
A Appendix A

A.1 Implementation Details for Review
Generators

Recurrent Neural Networks (RNNs) directly model
the generation process of text sequences, and pro-
vide an end-to-end solution to learning the gener-
ating function from large quantities of data. These
networks maintain a hidden layer of neurons with
recurrent connections to their own previous val-
ues, which in theory gives them the potential to
model long span dependencies. For an input se-
quence x = x1, x2, . . . , xt, the hidden state ht
which summarizes the information of the entire
sequence up to timestep t is recursively updated
as ht = f(ht−1, xt), where f(., .) denotes a non-
linear transformation function. The overall proba-
bility of the sequence is calculated as:

p(x) =
T∏
t=1

p(xt|ht−1), (1)

and the probability of generating the next word
xt+1 given its low dimensional continuous repre-
sentation Oxt+1 and input sequence xt is defined
as:

p(xt+1|x ≤ t) = p(xt+1|ht) ∝ exp(OTxt+1
ht)

(2)
However, in practice the gradient computation is
difficult to propagate back in time due to explod-
ing or vanishing gradients (Hochreiter et al., 2001),
(Bengio et al., 1994), making the learning of arbi-
trarily long phenomena challenging in RNNs. Long
Short Term Memory networks (LSTMs) (Hochre-
iter and Schmidhuber, 1997) effectively address
these limitations by relying on a memory state and
gating functions to control the flow of the infor-
mation throughout the network – and in particular
what information is written to the memory state,
what information is read from the memory state,
and what information is removed (or forgotten)
from the memory state. The mathematical formula-

tion of LSTM units can be expressed as follows:

i(t) = σ(W (i)x(t) + U (i)h(t−1)) (Input gate)

f (t) = σ(W (f)x(t) + U (f)h(t−1)) (Forget gate)

o(t) = σ(W (o)x(t) + U (o)h(t−1)) (Output gate)

c̃(t) = tanh(W (c)x(t) + U (c)h(t−1) (New memory cell)

c(t) = f (t) ◦ c̃(t−1) + i(t) ◦ c̃(t) (Final memory cell)

h(t) = o(t) ◦ tanh(c(t))

(3)

In the above set of equations, the input word x(t)

and the past hidden state h(t−1) are used to gen-
erate new memory c̃(t) which includes features of
the new word x(t) without prior determination of
whether x(t) is important and worth keeping. The
role of the input gate is to check whether it is sensi-
ble to store the new input word given the word x(t)

itself and the past hidden state h(t−1); the input
gate produces i(t) as output, which encapsulates
the worthiness decision of preserving the input in-
formation. Similarly to the input gate, the forget
gate also determines the usefulness of a word by
inferring whether the past memory cell is used to
compute the current memory cell by looking at the
input word word x(t) itself and the past hidden state
h(t−1); it produces f (t) as output, which encapsu-
lates the worthiness decision of preserving the past
memory cell. In the final memory generation stage,
the advice of the input gate i(t) to gate the new
memory c̃(t) and the advice of the forget gate f (t)

to forget the past memory c̃(t−1) are both consid-
ered, and the two results are summed up to produce
the final memory c(t). The output gate is used to
separate the hidden state ht from the final memory
of the network c(t). Given that every state of the
LSTM is relying on hidden states and that the final
memory c(t) contains a lot of information not nec-
essarily required to be saved in the hidden state, the
output gate discriminatively assesses which parts
of the memory c(t) should be kept inside the hidden
state ht. In our experiments we employ an LSTM
generative model trained at word level. Sampling
from a trained word language model can be done in
two ways: beam search (Bahdanau et al., 2014) and
random sampling (Graves, 2013). Following (Tang
et al., 2016), we use random sampling with differ-
ent values for the temperature parameter. Sampling
from the LSTM model with a high temperature re-
sults in the model generating diverse samples at the

cost of introducing some mistakes, while small tem-
peratures generate conservative samples without a
lot of content diversity. In our experiments, we
empirically set the temperatures to the following
values: 1.0, 0.7 and 0.5.

RNNs, and LSTMs in particular, have become
the standard for modeling machine learning prob-
lems that involve temporal and sequential data
including text. The data is modeled via a fully-
observed directed graphical model, where the distri-
bution over a discrete time sequence y1, y2, . . . , yT
is decomposed into an ordered product of condi-
tional distributions over tokens:

P (y1, y2, . . . , yT) = P (y1)

T∏
t=1

P (yt|y1, . . . , yt−1)

(4)
For models with recurrent connections from their
outputs leading back into the model, teacher forc-
ing (Williams and Zipser, 1989) is the most popular
training strategy. This procedure emerges from the
maximum likelihood criterion, in which at training
time t+ 1 the model receives as input the ground
truth output yt:

log p(y(1), y(2)|x(1), x(2)) = log p(y(2)|y(1), x(1), x(2))
+ log p(y(1)|x(1), x(2))

(5)

The model in Equation 5 above illustrates the con-
ditional maximum likelihood criterion at timestep
t = 2. The model is trained to maximize the con-
ditional probability of y(2) given the sequence x
generated so far and the previous y(1) value. There-
fore, maximum likelihood specifies that at training
time the previous token generated by the model is
replaced with ground-truth examples yt that are fed
back into the model for predicting outputs at later
time steps. Feeding back ground truth samples at
training time forces the RNN to stay close to the
ground-truth sequence. However, at inference time,
the ground truth sequence is no longer available
conditioning, and each yt is generated by the model
itself (i.e. sampled from its conditional distribution
over the sequence given the previously generated
samples). This discrepancy between training time
and inference time causes errors in the model pre-
dictions that accumulate and amplify quickly over
the generated sequence as the model is in a part
of the state space it has never seen during train-
ing time. Small prediction errors compound in the

RNN’s conditioning context, and as the generated
sample starts to diverge from sequences it has seen
during training, the prediction performance of the
RNN worsens (Lamb et al., 2016).

To alleviate this problem, Bengio et al (Bengio
et al., 2015) propose Scheduled Sampling (SS), a
learning strategy for training RNNs which mixes
inputs from the ground-truth sequence with inputs
generated by the model itself at training time. SS
relies on curriculum learning (Bengio et al., 2009)
to change the training process from a fully guided
scheme using the true previous token to a less
guided scheme mostly using the generated token.
The choice of replacing the ground truth with the
model’s prediction is determined by a coin flip
with some probability, independently for each to-
ken. The probability of using the ground truth is
set to a high value initially. As the model gradually
keeps improving, samples from the model become
more frequent and the model is partially fed with
its own synthetic data as prefix in a similar way to
inference mode. Therefore, the training objective
is slowly changed from an easy task where the pre-
vious token is known, to a realistic task where the
previous token is provided by the model itself. The
scheduled sampling training scheme is meant to
make the model more robust and forces it to deal
with its own mistakes at training time, in a similar
way to inference time. However, as the model gen-
erates several consecutive tokens yt-s, it is not clear
whether the correct target distribution remains the
same as in the ground truth sequence. The authors
propose two solutions: i) make the self-generated
sequences short, and ii) anneal the probability of
using self-generated vs. ground-truth samples to 0,
according to some schedule.

Despite its impressive empirical performance,
Huszar et al (Huszár, 2015) show that SS is an in-
consistent training strategy which pushes models
towards memorising the distribution of symbols
conditioned on their position in the sequence in-
stead of on the prefix of preceding symbols. Ac-
cording to the authors, SS pays no attention to the
content of the sequence prefix, and uses the hid-
den states to implement a simple counter which
makes the model likely to recover from its own
mistakes. Moreover, it is possible that the good
performance of the model on image captioning
datasets is either due to the algorithm not running
until convergence, or to a lucky combination of fac-
tors including the model structure, early stopping,

random restarts, and the annealing schedule. The
authors recommend adversarial training strategies
as a much better choice for generative models.

Tang et al (Tang et al., 2016) study the the prob-
lem of NLG at particular contexts or situations.
The authors focus on user review data due to its
richness of context, sentiments and opinions ex-
pressed. They propose two approaches built on top
of the encoder-decoder framework to generate user
reviews as text sequences from user product con-
texts. In the first approach, Contexts to Sequences,
the authors encode the product context information−→
C = {−→c i}i=1,...,K , where −→c i denotes a type of
context and K the number of context types, into a
continuous semantic representation, which is fed
into an LSTM decoder to generate text sequences.
Despite promising results shown by the method,
the authors consider that for long generated se-
quences the information from contexts is not prop-
agated to distant words. In their second approach,
Gated Contexts to Sequences, the authors add skip-
connections to directly build the dependency be-
tween contexts hC and each word when predicting
the next word xt+1 in a sequence. When a new
word in a sequence is generated, it does not only
depend on the current hidden state ht, but it also
depends on the context representation hC . Similar
to the first model, the decoder is a vanilla recurrent
neural network with LSTM unit.

