
Appendix
“Transductive Learning of Neural Language Models

for Syntactic and Semantic Analysis”

Hiroki Ouchi1,2 Jun Suzuki2,1 Kentaro Inui2,1
1 RIKEN Center for Advanced Intelligence Project 2 Tohoku University

hiroki.ouchi@riken.jp, {jun.suzuki,inui}@ecei.tohoku.ac.jp

A Tasks

Overview. The goal of syntactic chunking is to
divide a sentence into non-overlapping segments
(phrases) that consist of syntactically related
words. The goal of SRL is to identify semantic
arguments for each predicate. For example,
consider the following sentence.

The1 man2 kept3 a4 cat5
SYNCHUNK [NP] [NP]

SEMROLE [A0] [A1]

In syntactic chunking, “The man” and “a cat” are
recognized as noun phrases (NP). In SRL, for the
predicate “kept”, “The man” is the A0 argument,
and “a cat” is the A1 argument. In the following,
we give formal descriptions for these tasks.

Syntactic chunking. The inputs of the syntac-
tic chunking task is denoted as X = w1:T , where
w1:T = (w1, w2, · · · , wT) is a sentence of T
words. The outputs to predict is a set of labeled
spans Y = {〈i, j, r〉k}

|Y |
k=1.

Input:X = w1:T

Output: Y = {〈i, j, r〉k}
|Y |
k=1

Each labeled span 〈i, j, r〉 consists of word in-
dices i and j in the sentence and a syntac-
tic (constituent) label r ∈ Rsyn. For the
above example, the input sentence is w =
(“The”, “man”, “kept”, “a”, “cat”). The correct
labeled span 〈1, 2,NP〉 indicates that “The man”
is a noun phrase (NP) and 〈4, 5,NP〉 indicates that
“a cat” is an NP.

Semantic role labeling. The inputs of the SRL
task is denoted as X = {w1:T , p}, where w1:T =
(w1, w2, · · · , wT) is a sentence of T words and
p is the target predicate position index. The out-
puts to predict is a set of labeled spans Y =

{〈i, j, r〉k}
|Y |
k=1.

Input:X = {w1:T , p}

Output: Y = {〈i, j, r〉k}
|Y |
k=1

Each labeled span 〈i, j, r〉 consists of word in-
dices i and j in the sentence and a semantic role
r ∈ Rsem. For the above example, the input sen-
tence is w = (“The”, “man”, “kept”, “a”, “cat”),
and the target predicate position is p = 3. The
correct labeled span 〈1, 2,A0〉 indicates that the
A0 (agent) argument is “The man”, and 〈4, 5,A1〉
indicates that the A1 (patient) argument is “a cat”.

B Models

As a syntactic chunking model, we used a vari-
ant of The Reconciled Span Parser (Joshi et al.,
2018). As an SRL model, we used a BiLSTM-
Span model (Ouchi et al., 2018). These models
have a common architecture in part.

The embedding layer. Both chunking and SRL
models first encode the inputs as a sequence of
vector representations.

x1:T = Emb(w1:T) .

The embedding layer (Emb) outputs a sequence
of vector representations x1:T for the input sen-
tence w1:T . For the embedding layer of the syn-
tactic chunking model, a language model (ELMo)
f lm outputs a sequence of word representations
xword
t ∈ Rdword

.

Emb(w1:T) = f lm(w1:T) = xword
1:T .

The embedding layer of the SRL model outputs
not only word representations xword

t but also pred-

icate mark representations xmark
t ∈ Rdmark

.

Emb(w1:T) = x1:T ,

xt = [xword
t ;xmark

t] ,

xword
1:T = f lm(w1:T) ,

xmark
1:T = fmark(w1:T , p) .

Each word representation is concatenated with
each predicate mark representation xmark

t in the
same way as He et al. (2017).

The BiLSTM layer. The input representation xt

is fed to the BiLSTM layer.1

h1:T = BiLSTM(x1:T) .

The BiLSTM layer outputs a sequence of base fea-
ture vectors h1:T , each of which is a dhidden dimen-
sional vector, i.e. ht ∈ Rdhidden

.

Span representation. From the base features
h1:T induced by the BiLSTMs in Equation 1, we
create the span feature representations,

hspan
i,j = [hi + hj ;hi − hj] ,

where the addition and subtraction features of the
i-th and j-th hidden states are concatenated and
used as the feature for a span (i, j).

Labeling for syntactic chunking. For syntactic
chunking, we model normalized distribution over
all labels R for each span (i, j) ∈ S. Specifically,
given a span representation hspan

i,j as input, we first
calculate the score for each span (i, j) ∈ S with a
label r ∈ R.

scorei,j,r = W[r] · hspan
i,j , (1)

where W ∈ R|R|×2dhidden
has a row vector associ-

ated with each label r, and W[r] denotes the r-th
row vector. As the result of the inner product of
W[r] and hspan

i,j , we obtain the score for a labeled
span 〈i, j, r〉. Each score is softmaxed over all the
labels r ∈ R.

P(r | i, j) = exp(screi,j,r)∑
r′∈R

exp(scorei,j,r′)
,

1We used the stacked BiLSTMs in an interleaving fashion
(Zhou and Xu, 2015; He et al., 2017). The details can be
found in their papers.

