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1 Dataset

The dataset used is that of Shore et al. (2018),

a corpus of 42 manually-transcribed dialogs of

human-human speech in a reference communi-

cation task like that of Krauss and Weinheimer

(1964); Schober and Clark (1989); Ibarra and

Tanenhaus (2016), whereby speaker A describes

a particular referent which must be resolved by

speaker B: Mean duration µ = 15:25 minutes,

SD = 1:13, total 647:35.

Figure 1: The game board as seen by the respective

roles.

1.1 Experimental Design

Each experiment session involves two healthy

adults with normal or corrected-to-normal vision

and English either as a native language or as a

common language used in a professional context.

Each participant has their own PC on a LAN,

head-mounted microphone and speakers in a room

separate from the other’s, similarly to the setup of

Manuvinakurike et al. (2015): They communicate
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freely via speech but cannot interact in any other

way. Once both participants log into the game,

they are simultaneously presented with an identi-

cal view of a simulated game board occupied by

20 tangram-like pieces (Gardner, 1974).

Min Max Mean Sum

Minutes 09:42.5 17:49.1 15:25.1 647:35.2
Rnds. 30 138 78.3 3288

Utts. 151 625 355.8 14942

Tokens 858 2592 1616.3 67884

Toks./utt. 3.1 8.6 4.7

Table 1: Overview of dataset used.

During the task, both dialog participants are

seated at their own computer in separate rooms,

each of which displays the current state of the

game (see Figure 1). In each game round, the in-

structor sees a piece randomly highlighted, which

is the piece they must instruct the manipulator to

select. The manipulator has no indication or prior

knowledge of which piece is to be selected, so the

instructor must describe the piece well enough for

the selector to click on it using a mouse. If the

piece is selected correctly, the participants gain

one point and proceed to the next round, where

the roles are switched and the previously-selected

piece moves to a random place on the board. How-

ever, if the wrong piece is selected, they lose two

points and must try again.

Each experiment session is intended to be 15

minutes long and the participants are informed of

this before starting, being encouraged to earn as

many points as possible in this time. They are

explicitly told that they are not restricted in any

way regarding their language aside from the one

restriction that they focus only on the task at hand.

See Table 1 for a summary of the collected dataset.



1.2 Dataset Size

In the field of situated dialog, aligned multimodal

data sources are difficult to collect and small

datasets are not uncommon; our dataset is of a sim-

ilar order of magnitude as other tasks in reference

resolution and generation and is in fact somewhat

larger than some, for example:

• 40 dialogs with 2048 referring expressions

from 12 participants for Iida et al. (2010)

• 24 dialogs for Funakoshi et al. (2012)

• 1003 sentence/annotation pairs for Matuszek

et al. (2012)

• 1449 annotated images used by Malinowski

and Fritz (2014)

• 1214 “episodes” (rounds) from 8 unique par-

ticipants for Kennington et al. (2015)

These datasets are all smaller than ours (42 di-

alogs, 3288 rounds and 84 unique participants).

2 Logistic Regression Features

The logistic regression models for each word clas-

sifier pt(r) , σ(wT
t r + bt) (cf. Kennington et al.,

2015) were trained by optimizing parameters us-

ing quasi-Newton hybrid conjugate gradient de-

scent from Weka v3.8.0 (Frank et al., 2016; Gill

et al., 1981; Gill and Murray, 1976; Dai and

Yuan, 2001; Hager and Zhang, 2006). A ridge

λ = 100 was used to avoid over-fitting of mod-

els for low-frequency words, tuned using 42-fold

cross-validation over the training set (le Cessie and

van Houwelingen, 1992). The following features

were used for conditioning:

• POSITIONX and POSITIONY are the position

of the entity’s center as a proportion of the

total board area.

• MIDX and MIDY represent an entity’s dis-

tance from the center of the feature’s respec-

tive axis 1− |0.5− x| · 2.

• The individual sRGB color features RED,

GREEN and BLUE with integer values

0 ≤ x ≤ 255 are mapped to real values

0 ≤ x ≤ 1 (International Electrotechnical

Commission, 1999).

• SHAPE is a set of one-hot encodings for 17

unique images which can be drawn to vi-

sualize an entity. The images, which are

shown in Figure 2, were hand-chosen to have

a roughly-even distribution of typicality —

cf. Mitchell et al. (2013).

• SIZE values are derived from possible entity

dimensions 2 × 2 (small), 3 × 3 (medium)

or 4 × 4 (large) and are normalized by the

total area of the board; Since the board area

is always 20×20, the effective feature values

are 0.01, 0.0225 and 0.04.