Focusing on the same problem as Tang et al
(Tang et al., 2016), Dong et al (Dong et al., 2017)
propose Attention Enhanced Attribute to Sequence
Model. The model learns to encode product at-
tributes into vectors by means of an encoder net-
work, and then generate reviews by condition-
ing on the encoded vectors inside a sequence de-
coder, and an attention mechanism (Bahdanau et al.,
2014), (Xu et al., 2015) which learns soft align-
ments between the input attributes and the gener-
ated words. The product review generation prob-
lem is formally defined as follows. Given input
attributes a = (a1, . . . , a|a|), generate a product
review r = (y1, . . . , y|r|) which maximizes the
conditional probability p(r|a):

p(r|a) =

|r|∏
t=1

p(yt|(y1, . . . , yt−1), a) (6)

While the number of attributes |a| is fixed for each
product, the review text r is a sequence of variable
length. In our experiments we use the two mod-

els proposed by Tang et al (Tang et al., 2016) and
Dong et al (Dong et al., 2017) to generate use prod-
uct reviews given the context information and the
review text of each product in the Amazon dataset.

In addition to the already mentioned models,
we also employ a pre-trained model released by
Google, commonly referred to as Google LM (Joze-
fowicz et al., 2016). The model is an important
contribution to the field of neural language model-
ing which emphasizes large scale recurrent neural
network training. The model was trained on the
One Billion Word Benchmark (Chelba et al., 2013),
a publicly available dataset containing mainly news
data and used as a reference standard for measur-
ing the progress of statistical language modeling.
The dataset includes 1 billion words in total with
a vocabulary of 800,000 unique words. While for
count based language models it is considered a
medium-sized dataset, for neural network based
language models the benchmark is regarded as a
very large dataset. In terms of the model archi-
tecture, the GoogleLM model is a 2-layer LSTM
neural network with 8,192 and respectively 1,024
hidden units in each layer, the largest Google was
able to fit into GPU memory. The model uses
Convolutional Neural Networks (CNNs) character
embeddings as input, and makes predictions one
character at a time, which presents the advantage
that the model does not need to learn long-term
dependencies in the data. We employ GoogleLM
to generate sentences with a topic which identifies
with the existing three categories (books, electron-
ics and movies) present in the Amazon dataset we
used.

Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) represent a training
methodology for generative models via an adver-
sarial process, and are aimed at generating syn-
thetic data which resembles the real data. The
GAN framework works through the interplay be-
tween two feedforward neural network models, a
generative model G and a discriminative model
D, trained simultaneously by competing against
each other. The generative model G aims to cap-
ture the data distribution and generate high quality
synthetic data, while the discriminative model D
estimates the probability a sample comes from the
real training data and not from the synthetic data
generated by G. Concretely, the generator G takes
as input a vector of random numbers z, and trans-
forms it into the form of the data we are interested

in imitating; the discriminator D takes as input ei-
ther the real data x or generated data G(z), and
outputs probability P (x) of the respective data be-
ing real. The GAN framework is equivalent to a
minimax two-player game between the two models
G and D:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]

(7)

Adversarial learning algorithms iteratively sam-
ple batches from the data and noise distributions,
and use noisy gradient information to simulate-
nously ascend in the parameters θd of D, while
descending in the parameters θg of G. The discrim-
inator D is optimized to increase the likelihood of
assigning a high probability to the real data x and
a low probability to the fake generated data G(z).
The gradient for the discriminator can be expressed
as follows:

Oθd
1

m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
(8)

Alternatively, the generator G is optimized to
increase the probability the generated data G(z) is
rated highly:

Oθg
1

m

m∑
i=1

[
log(1−D(G(z(i))))

]
(9)

The goal of the generator G is to maximize the
probability of discriminatorD making a mistake by
generating highly realistic data, while the discrim-
inator D is learnt to distinguish whether a given
data instance is real or not. The gradient of the
training loss from the discriminator D is used as
guidance for updating the parameters of the genera-
tor G. Gradient optimization is alternated between
the two networks D and G as illustrated in Equa-
tions 8 and 9 on batches of real and generated data
until GAN converges, at which point the data pro-
duced by GAN is the most realistic the network is
capable of modeling.

However, GAN’s applicability to discrete data
is limited, despite the great success at generating
realistic real valued synthetic samples in many com-
puter vision tasks for eg., image generation (Brock
et al., 2016), (Zhu et al., 2016), (Taigman et al.,

2016), image style transfer (Luan et al., 2017),
(Zhu et al., 2017) and semantic segmentation (Luc
et al., 2016), (Souly et al., 2017). Training gen-
erative models of text using GANs is challenging
due to the discrete nature of text data, which makes
it difficult to backpropagate the gradient from the
discriminator D to the generator G. GANs are de-
signed for generating real-valued, continuous data,
and the gradient of the loss from discriminator D
w.r.t. the output of generator G is used to guide
G to slightly change the generated value to make
it more realistic (i.e. the gradient of the output
of the discriminator network with respect to the
synthetic data indicates how to slightly change the
synthetic data to make it more plausible). Changes
can be made to the synthetic data if it is based on
real numbers, however for discrete tokens the slight
change guidance is not a useful signal, as it is very
likely that there is no corresponding token to the
slight change given the limited vocabulary space3.
In addition, a further reason why GANs cannot
be applied to text data is because the discrimina-
tor D can only asses a complete sequence. When
having to provide feedback for partially generated
sequences, it is non-trivial to balance the current
score of the partially generated sequence with the
future score after the entire sequence has been gen-
erated (Yu et al., 2017). In the literature there are
two approaches on how to deal with the problem of
non-differentiable output and finding the optimal
weights in a neural network: the REINFORCE al-
gorithm, and Gumbel-Softmax reparameterization.
We present each method below.

REINFORCE (Williams, 1992) algorithms, also
known as REward Increments, score-function es-
timators, or likelihood-ratio methods adjust the
weights of a neural network based on the log deriva-
tive trick in a direction that lies along the gradi-
ent of expected reinforcement without explicitly
computing gradient estimates. It is a policy gra-
dient method which uses the likelihood ratio trick(Oθp(X,θ)
P (X,θ) = Oθ log p(X, θ); ∂

∂x
log f(x) = f ′(x)

f(x)

)
to update the parameters of an agent and increase
the probability that the agent’s policy will select a
rewarding action given a state. Given the trajectory
τt = (u1, . . . , ut−1, x0, . . . , xt) made up of a se-
quence of states xk and control actions uk, the goal
of policy gradient is to find policy πϑ which takes

3https://www.reddit.com/r/
MachineLearning/comments/40ldq6/
generative_adversarial_networks_for_
text/

https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/
https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/
https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/
https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/

as input trajectory τt and outputs a new control
action that maximizes the total reward after L time
steps. πϑ is a parametric randomized policy which
assumes a probability distribution over actions:

p(τ ;ϑ) =

L−1∏
t=0

p(xt+1|xt, ut)πv(ut|τt) (10)

If we define the reward of a trajectory as:

R(τ) =
N∑
t=0

Rt(xt, ut), (11)

the reinforcement learning optimization problem
becomes:

max
ϑ

J(ϑ) = max
ϑ

Ep(τ |ϑ)[R(τ)] (12)

Then policy gradient can be derived as follows:

OϑJ(ϑ) =

∫
R(τ)Oϑp(τ ;ϑ)dτ

=

∫
R(τ)

Oϑp(τ ;ϑ)

p(τ ;ϑ)
p(τ ;ϑ)dτ

=

∫
(R(τ)Oϑ log p(τ ;ϑ))p(τ ;ϑ)dτ

= Ep(τ ;ϑ)[R(τ)Oϑ log p(τ ;ϑ)]

(13)

From Equation 13 we have that the gradient of J
w.r.t. ϑ is equal to the expected value of the func-
tion G(τ, ϑ) = R(τ)Oϑ log p(τ ;ϑ). This function
provides an unbiased estimate of the gradient of
J and can be computed by running policy πϑ and
sampling a trajectory τ without knowing the dy-
namics of the system since p(xt+1|xt, ut) does not
depend on parameter ϑ. Following this direction is
equivalent to running stochastic gradient descent
on J .

