistent with the types of the events in
which they participated – for instance, an entity
participating in a “Personnel.Nominate” event can
play the role of “Agent”, but not the role of “Pros-
ecutor”. However, we found in practice that the
model learned which roles were compatible with
each event type, and constrained decoding did not
improve performance. For argument classification,
we included the entity label of each candidate argu-

Dataset Task SOTA Ours
(mean)

Ours
(sem)

ACE05-Event*

Entity 87.1 90.4 0.1
Trig-ID 73.9 76.1 0.4
Trig-C 72.0 73.0 0.6
Arg-ID 57.2 54.0 0.4
Arg-C 52.4 51.3 0.4

SciERC Entity 65.2 66.3 0.4
Relation 41.6 46.2 0.4

Table 9: Mean and standard error of the mean. Trig-C
is moderately significant. Arg-ID and Arg-C do not im-
prove SOTA when averaging across five models. The
remaining results are highly significant. Note that our
means here differ from the numbers in Table 1, where
we report our best single run to be consistent with pre-
vious literature.

ment as an additional feature. At train time we used
gold entity labels and at inference time we used the
softmax scores for each entity class as predicted by
the named entity recognition model.

Event model ensembling For the event extrac-
tion experiments summarized in Table 4 we per-
formed early stopping based on dev set argument
role classification performance. However, our trig-
ger detector tended to overfit before the argument
classifier had finished training. We also found stop-
ping based on dev set error to be unreliable, due to
the small size and domain shift between dev and
test split on the ACE05-E data set. Therefore, for
our final predictions reported in Table 1, we trained
a four-model ensemble optimized for trigger detec-
tions rather than event argument classification, and
combined the trigger predictions from this model
with the argument role predictions from our origi-
nal model. This combination improves both trigger
detection and argument classification, since an ar-
gument classification is only correct if the trigger
to which it refers is also classified correctly.