Figure 2: The possible shapes of generated game

pieces.

See Shore et al. (2018) for a more in-depth de-

scription of features available in the dataset used

in this paper.

3 Significance Testing for Reference

Resolution Models

The results of the methods described in this pa-

per for improving reference resolution in situated

dialog were analyzed by fitting a linear mixed

model using R v3.2.3 x86 64-pc-linux-gnu (R

Core Team, 2015) and lme4 v1.1-10 (Bates et al.,

2015) with the conditions Adt, RndAdt, Wgt and

scaled Tokens as linear fixed effects and game

round ordinality (ROUND) as a quadratic fixed

effect: Adt denotes updating model parameters

with dialog-specific data as discussed in Section 5

of the paper. Wgt denotes weighting word clas-

sifiers by RA as discussed in Section 6 of the pa-

per. Tokens denotes the number of word tokens

produced by both speakers in the given round.

DYAD (the pair of participants in a given dialog)

was included as a random intercept with a random

slope for Adt and Wgt. We selected the best-

fitting model using backwards selection with log-

likelihood ratio tests: Starting from the maximally



Fixed Effects

Estimate SE df t-value p(> |t|)

(Intercept) 0.68267 0.01269 42 53.81 < 2e−16∗∗∗

Adt 0.04882 0.00638 40 7.65 2.41e−09∗∗∗

Wgt 0.13140 0.01114 39 11.79 1.98e−14∗∗∗

scale(TOKENS) −0.05587 0.00261 18675 −21.38 < 2e−16∗∗∗

poly2(ROUND)1 3.69951 0.36551 18273 10.12 < 2e−16∗∗∗

poly2(ROUND)2 −1.53574 0.34191 18496 −4.49 7.11e−06∗∗∗

∗∗∗
p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Correlation of Fixed Effects

(Intercept) Adt Wgt scale(TOKENS) poly2(ROUND)1
Adt −0.554
Wgt −0.534 −0.092
scale(TOKENS) −0.014 0.009 0.001
poly2(ROUND)1 0.020 −0.013 −0.001 0.339
poly2(ROUND)2 0.011 −0.007 −0.001 −0.220 0.012

Random Effects

Groups Name Variance SD Correlation

DYAD (Intercept) 0.006184 0.0786
Adt 0.000753 0.0274 −0.72
Wgt 0.004301 0.0656 −0.53 −0.15

Residual 0.0986322 0.31406

Number of observations: 19728, groups: DYAD, 42

Table 2: Best-fitting linear mixed model for analyzing effects of dialogic model adaptation (Adt) and weighting

by lexical referring ability (Wgt) on reciprocal rank (RR), fit by maximum likelihood using Nelder-Mead downhill

simplex optimization; t-tests use Satterthwaite approximations to degrees of freedom.

complex model (Barr et al., 2013), we first simpli-

fied the random structure and then removed fixed

effects not contributing to fit. This showed that in-

cluding RndAdt does not significantly improve fit

(χ2 = 0.00003, p = 0.99599). We refit the best-

fitting model using maximum-likelihood estima-

tion with Satterthwaite approximation to degrees

of freedom using lmerTest v2.0-33 (Kuznetsova

et al., 2016) in order to provide estimates for Adt

and Wgt effects compared to the baseline coded

as a reference level; Table 2 provides the output

of the lme4 estimation using Nelder-Mead down-

hill simplex optimization with optimx v2013.8.7

(Nelder and Mead, 1965; Nash and Varadhan,

2011).

4 Significance Testing for Coreference

Effects on RA

The effects of game round ordinality (Round),

token count (Tokens) and coreference count

(Corefs) on mean RA for the given round were

analyzed by fitting a fully-interactive linear mixed

model using R v3.2.3 x86 64-pc-linux-gnu (R

Core Team, 2015) and lme4 v1.1-10 (Bates et al.,

2015) with the conditions Corefs and scaled

Tokens as linear fixed effects and ROUND as

a quadratic fixed effect. DYAD was included

as a random intercept. We selected the best-

fitting model using backwards selection with log-

likelihood ratio tests: Starting from the maximally

complex model (Barr et al., 2013), we first simpli-

fied the random structure and then removed fixed

effects not contributing to fit. We refit the best-

fitting model using maximum-likelihood estima-

tion with Satterthwaite approximation to degrees

of freedom using lmerTest v2.0-33 (Kuznetsova

et al., 2016) in order to provide estimates; This

model showed significant interactions between

Corefs and Tokens and Round in their effect

on mean RA. Table 3 provides the output of the

lmerTest estimation using Nelder-Mead optimiza-

tion (Nelder and Mead, 1965).
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