Oϑ log p(τ ;ϑ) =

L−1∑
t=0

Oϑ log πϑ(ut|τt) (14)

The policy gradient algorithm can be summarized:

1. Choose ϑ0, stepsize sequence αk, and set k =
0;

2. Run the simulator with policy πϑk and sample
τk;

3. ϑk+1 = ϑk +
αkR(τk)

∑L−1
t=0 Oϑ log πϑ(utk|τt);

4. k = k + 1, go to step 2.

The policy gradient algorithm can be run on
any problem if sampling from πϑ can be done ef-
ficiently. Policy gradient is simple as it optimizes
over a parametric family p(u;ϑ) instead of optimiz-
ing over the space of all probability distributions.
However, there are constraints regarding the proba-
bility distribution, which should be easy to sample
from, easy to search by gradient methods, and rich
enough to approximate delta functions. In addition,
the complexity of the method depends on the di-
mensionality of the search space and can be slow
to converge. Finally, the policy gradient update
is noisy, and its variance increases proportionally
with the simulation length L.

The other solution to the problem of dealing
with non-differentiable output is to use the the
Gumbel-Softmax (Jang et al., 2016) approach, and
replace the non-differentiable sample from the cat-
egorical distribution with a differentiable sample
from a Gumbel-Softmax distribution. The Gumbel-
Softmax distribution is a continuous distribution on
the simplex that can approximate categorical sam-
ples. Parameter gradients can be easily computed
by applying the reparameterization trick (Kingma
and Welling, 2013), a popular technique used in
variational inference and adversarial learning of
generative models in which the expectation of a
measurable function g of a random variable ε is
calculated by integrating g(ε) with respect to the
distribution of ε:

E(g(ε)) =

∫
g(ε)dFε (15)

Therefore, in order to compute the expectation of
z = g(ε) we do not need to know explicitly the dis-
tribution of z, but only know g and the distribution
of ε. This can alternatively be expressed as:

Eε∼p(ε)(g(ε)) = Ez∼p(z)(z) (16)

If the distribution of variable z depends on param-
eter φ, i.e. z ∼ pφ(z), and if we can assume
z = g(ε, φ) for a known function g of parame-
ters φ and noise distribution ε ∼ N (0, 1), then for

any measurable function f :

Eε∼p(ε)(f(g(ε, φ))) = Ez∼pφ(z)(f(z))

Eε∼p(ε)(Of(g(ε, φ))) = OφEε∼p(ε)(f(g(ε, φ)))

= OφEz∼pφ(z)(f(z))

(17)

In equation 17, z has been conveniently expressed
such that functions of z can be defined as integrals
w.r.t. to a density that does not depend on the
parameter φ. Constructing unbiased estimates of
the gradient is done using Monte Carlo methods:

OφEz∼pφ(z)(f(z)) ∼ 1

M

M∑
i=1

Of(g(εi, φ)) (18)

The reparameterization trick aims to make the ran-
domness of a model an input to that model instead
of letting it happen inside the model. Given this,
the network model is deterministic and we can dif-
ferentiate with respect to sampling from the model.
An example of applying the reparameterization
trick is to rewrite samples drawn from the normal
distribution z ∼ N (µ, σ) as z = µ + σε, with
ε ∼ N (0, 1). In this way stochastic nodes are
avoided during backpropagation. However, the re-
parameterization trick cannot be directly applied to
discrete valued random variables, for eg. text data,
as gradients cannot backpropagate through discrete
nodes in the computational graph.

The Gumbel-Softmax trick attempts to over-
come the inability to apply the reparameteriza-
tion trick to discrete data. It parameterizes a dis-
crete distribution in terms of a Gumbel distribu-
tion, i.e. even if the corresponding function is not
continuous, it will be made continuous by apply-
ing a continuous approximation to it. A random
variable G has a standard Gumbel distribution if
G = − log(− log(U)), U ∼ Unif[0, 1]. Any dis-
crete distribution can be parameterized in terms
of Gumbel random variables as follows. If X is
a discrete random variable with P (X = k) ∝ αk
random variable and {Gk}k≤K an i.i.d. sequence
of standard Gumbel random variables, then:

X = arg max
k

(logαk +Gk) (19)

Equation 19 illustrates sampling from a categorical
distribution: draw Gumbel noise by transforming
uniform samples, add it to logαk, then take the
value of k that yields the maximum. The arg max

operation that relates the Gumbel samples is not
continuous, however discrete random variables can
be expressed as one-hot vectors and take values in
the probability simplex:

∆K−1 = {x ∈ RK+ ,
K∑
k=1

xk = 1} (20)

A one hot vector corresponds to a discrete category,
and since the arg max function is not differentiable,
a softmax function can be used instead as a contin-
uous approximation of arg max:

fτ (x)k =
exp(xk/τ)∑K
k=1 exp(xk/τ)

(21)

Therefore, the sequence of simplex-valued random
variables Xτ is:

Xτ = (Xτ
k)k = fτ (logα+G)

=
exp((logαk +Gk)/τ)∑K
i=1 exp((logαi +Gi)/τ)

(22)

Equation 22 is known as the Gumbel-Softmax dis-
tribution and can be evaluated exactly for different
values of x, α and τ , where τ is a temperature
parameter that controls how closely the samples
from the Gumbel-Softmax distribution approxi-
mate those from the categorical distribution. When
τ → 0, the softmax function becomes an arg max
function and the Gumbel-Softmax distribution be-
comes the categorical distribution. At training time
τ is a set to a value greater than 0 which allows
gradients to backpropagate past the sample, and
then is gradually annealed to a value close to 0.
The Gumbel Softmax trick is important as it allows
for the inference and generation of discrete objects.
A direct application of this technique is generating
text via GANs.

In summary, GANs have shown impressive per-
formance at generating natural images nearly indis-
tinguishable from real images, however applying
GANs to text generation is a non-trivial task due to
the special nature of the linguistic representation.
According to Dai et al (Dai et al., 2017), the two
main challenges to overcome when using GANs
with textual input are:

i) first, text generation is a sequential non-
differentiable sampling procedure which samples
a discrete token at each time step (vs. image
generation where the transformation from the in-
put random vector to the produced output image

is a deterministic continuous mapping); the non-
differentiability of text makes it difficult to apply
back-propagation directly, and to this end, classical
reinforcement learning methods such as Policy Gra-
dient (Sutton et al., 2000) have been used. In policy
gradient the production of each word is considered
as an action for which the reward comes from the
evaluator, and gradients can be back-propagated
by approximating the stochastic policy with a para-
metric function.

ii) second, in the GAN setting the generator re-
ceives feedback from the evaluator when the entire
sample is produced, however for sequence genera-
tion this causes difficulties during training, such as
vanishing gradients and error propagation. To al-
low the generator to get early feedback when a text
sequence is partly generated, Monte Carlo rollouts
are used to calculate the approximated expected
future reward. This has been found empirically to
improve the efficiency and stability of the training
process.

Unlike in conventional GAN settings that deal
with image generation, the production of sentences
is a discrete sampling process, which is also non-
differentiable. A natural question that arises is
how can the feedback be back-propagated from the
discriminator to the generator under such a formu-
lation. Policy gradient considers a sentence as a
sequence of actions, where each word wt is an ac-
tion and the choices of such actions are governed by
a policy πθ. The generative procedure begins with
an initial state S1:0 which is the empty sentence,
and at each time step t the policy πθ takes as input
the previously generated words S1:t−1 up until time
t − 1, as well as the noise vector z, and yields a
conditional distribution πθ(wt|z, S1:t−1) over the
vocabulary words. The computation is done one
step at a time moving along the LSTM network
and sampling an action wt from the conditional
distribution up until wt will be equal to the end of
sentence indicator, in which case the sentence is
terminated. The reward for the generated sequence
of actions S will be a score r calculated by the
discriminator. However, this score can be com-
puted only after the sentence has been completely
generated, and in practice this leads to difficulties
such as vanishing gradients and very slow training
convergence. Early feedback is used to evaluate
the expected future reward when the sentence is
partially generated, and the expectation can be ap-
proximated using Monte Carlo rollouts. The Monte

Carlo rollout method is suitable to use when a part
of the sentence S1:t has been already generated,
and we continue to sample the remaining words of
the sentence from the LSTM network until the end
of sentence token is encountered. The conditional
simulation is conducted n times, which results in
n sentences. For each sentence we compute an
evaluation score, and the rewards obtained by the
simulated sentences are averaged to approximate
the expected future reward of the current sentence.
In this way updating the generator is possible with
feedback coming from the discriminator. The util-
ity of the policy gradient method is that by using
the expected future reward the generator is pro-
vided with early feedback and becomes trainable
with gradient descent.

