
A SQG construction algorithm

Algorithm 1 Build Semantic Query Graph
Input: Node set V , Relation Extraction model
RE(), Reward Function γ()
Output: The final Semantic Query Graph

1: for each pair (u, v) ∈ V × V do
2: RE(u, v)
3: end for
4: Initialize priority queue H
5: SQG s0={V , E = ∅}
6: H .add(s0, γ(s0))
7: while H is not empty do
8: s, r = H .pop()
9: if isValidSQG(s) then

10: return s
11: end if
12: for operation op do
13: for operate node u ∈ S.V do
14: if checkConstraint(op,u) then
15: s′ = TS(s,op,u)
16: if s′ is a new state then
17: H .add(s′, γ(s′))
18: end if
19: end if
20: end for
21: end for
22: end while

Algorithm 1 shows the pseudo code of the SQG
construction procedure. As shown in Line 1-3, we
first extract relations between each pair of nodes
by the relation extraction model. Each potential
relation has a confidence probability which can be
used in the reward function γ(). The initial state
s0 is a semantic query graph contains all isolated
nodes with no edges. We put s0 and its score
γ(s0) to the priority queue H (Line 4-6). Dur-
ing the search procedure, in each epoch we get the
current best state and check whether it is a valid
SQG. A valid SQG should be a connected graph
with at least two nodes. It should has matches in
the knowledge graph and has no subsequent SQGs
with higher scores. The first valid SQG is consid-
ered as the final semantic query graph (Line 7-11).
Line 12-21 are the enumeration of state transition.
Specifically, for each operation op we enumerate
each possible operate node u. The function check-
Constraint check whether op and u satisfy the cor-
responding condition. Although this is a greedy
search algorithm, the final SQG we generated is

usually the best one, especially when the small
node set.