To train the parameters, we minimize the nega-
tive log-likelihood,

L =
∑

(X,Y)∈D

`(X,Y) ,

`(X,Y) = −
∑

〈i,j,r〉∈Y

log P(r|i, j) ,

where function `(X,Y) is a loss for each sample.

Labeling for SRL. For SRL, we model normal-
ized distribution over all possible spans S for each
label r ∈ R. In the same way as the chunk-
ing model, we first calculate the score scorei,j,r
(Eq. 1). Then, each score is softmaxed over all the
possible spans (i, j) ∈ S.

P(i, j | r) = exp(screi,j,r)∑
(i′,j′)∈S

exp(scorei′,j′,r)
,

To train the parameters, we minimize the nega-
tive log-likelihood,

L =
∑

(X,Y)∈D

`(X,Y) ,

`(X,Y) = −
∑

〈i,j,r〉∈Y

log P(i, j|r) ,

where function `(X,Y) is a loss for each sample.

C Training Details for Language Models

We used Embeddings from Language Models
(ELMo) (Peters et al., 2018), 1024-dimensional
vectors (dword = 1024)2. We also used the same
hyperparameters and training method as Peters
et al. (2018).

Training and fine-tuning of ELMo. First, we
trained ELMo on the 1B billion word benchmark
(Chelba et al., 2013). It took about a week on four
GPUs. Second, we fine-tuned ELMo on each test
set. Because each test set is much smaller than the
1B billion word benchmark corpus, it takes less
than an hour. During training of syntactic and se-
mantic models, we freezed the fine-tuned ELMo
(not updated it).

Cross-domain settings. In cross-domain set-
tings, we first built a fine-tuned ELMo and then
built each syntactic and semantic model. Consider
the case where NW → BC, i.e., the source domain

2https://allennlp.org/elmo

is the newswire NW and the target domain is the
broadcast conversation BC. We first trained ELMo
on the 1B billion word benchmark corpus and fine-
tuned it on the BC test set. We then trained syn-
tactic and semantic models that use the fine-tuned
ELMo on the NW training set. We selected hyper-
parameters by using the NW development set. Fi-
nally, we evaluated the trained model on the BC
test set. In the same way, we conducted training
and evaluation for each cross-domain setting.

Standard benchmarks. In standard bench-
mark settings using the CoNLL-2000/2005/2012
datasets, each model used the ELMo fine-tuned on
each test set. Consider the case where the bench-
mark setting on the CoNLL-2005 dataset. We
first trained ELMo on the 1B billion word bench-
mark corpus and fine-tuned it on the CoNLL-2005
test set. We then trained an SRL model that uses
the fine-tuned ELMo on the CoNLL-2005 train-
ing set. We selected hyperparameters by using the
CoNLL-2005 development set. Finally, we eval-
uated the trained model on the CoNLL-2005 test
set. In the same way, we conducted training and
evaluation on the other datasets.

D Training Details for Syntactic and
Semantic Models

Name Value
Word representation dword 1024-dimensional ELMo
Mark representation dmark 50-dimensional vector
BiLSTM layers 4
BiLSTM hidden units dhidden 300 dimensions
Mini-batch Size 32
Optimization Adam
Learning Rate 0.001
L2 Regularization λ 0.0001
Dropout Ratio for BiLSTMs 0.1
Dropout Ratio for ELMo 0.5

Table 1: Hyperparameters used in the experiments.

Table 1 lists the hyperparameters used in the ex-
periments.

Network setup. As predicate mark represen-
tations xmark, we used randomly initialized 50-
dimensional vectors (dmark = 50). During train-
ing, we updated them. For the BiLSTM layer,
we used 4 stacked BiLSTMs (2 forward and 2
backward LSTMs) with 300-dimensional hidden
units. Following He et al. (2017), we initialized all
the parameter matrices in BiLSTMs with random
orthonormal matrices (Saxe et al., 2013). Other
parameters were initialized following Glorot and

Bengio (2010), and bias parameters were initial-
ized with zero vectors.

Regularization. We applied dropout (Srivastava
et al., 2014) to the input vectors of each LSTM
with dropout ratio of 0.1 and the ELMo embed-
dings with dropout ratio of 0.5.

Training. To optimize the parameters, we used
Adam (Kingma and Ba, 2014) with β1 = 0.9 and
β2 = 0.999. The learning rate was initialized to
0.001. After training 50 epochs, we halved the
learning rate every 25 epochs. Parameter updates
were performed in mini-batches of 32. The num-
ber of training epochs was set to 100. We saved
the parameters that achieve the best F1 score on
the development set and evaluated them on the test
set. Training the models takes 24 - 48 hours on a
single GPU.

References
Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,

Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of AISTATS, pages 249–
256.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In Proceedings of ACL, pages
473–483.

Vidur Joshi, Matthew Peters, and Mark Hopkins. 2018.
Extending a parser to distant domains using a few
dozen partially annotated examples. In Proceedings
of ACL, pages 1190–1199.

D.P. Kingma and J. Ba. 2014. Adam: A method
for stochastic optimization. arXiv preprint arXiv:
1412.6980.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto.
2018. A span selection model for semantic role
labeling. In Proceedings of EMNLP, pages 1630–
1642.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of NAACL, pages 2227–
2237.

Andrew M Saxe, James L McClelland, and Surya Gan-
guli. 2013. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of ACL-IJCNLP, pages
1127–1137.