Yu et al propose SeqGAN (Yu et al., 2017), a
GAN-based sequence generation framework with
policy gradient, which is the first work to employ
GANs for generating sequences of discrete tokens
to overcome the limitations of GANs on textual
data. SeqGAN treats the sequence generation pro-
cedure as a sequential decision making process
(Bachman and Precup, 2015). A discriminator is
used to evaluate the generated sequence and pro-
vide feedback to the generative model to guide its
learning. It is a well known problem of GANs that
for text data (discrete ouputs) the gradient cannot
be passed back from the discriminator to the gener-
ator. SeqGAN addresses this problem by treating
the generator as a stochastic parameterized policy
trained via policy gradient (Sutton et al., 2000) and
optimized by directly performing gradient policy
update, therefore avoiding the differentiation diffi-
culty for discrete data. The reinforcement learning
reward comes from the discriminator based on the
likelihood that it would be fooled judged on a com-
plete sequence of tokens, and is passed back to the
intermediate state-action steps using Monte Carlo
search (Browne et al., 2012).

The sequence generation problem is defined
as follows. Given a dataset of human writ-
ten sequences, train a generative model Gθ pa-
rameterized by θ to output sequence Y1:T =
(y1, . . . , yt, . . . , yT), yt ∈ Y , where Y is the word
vocabulary. The current state is the sequence of to-
kens (y1, . . . , yt−1) generated until timestep t, and
the action a taken from this state is the selection
of next token yt. The policy model Gθ(yt|Y1:t−1)
is stochastic and will select an action according
to the leant probability distribution of the input to-

kens. The state transition from the current state
s = Y1:t−1 to the next state s

′
= Y1:t after choos-

ing action a = y is deterministic, i. e. δa
s,s′

= 1

for next state s
′
, and δa

s,s′′
= 0 for other next states

s
′′
. The discriminative model Dφ(Y1:T) is used to

guide the generator Gθ, and outputs a probability
indicating how likely a sequence Y1:T produced by
Gθ comes from real sequence data. Dφ is trained
with both real and fake examples from the real se-
quence data and the synthetic data generated by
Gθ. The objective of the generator model (policy)
Gθ(yy|Y1:t−1) is to maximize its expected end re-
ward RT which comes from the discriminator Dφ

for a sequence which is generated starting from
initial state s0:

J(θ) = E[RT |s0, θ] =
∑
y1∈Y

Gθ(y1|s0)QGθDφ(s0, y1)

(23)
The action-value function QGθDφ(s, a) for a se-
quence represents the expected cumulative reward
starting from state s, taking action a and then
following policy Gθ. The action value function
QGθDφ(s, a) is calculated as the estimated probabil-
ity (reward) the discriminator Dφ(Y n

1:T) assigns to
the generated sample being real:

QGθDφ(a = yT , s = Y1:T−1) = Dφ(Y n
1:T) (24)

In the GAN setup, the discriminator Dφ can only
provide a reward at the end of a finished se-
quence. In order to evaluate the action-value func-
tion QGθDφ(s, a) for an intermediate state s, Monte
Carlo search with roll-out policy Gβ (identical to
the generator Gθ policy) is used to sample the un-
known remaining T − t tokens that result in a com-
plete sentence. The roll-out policy Gβ starts from
the current state s and is run for N times to get an
accurate assessment of the action-value function
QGθDφ(s, a) through a batch of N output samples,
thus reducing the variance of the estimation:

{Y 1
1:T , . . . , Y

N
1:T } = MCGβ (Y1:t;N)

QGθDφ(a = yt, s = Y1:t−1) =

1
N

∑N
n=1Dφ(Y n

1:T),

if Y n
1:T ∈MCGβ (Y1:t;N), t < T

Dφ(Y1:t), if t = T

(25)

The generator starts with random sampling at first,
but once more realistic samples have been gener-

ated, the discriminator Dφ is updated (which will
in turn improve the generator model iteratively):

min
φ
−EY∼pdata [logDφ(Y)]−EY∼Gθ [log(1−Dφ(Y))]

(26)
The generator Gθ is updated every time a new dis-
criminator Dφ has been obtained. The gradient
of the generator’s objective function J(θ) w.r.t the
generator’s parameters θ is expressed as follows:

∇θJ(θ) =
T∑
t=1

EY1:t−1∼Gθ

[∑
yt∈Y
∇θGθ(yt|Y1:t−1)·

·QGθDφ(Y1:t−1, yt)

]
(27)

Expectation E can be approximated by sampling
methods, and generator’s parameters are updated:

θ ← θ + αh∇θJ(θ),where αh − learning rate
(28)

In the initial stages of training, the generator Gθ
is pre-trained via maximum likelihood estimation,
and the discriminator Dφ is pre-trained via mini-
mizing the cross-entropy between the ground truth
label and the predicted probability; after the pre-
training stage is over, the generator and the dis-
criminator are trained alternatively. The SeqGAN
authors chose an LSTM (Schmidhuber and Hochre-
iter, 1997) architecture for the generator in order
to avoid the vanishing and the exploding gradient
problem of back-propagation through time, and
a CNN (LeCun et al., 1998), (Kim, 2014) archi-
tecture with highway networks (Srivastava et al.,
2015) as discriminator. The evaluation metric is set
to minimize the average negative log-likelihood be-
tween the generated data and an oracle considered
as the human observer:

NLLoracle = −EY1:T∼Gθ

[T∑
t=1

logGoracle(yt|Y1:t−1)
]

(29)
Lin et al (Lin et al., 2017) consider that GANs
restrict the discriminator too much by forcing it
to be a binary classifier. Because of this setup,
the discriminator is limited in its learning capac-
ity especially for tasks with a rich structure, such
as when generating natural language expressions.

The authors propose a generative adversarial frame-
work called RankGAN, which is able to capture
the richness and diversity of language by learning
a relative ranking model between the machine writ-
ten and human written sentences in an adversarial
framework. The adversarial network consists of
two neural network models, a generator Gθ and
a ranker Rφ, where θ and φ are parameters. The
RankGAN discriminator Rφ, instead of perform-
ing a binary classification task as in conventional
GANs, is trained to rank the machine-written sen-
tences lower than human-written sentences w.r.t. a
human-written reference set. Alternatively, the gen-
erator Gθ is trained to confuse the ranker R in such
a way that machine written sentences are ranked
higher than human written sentences with regard
to the reference set. The authors consider that by
viewing a set of samples collectively (instead of just
one sample) and evaluating their quality through
relative ranking, the discriminator can make better
judgements regarding the quality of the samples,
which helps in turn the generator better learn to
generate realistic sequences. The problem can be
expressed mathematically as Gθ and Rφ playing a
minimax game with the objective function L:

min
θ

max
φ
L(Gθ, Rφ) = Es∼Ph [logRφ(s|U,C−)]+

Es∼Gθ [log(1−Rφ(s|U,C+))]

(30)

The ranker Rφ is optimized to increase the like-
lihood of assigning a high probability to the real
sentence s and a low probability to the fake gen-
erated data Gθ. s ∼ Ph denotes that sentence s
is sampled from human written sentences, while
s ∼ Gθ denotes that sentence s is sampled from
machine written sentences. U is a reference set
which is used for estimating relative ranks. C+

and C− are comparison sets with regards to input
sentences. When the input sentence s is sampled
from the real data, C− is sampled from the gener-
ated data, and alternatively when the sentence s is
sampled from the synthetic data generated by Gθ,
C+ is sampled from human written data.

Similar to SeqGAN, the authors use policy gradi-
ent to overcome the non-differentiability problem
of text data. However, unlike SeqGAN, the regres-
sion based discriminator is replaced with a ranker
and a new learning objective function. The gen-
erative model Gθ is an LSTM network, while the
ranker Rφ is a CNN network. The rewards for

training the model are encoded with relative rank-
ing information. When a sequence is incomplete,
an intermediate reward is computed using Monte
Carlo rollout methods. The expected future reward
V for partial sequences is defined as:

Vθ,φ(s1:t−1,U) = Esr∼Gθ [logRφ(sr|U,C+, s1:t−1)]
(31)

In Equation 31 above, sr denotes a complete se-
quence sampled by using rollout methods start-
ing from sequence s1:t−1. A total of n different
paths are sampled, and their corresponding ranking
scores are computed. The average ranking score is
used to approximate the expected future reward for
the current partially generated sequence s1:t−1; the
ranking score of an input sentence s given reference
sentence u and comparison set C (where C = C+

if sentence s is machine generated, C = C− other-
wise) is computed using a softmax-like formula:

P (s|u,C) =
exp(γα(s|u))∑

s′∈C′ exp(γα(s′ |u))
,where

α(s|u) = cos(ys, yu) =
ysyu

||ys||||yu||
(32)

In Equation 32, ys is the embedded feature vector
of the input sentence, and yu is the embedded fea-
ture vector of the reference sentence. The gradient
of the objective function for generator Gθ for start
state s0, vocabulary V , and generator policy πθ is
computed as:

OθLθ(s0) = Es1:T∼Gθ

[T∑
t=1

∑
wt∈V

Oθπθ(wt|s1:t−1)·

·Vθ,φ(s1:t, U)

]
(33)

Therefore, RankGAN deals with the gradient van-
ishing problem of GAN by replacing the original
binary classifier discriminator with a ranking model
in a learning-to-rank framework. The ranking score
is computed by taking a softmax over the expected
cosine distances from the generated sequences to
the real data.

Guo et al (Guo et al., 2018) find that a limita-
tion of current GAN frameworks for text genera-
tion (Yu et al., 2017), (Lin et al., 2017), (Rajeswar
et al., 2017), (Che et al., 2017), (Li et al., 2017),

(Zhang et al., 2017) is that they are only capable
of generating short texts, within a limited length of
around 20 tokens. Generating longer sequences is
a less studied but more challenging research prob-
lem with a lot of useful applications, such as the
auto-generation of news articles or product descrip-
tions. Nevertheless, long text generation faces the
issue that the binary guiding signal from generator
D is sparse and non-informative; it does not pro-
vide useful information regarding the intermediate
syntactic structure and semantics of the generated
text so that the generator G could learn from that
signal. Besides that, it is only available after the
entire sequence has been generated, and the final
reward value does not provide much guidance on
how to alter the parameters of G at training time.
Moreover, the approach of relying on binary feed-
back from the discriminator requires a very large
number of real and generated samples to improve
G. Aiming to make the guiding signal coming from
the discriminator D more informative, the authors
propose LeakGAN (Guo et al., 2018), a GAN ap-
proach for adversarial text generation in which the
discriminative model D is allowed to leak its own
high-level extracted features (in addition to provid-
ing the final reward value) to better guide the train-
ing of the generative model G. The authors pick a
hierarchical generator for G, which is made up of
two distinct modules: a high-level manager mod-
ule, and a low-level worker module. The high level
manager module (or mediator) receives the feature
map representation of the discriminator D; this
is not normally allowed in the conventional GAN
setup as this feature map is internally maintained
by the discriminator. The manager embeds this
feature map representation coming from the dis-
criminator and passes it over to the worker module.
The worker first encodes the current generated se-
quence, and combines this resulting encoding with
the embedding produced by the manager to decide
what action to take at the current state. Therefore,
LeakGAN “leaks” guiding signals from the dis-
criminator D to the generator G more frequently
and more informatively throughout the sequence
generation process and not at the end only, helping
G improve better and faster.

The discriminator Dφ is made up of a feature
extractorF(.;φf) and a final sigmoid classification

layer. For input sequence s, Dφ is defined as:

Dφ(s) = sigmoid(φTl F(s;φf)) = sigmoid(φTl f)
(34)

The feature vector in the last layer ofDφ is denoted
as f = F(s;φf), and it will be leaked to the gen-
erator Gθ. A natural implication of this approach
is that the reward the generator Gθ receives for
a partially generated sequence is directly related
to the quality of the extracted features by the dis-
criminator Dφ. Therefore, for the discriminator
Dφ to yield a high reward, it is necessary to find
a highly rewarding region in the extracted feature
space. The authors consider that compared to a
scalar signal, the feature vector f is more infor-
mative as it captures the position of the generated
words in the extracted feature space. Dφ is imple-
mented as a CNN network. The manager module
M(ft, h

M
t−1; θm) of the hierarchical generator Gθ

receives as input the extracted feature vector ft,
which it combines with its internal hidden state to
produce the goal vector gt:

g
′
t =M(ft, h

M
t−1; θm)

gt =
g
′
t

||g′t||
(35)

The goal vector embedding wt of goal gt is com-
puted by applying a linear transformation ψ with
weight matrix Wψ to the sum of recent c goals:

wt = ψ(
c∑
i=1

gt−i) = Wψ(
c∑
i=1

gt−i) (36)

wt is fed to the worker module W(.; θw), which
is in charge with the generation of the next token.
The worker module takes the current word xt as
input and outputs matrix Ot; this matrix is then
combined through a softmax with the goal vector
embedding wt:

Ot, h
W
t =W(xt, h

W
t−1; θw)

Gθ(.|st) = softmax(Otwt/α)
(37)

At training time, the manager and the worker mod-
ules are trained separately – the manager is trained
to predict which are the most rewarding positions in
the discriminative feature space, while the worker

is rewarded to follow these directions. The gradient
for the manager module is defined as:

Oadv
θmgt = −QF (st, gt)Oθmdcos(ft+c−ft, gt(θm))

(38)
QF (st, gt) defines the expected reward under the
current policy and can be approximated using
Monte Carlo search. dcos computes cosine sim-
ilarity between the goal vector gt(θm) produced
by the manager, and the change in feature repre-
sentation ft+c − ft after c transitions. In order to
achieve a high reward, the loss function is trying
to force the goal vector to match the transition in
feature space. Before the adversarial training takes
place, the manager undergoes a pre-training stage
with a separate training scheme which mimics the
transition of real text samples in the feature space:

Opre
θm

= −Oθmdcos(f
′
t+c − f

′
t , gt(θm)) (39)

The worker uses the REINFORCE algorithm dur-
ing training to maximize the reward when taking
action xt given the previous state is st−1:

OθwEst−1∼G

[∑
xt

rItW(xt|st−1; θw)

]
=

Est−1∼G,xt∼W(xt|st−1)

[
rItOθw logW(xt|st−1; θw)

]
rIt =

1

c

c∑
i=1

dcos(ft − ft−i, gt−i)

(40)

During the adversarial training process, the genera-
tor Gθ and the discriminator Dφ are trained in al-
ternative stages. When the generator Gθ is trained,
the worker W(.; θw) and the manager M(.; θm)
modules are trained alternatively fixing each other.

Mode collapse (Goodfellow, 2016) is a com-
mon problem when training GAN models, when
the generator learns to produce samples with ex-
tremely low variety, limiting the usefulness of the
leant GAN model. In mode collapse the genera-
tor network learns to output samples from a few
modes of the data distribution only, missing out on
many other modes even though samples from these
missing modes can be found throughout the train-
ing data. Mode collapse can range from complete
collapse, when the generated samples are entirely
identical, to partial collapse when the generated

samples present some common properties (Srivas-
tava et al., 2017), (Salimans et al., 2016). Several
attempts have been made to address the problem,
which include: i) directly encouraging the gener-
ator cost function to account for the diversity of
the generated batches by comparing these samples
across a batch in order to determine whether the en-
tire batch is real or fake, ii) anticipate counterplay,
in which the generator learns to fool the discrimina-
tor before the discriminator has a chance to respond
(and therefore taking counterplay into account), iii)
experience replay, which minimizes the switching
between modes by showing old fake generated sam-
ples to the discriminator every now and then, and
iv) using multiple GANs, in which a GAN is trained
for each different mode so that when combined, the
GANs altogether cover all modes.

In LeakGAN, in order to address mode collapse,
the authors propose an interleaved training scheme,
which combines supervised training using maxi-
mum likelihood estimation with GAN adversarial
training (instead of carrying only GAN adversar-
ial training after the pretraining stage). Blending
two training schemes is considered useful by the
authors as it helps LeakGAN overcome local min-
imums, alleviates mode collapse and acts as an
implicit regularizer on the generative model.

A.2 Samples produced by the review
generators

Figure 8 shows the instructions given to the AMT
workers who participated in this study. In Figure 9
we include a screen-shot of the user interface when
annotating reviews.

In what follows we present samples generated by
the review generators on which human annotators
disagree most on whether these are human-written
or machine-generated.

• Word LSTM temp 1.0

a) i so enjoyed this book . i felt though .
i especially like loving horses in the .
and the story is well written .

b) one of a different type on locked para-
normal / vacation book . i enjoyed the
characters and the plot . great mixture of
historical fiction .

c) this first edition of the complete series 8
years over six episodes just makes you
laugh . the original tv is by far my cup
of tea !

Figure 8: Screenshot of the instructions presented to Amazon Mechanical Turk workers.

Figure 9: Screenshot of the Amazon Mechanical Turk user study interface.

d) works out of the box ! wouldn ’ t spend
the money for a better keyboard . use
this with the matching kindle screen as
well .

• Word LSTM temp 0.7

a) i am looking forward to the next book .
i am a and i enjoyed the story . i
like books where the characters are real .

b) this is an exciting book i could n ’ t put
down . i will probably read more books
by this author . this is a must read .

c) okay , that ’ s how i expected this movie
. it was okay but it was so boring . i was
bored and was disappointed .

d) this cable is not bad . it is so cheap and it
works great . i ’ ve used this for a couple
of months now and on the ipad

• Word LSTM temp 0.5

a) this book was a great read ! the story was
exciting and a bit . i really enjoyed
the characters and the story line .

b) this is a great cable for the price . i would
recommend this product to anyone need-
ing a cable for a great price .

c) this is a great series . it is a must see for
anyone who loves period dramas . i love
the .

d) these batteries seem to be working as
expected . i have had no problems with
this product . i would recommend this to
anyone .

• Scheduled Sampling

a) like most of the ones i have ! the tablet
that came starts working properly .

b) i have had any almost using keyboards
with an iphone case and kept it nicely
and time . and it works well .

c) have got to watch it many times again
and the seasons of each episode we
can all watch it .

d) very interesting characters and likable
characters that grow when you gave me

of the because of the dog . what
can i say is i absolutely loved it .

• Google LM

a) systems generally require less band-
width and with operating systems ,
users to write and edit data nearly any-
where .

b) seems all but impossible to access . is
all a and gets a bad on every .

c) is based in , , with a com-
mercial office in

d) oved this clip and the and apps
were about so much fun that paid a
big price . 2 and 3 like crazy .

• Attention Attribute to Sequence

a) i am always waiting for the next book to
come out . i am a big fan of sean black
and will .

b) purchased this to use with my macbook
pro . it worked out perfectly , as de-
scribed . no complaints .

c) great book all of the great mystery books
. i enjoyed all of them and was sad when
the book ended .

d) this is a great product . i ’ ve had it
for over a year now and it ’ s still go-
ing strong . i ’ m very happy with this
purchase .

• Contexts to Sequences

a) i love this series . i love the characters
and the story . i love the characters and
the story line .

b) a great book and a great read . i love
the characters and the story . i would
recommend this book to anyone .

c) i enjoyed the story . it was a good read
. i would recommend it to anyone who
likes a good read .

d) i love this book and i love the characters
. i love this book and i was not disap-
pointed .

• Gated Contexts to Sequences

a) this is the first book i have read by this
author . would recommend to anyone
who likes a good romance book .

b) one of the best books i have ever read
. the chemistry between the two main
characters was a good read .

c) this book is awesome . lots of action and
intrigue . i ’ m glad i bought this book .
thank you for sharing

d) great story and plot . sometimes a little
slow at times but overall a good read .

• MLE SeqGAN

a) you will like this movie - get this set
. . . better than expected award for the
characters . bad ending .

b) this switch converter works fine with all
games and works perfect , sturdy pro-
gram to zero manual products . nice feel
.

c) i could not put it down . it was an inter-
esting clean book , but i was expecting
many more individuals in this story so i
read in a long time .

d) great story . in college kids has been
lost the mysteries , chris son is not
better .

• SeqGAN

a) it was slow he kept me interested , and i
think i thoroughly enjoyed the story .

b) i enjoyed this book and look forward to
getting to larson .

c) received in excellent condition . i
thought it was great but didn ’ t know
that movies were more than high ratings
which i am my cup of tea .

d) awesome cute story . kudos to mr much
of the sookie ’ s story .

• RankGAN

a) robin williams is ok . just a great movie
with now . is a great film with
three stars ! wonderful video for a very
good movie .

b) i have loved this movie so i could like the
dvd sort of info . hot slow . love the old
ford shows to though . a great actor .

c) this was a very amazing . laws and
oh fact she became and is very
unlikely together on the case .

d) i say so i would that originally arrived so
i love the circular inch screen . i am sad
how it works .

• LeakGAN

a) i really enjoyed reading this book . the
author did an excellent job in delivering
for all his writing books into us as busi-
ness . a great summer read .

b) just loved it , so much could read more of
this series , i like it but it was not written
in a book that is well written , but very
interesting .

c) i love hockey - baseball movie coming
meets hockey ’ s et addicted fear the
birds feature so popular films have de-
veloped far worse reviews .

d) a very good book with a lot of twists in
this book . i will be checking out more
of this author next book .

A.3 Results

A.3.1 Human Evaluators
We chose the task of distinguishing machine-
generated from real reviews because it is a straight-
forward surrogate of a Turing test. Moreover, how
much their generated content can fool humans has
been a key claim of many artificial intelligence
models recently. The low inter-rater agreement
suggests that this is a difficult task even for hu-
mans, which we hope would trigger the community
to rethink about these claims. There are indeed
finer-grained, perhaps more agreeable aspects of
text quality (including semantic coherence, syn-
tactic correctness, fluency, adequacy, diversity and
readability). We decided not to include them in this
experiment for two reasons: 1) as the first study,
we are not sure which aspects human raters would
consider when they judge for the realism of a re-
view; 2) we wanted to keep the experiment design
simple, and many of these aspects are harder to
define. In the post-experiment survey, the raters
commented on the reasons why they considered
reviews as fake.

The low inter-rater agreement (0.27) reflects
the difficulty/ subjectivity of the task: identifying
individual reviews as human-written or machine-
generated. Low human agreement is commonly
reported in subjective evaluation tasks. Since our
goal is to evaluate the evaluators instead of the
competing algorithms, it is important to use a task
neither too easy or too hard, so that there are distin-
guishable differences among the performances of
competitors (including humans). When using the
majority vote of human judgements, the accuracy
of humans improved to a reasonable 72.63 %.

A.3.2 Discriminative Evaluators
In Table 3 and Table 4 we present comprehensive
results for the meta-adversarial evaluators.

A.3.3 Text-Overlap Evaluators
In Figure 10 we present detailed results for all word
overlap evaluators we used in this study.

A.3.4 Comparing Evaluators
In Table 5 we present correlation results between
the evaluators included in this work.

A.3.5 Diversity Analysis
In Table 6 we present results for the Self-BLEU
metric, while in Table 7 we present the correlation
of Self-BLEU with the other evaluators. In addi-
tion, in Table 8 we present correlation results for
BLEU G-Train and the rest of the evaluators.

B Discussion

B.1 User Study
A more detailed list of major clusters of reasons is
as follows:

1. Grammar/ typo/ mis-spelling: the language
does not flow well.

2. Too general/ too generic/ vagueness: gener-
ated reviews are vague, in lack of details.

3. Word choice (wording): in lack of slang, use
the wrong words.

Table 3: Accuracy of deep (LSTM) and shallow (SVM)
meta-adversarial evaluators. The lower the better.
Meta-adversarial evaluators do better than humans on
individual reviews, with less bias between the two
classes. GAN-based generators are considered to be
the best by meta-adversarial evaluators.

Generators LSTM SVM
Word LSTM temp 1.0 48.29 % 50.31 %
Word LSTM temp 0.7 92.58 % 78.69 %
Word LSTM temp 0.5 99.31 % 94.74 %
Scheduled Sampling 50.09 % 51.31 %
Google LM 84.58 % 78.59 %
Attention Attribute to Sequence 90.08 % 74.37 %
Contexts to Sequences 100.00 % 100.00 %
Gated Contexts to Sequences 98.37 % 96.26 %
MLE SeqGAN 41.45 % 52.35 %
SeqGAN 50.05 % 56.20 %
RankGAN 66.28 % 70.17 %
LeakGAN 87.03 % 77.55 %
D-test (all) 77.58 % 74.50 %
D-test (human-written) 80.12 % 75.98 %
D-test (machine-generated) 75.04 % 73.01 %

4. Flow (not fluent)/ structured/ logical: the sen-
tences level language errors.

5. Contradictory arguments: some arguments
support opposite opinions.

6. Emotion: lack of emotion, personality in the
comments.

7. Repeated text: using words/ phrases repeti-
tively.

8. Overly same as human: too advertisement,
too formal, too likely to be real.

B.2 Granularity of Judgements
We charged the Turkers to label individual reviews
as either fake or real. Each human judge only an-
notates 20 reviews, and they do not know which
reviews are generated by the same generator. Com-
paring to an adversarial discriminator, a human
judge has not seen many “training” examples of
fake reviews or generators. That explains why the
meta-adversarial evaluators are better at identifying
fake reviews. In this context, humans are likely to
judge whether a review is real based on how “simi-
lar” it appears to the true reviews they are used to
see online. That is probably why their decisions are
better correlated to text-overlap metrics that mea-
sures the similarity between a review and a set of
references. This hypothesis is supported by a post-
experiment survey of the human judges. Please see
Appendix A.2 for user study samples.

This finding provides interesting implications to
the selection of evaluation methods for different
tasks. In tasks that are set up to judge individual
pieces of generated text (e.g., reviews, translations,
summaries, captions, fake news) where there ex-
ists human-written ground-truth, it is better to use
word-overlap metrics instead of adversarial evalu-
ators. Indeed, when the audience are not trained
by reading lots of bot-generated texts, it is more
reasonable to use an evaluator that mimics their
decision-making process.

In some scenarios, the task is to make judgments
in the context of a longer conversation or a set
of documents (e.g., conversation agents, dialogue
systems, social bots). The difference is that human
subjects are exposed to machine-generated text, so
that they may be better trained to distinguish fake
from real. Moreover, when judgments are made
on the agent/ system level (e.g., whether a Twitter
account is a bot), signals like how similar the agent

Table 4: Accuracy of deep (LSTM, CNN, CNN & LSTM) and shallow (SVM, RF, NB, XGBoost) meta-adversarial
evaluators. The lower the better. Meta-adversarial evaluators do better than humans on individual reviews, with
less bias between the two classes. GAN-based generators are considered best by meta-adversarial evaluators.

Generators LSTM CNN CNN & LSTM SVM RF NB XGBoost
Word LSTM temp 1.0 48.29 % 55.22 % 45.68 % 50.31 % 53.63 % 32.77 % 48.97 %
Word LSTM temp 0.7 92.58 % 93.14 % 91.02 % 78.69 % 81.05 % 79.92 % 80.49 %
Word LSTM temp 0.5 99.31 % 99.35 % 99.08 % 94.74 % 94.29 % 96.86 % 94.71 %
Scheduled Sampling 50.09 % 48.77 % 43.37 % 51.31 % 52.88 % 20.97 % 44.12 %
Google LM 84.58 % 74.03 % 74.85 % 78.59 % 82.71 % 48.28 % 82.41 %
Attention Attribute to Sequence 90.08 % 91.78 % 89.94 % 74.37 % 77.29 % 80.02 % 71.68 %
Contexts to Sequences 100.00 % 100.00 % 99.97 % 100.00 % 99.98 % 100.00 % 99.98 %
Gated Contexts to Sequences 98.37 % 99.06 % 98.38 % 96.26 % 95.35 % 98.63 % 93.62 %
MLE SeqGAN 41.45 % 47.54 % 41.91 % 52.35 % 51.14 % 21.83 % 43.71 %
SeqGAN 50.05 % 52.91 % 47.35 % 56.20 % 54.91 % 25.60 % 48.11 %
RankGAN 66.28 % 67.23 % 59.37 % 70.17 % 61.94 % 35.98 % 61.23 %
LeakGAN 87.03 % 80.28 % 79.57 % 77.55 % 67.74 % 46.80 % 63.80 %
D-test (all) 77.58 % 74.72 % 75.18 % 74.50 % 70.31 % 70.74 % 73.79 %
D-test (human-written) 80.12 % 73.54 % 77.99 % 75.98 % 68.59 % 83.53 % 79.10 %
D-test (machine-generated) 75.04 % 75.90 % 72.38 % 73.01 % 72.04 % 57.95 % 68.48 %

Figure 10: Text-Overlap Evaluators (BLEU, ROUGE, METEOR and CIDEr) scores for individual generators. The
higher the better. The rankings are overall similar, as GAN-based generators are ranked low.

outputs are or how much the agent memorizes the
training examples may become more useful than
word usage, and a discriminative evaluator may be
more effective than text-overlap metrics.

Our experiment also provide implications to im-
proving NLG models, which implies that adver-
sarial accuracy might not be the optimal objective
for NLG if the goal is to generate documents that
humans consider as real. Indeed, a fake review that
fools humans does not necessarily need to fool a
machine that has seen everything.

In contrast, GAN based models may perform
better when judged as a whole system instead of
individual items, or in a conversational context.
When the human judges have seen enough exam-
ples from the same generator, the next example had
better be somewhat different.

B.3 Imperfect Ground-truth

One important thing to note is that all discrimi-
native evaluators are trained using natural labels

(i.e., treating all examples from the Amazon re-
view dataset as positive and examples generated
by the candidate models as negative) instead of
human-annotated labels. It is possible that if they
were trained with human labels, the discriminative
evaluators would have been more consistent to the
human evaluators. Indeed, some reviews posted
on Amazon may have been generated by bots, and
if that is the case, treating them as human-written
examples may bias the discriminators.

One way to verify this is to consider an alterna-
tive “ground-truth”. We apply the already trained
meta-discriminators to the human-annotated subset
(3,600 reviews) instead of the full D-test set, and
we use the majority vote of human judges (whether
a review is fake or real) to surrogate the “ground-
truth” labels (whether a review is generated or sam-
pled from Amazon).

Surprisingly, when the meta-adversarial eval-
uators are tested using human majority-votes as
ground-truth, both the accuracy numbers and the

Evaluation Method Kendall tau-b Spearman Pearson Kendall tau-b Spearman Pearson
(H1) (H1) (H1) (H2) (H2) (H2)

SVM Individual-discriminators -0.4545* -0.6294* -0.6716* -0.5455* -0.6783* -0.6823*
LSTM meta-discriminator -0.5455* -0.7552* -0.7699* -0.6364* -0.8042* -0.7829*
CNN meta-discriminator -0.6363* -0.8112* -0.8616* -0.7273* -0.8741* -0.8766*
CNN & LSTM meta-discriminator -0.6060* -0.7902* -0.8392* -0.6970* -0.8462* -0.8507*
SVM meta-discriminator -0.4545* -0.6573* -0.7207* -0.5455* -0.6993* -0.7405
RF meta-discriminator -0.5455* -0.7273* -0.7994* -0.6364* -0.7832* -0.8075*
NB meta-discriminator -0.6364* -0.8112* -0.9290* -0.7273* -0.8741* -0.9388*
XGBoost meta-discriminator -0.5455* -0.7413* -0.7764* -0.6364* -0.8042* -0.7878*
BLEU evaluator 0.7576* 0.8601* 0.8974* 0.6666* 0.8182* 0.9060*
ROUGE evaluator 0.6060* 0.7692* 0.8054* 0.5758* 0.7483* 0.8073*
METEOR evaluator 0.5758* 0.7762* 0.8225* 0.5455* 0.7622* 0.8231*
CIDEr evaluator 0.5455* 0.7413* 0.8117* 0.4545* 0.6643* 0.8203*

Table 5: Kendall tau-b, Spearman and Pearson correlation coefficients between human evaluators H1, H2, and
discriminative evaluators and word-overlap evaluators (* denotes statistical significant result with p ≤ 0.05).

Generative Text Model Self-BLEU Lexical diversity
Word LSTM temp 1.0 0.1886 0.6467
Word LSTM temp 0.7 0.4804 0.2932
Word LSTM temp 0.5 0.6960 0.1347
Scheduled Sampling 0.1233 0.7652
Google LM 0.1706 0.7745
Attention Attribute to Sequence 0.5021 0.2939
Contexts to Sequences 0.8950 0.0032
Gated Contexts to Sequences 0.7330 0.1129
MLE SeqGAN 0.1206 0.7622
SeqGAN 0.1370 0.7330
RankGAN 0.1195 0.7519
LeakGAN 0.1775 0.7541

Table 6: Self-BLEU diversity scores per generator (the
lower the more diverse), and lexical diversity scores
(the higher the more diverse). There is high correlation
between the two metrics with respect to the rankings of
the generative text models.

Self-BLEU Kendall tau-b Spearman Pearson
H1 evaluator -0.8788* -0.9301* -0.8920*
H2 evaluator -0.7879* -0.8881* -0.9001*
LSTM meta-discriminator 0.6667* 0.8252* 0.7953*
CNN meta-discriminator 0.7576* 0.8811* 0.8740*
CNN & LSTM meta-discriminator 0.7273* 0.8601* 0.8622*
SVM meta-discriminator 0.5758* 0.7413* 0.8518*
RF meta-discriminator 0.6667* 0.8112* 0.8944*
NB meta-discriminator 0.7576* 0.8811* 0.9569*
XGBoost meta-discriminator 0.6667* 0.8252* 0.8693*
BLEU evaluator -0.8788 -0.9301* -0.9880*
ROUGE evaluator -0.7273* -0.8392* -0.9299*
METEOR evaluator -0.6967* -0.8462* -0.8955*
CIDEr evaluator -0.5455* -0.7413* -0.7987*

Table 7: Kendall tau-b, Spearman and Pearson correla-
tion coefficients between Self-BLEU diversity rankings
and the three evaluation methods - human evaluators
H1, H2, discriminative evaluators and word-overlap
based evaluators (* denotes statistical significant result
with p ≤ 0.05). Meta-discriminators have been trained
on D-train, D-valid sets and tested on the annotated
D-test set with ground-truth test labels.

BLEU G-train Kendall tau-b Spearman Pearson
H1 evaluator 0.7176* 0.8511* 0.9111*
H2 evaluator 0.6260* 0.8091* 0.9209*
LSTM meta-discriminator -0.5649* -0.7461* -0.7091*
CNN meta-discriminator -0.6565 -0.7951* -0.8213*
CNN & LSTM meta-discriminator -0.6260* -0.7811* -0.7951*
SVM meta-discriminator -0.4428* -0.6130* -0.7442*
RF meta-discriminator -0.5038* -0.6340* -0.7864*
NB meta-discriminator -0.6260* -0.7601* -0.9164*
XGBoost meta-discriminator -0.5649* -0.6550* -0.7586*
BLEU evaluator 0.9619* 0.9912* 0.9936*
ROUGE evaluator 0.5954* 0.7496* 0.8717*
METEOR evaluator 0.6260* 0.7636* 0.8477*
CIDEr evaluator 0.6565* 0.8371* 0.8318*

Table 8: Kendall tau-b, Spearman and Pearson correla-
tion coefficients between BLEU G-train rankings and
the three evaluation methods - human evaluators H1,
H2, discriminative evaluators and word-overlap based
evaluators (* denotes statistical significant result with
p ≤ 0.05). Meta-discriminators have been trained on
D-train, D-valid sets and tested on the annotated D-
test set with ground-truth test labels.

Figure 11: Accuracy of deep (LSTM) and shallow
(SVM) meta-discriminators when tested on the anno-
tated subset of D-test, with majority votes as ground-
truth. The lower the better.

rankings of the generators are significantly differ-
ent from Table 3 and Table 4 (which used natural
labels as ground-truth). We note that the scores

and rankings are more inline with the human eval-
uators. To confirm the intuition, we calculate the
correlations between the meta-discriminators and
the human evaluators using the annotated subset
only. Replacing the natural ground-truth with hu-
man annotated labels, the meta-discriminators be-
come positively correlated with human evaluators
(Figure 6), although BLEU still appears to be the
best evaluator.

These results indicate that when the “ground-
truth” used by an automated Turing test is question-
able, the decisions of the evaluators may be biased.
Discriminative evaluators suffer the most from the
bias, as they were directly trained using the imper-
fect ground-truth. Text-overlap evaluators are more
robust, as they only take the most relevant parts of
the test set as references (more likely to be high
quality).

Our results also suggest that when adversarial
training is used, the selection of training examples
must be done with caution. If the “ground-truth” is
hijacked by low quality or “fake” examples, mod-
els trained by GAN may be significantly biased.
This finding is related to the recent literature of
the robustness and security of machine learning
models.

B.4 Role of Diversity

We also assess the role diversity plays in the rank-
ings of the generators. To this end, we measure
lexical diversity (Bache et al., 2013) of the samples
produced by each generator as the ratio of unique
tokens to the total number of tokens. We com-
pute in turn lexical diversity for unigrams, bigrams
and trigrams, and observe that the generators that
produce the least diverse samples are easily distin-
guished by the meta-discriminators, while they con-
fuse human evaluators the most. Alternatively, sam-
ples produced by the most diverse generators are
hardest to distinguish by the meta-discriminators,
while human evaluators present higher accuracy
at classifying them. As reported in (Kannan and
Vinyals, 2017), the lack of lexical richness can be a
weakness of the generators, making them easily de-
tected by a machine learning classifier. Meanwhile,
a discriminator’s preference for rarer language does
not necessarily mean it is favouring higher quality
reviews.

In addition to lexical diversity, Self-BLEU (Zhu
et al., 2018) is an interesting measurement of the
diversity of a set of text (average BLEU score of

each document using the same collection as ref-
erence, therefore the lower the more diverse). In
Figure 7 we present Self-BLEU scores for each
generator, applied to their generated text in D-test
fake. We also compute the correlation coefficients
between the rankings of generators by Self-BLEU
and the rankings by the evaluators (please see Fig-
ure 12). Results obtained indicate that Self-BLEU
presents negative correlation with human evalu-
ators and word-overlap evaluators, and positive
correlation with discriminative evaluators. This
result confirms the findings in literature (Kannan
and Vinyals, 2017) that discriminators in adversar-
ial evaluation are capturing known limitations of
the generative models such as lack of diversity.

Figure 12: Kendall τ -b correlation coefficients between
BLEU G-train and Self-BLEU rankings, and the three
evaluation methods - human evaluators H1, H2, dis-
criminative evaluators and word-overlap based evalua-
tors (* denotes p ≤ 0.05). Meta-discriminators have
been trained on D-train, D-valid sets and tested on the
annotated D-test set with ground-truth test labels.

Following this insight, an important question to
answer is to what extent the generators are simply
memorizing the training set G-train. To this end,
we assess the degree of n-gram overlap between
the generated reviews and the training reviews us-
ing the BLEU evaluator. In Table 9 we present the
average BLEU scores of generated reviews using
their nearest neighbors in G-train as references. We
observe that generally the generators do not mem-
orize the training set, and GAN models generate
reviews that have fewer overlap with G-train. In
Figure 12 we include the correlation between the
divergence from training and the ratings by eval-
uators in the study. BLEU w.r.t. G-train presents
highly positive correlation with BLEU w.r.t. D-test
real, and it is also positively correlated with the

Generative Text Model BLEU G-Train
Word LSTM temp 1.0 0.2701
Word LSTM temp 0.7 0.4998
Word LSTM temp 0.5 0.6294
Scheduled Sampling 0.1707
Google LM 0.0475
Attention Attribute to Sequence 0.5122
Contexts to Sequences 0.7542
Gated Contexts to Sequences 0.6240
MLE SeqGAN 0.1707
SeqGAN 0.1751
RankGAN 0.1525
LeakGAN 0.1871

Table 9: BLEU results when evaluating the generated
reviews using G-train as the reference corpus (a lower
score indicates less n-grams in common between the
training set G-train and the generated text). GAN mod-
els present low similarity with the training set.

human evaluators H1 and H2.
The effects of diversity is perhaps not hard to ex-

plain. At the particular task of distinguishing fake
reviews from real, all decisions are made on indi-
vidual reviews. And because a human judge was
not exposed to many fake reviews generated by the
same generator, whether or not a fake review is suf-
ficiently different from the other generated reviews
is not a major factor for their decision. Instead,
the major factor is whether the generated review
looks similar to the reviews they have seen in real-
ity. Instead, a discriminative evaluator makes the
decision after seeing many positive and negative
examples, and a fake review that can fool an adver-
sarial classifier has to be sufficiently different from
all other fake reviews it has encountered (therefore
diversity of a generator is a major indicator of its
ability to pass an adversarial judge).

