
A User Simulator
User Goal In the task-completion dialogue set-

ting, the first step of user simulator is to gener-

ate a feasible user goal. Generally, a user goal is

defined with two types of slots: request slots that

user does not know the value and expects the agent

to provide it through the conversation; inform slots

is slot-value pairs that user know in the mind, serv-

ing as soft/hard constraints in the dialog; slots that

have multiple values are termed as soft constraints,

which means user has preference, and user might

change its value when there is no result returned

from the agent based on the current values; oth-

erwise, slots that have with only one value serve

as hard constraint. Table 3 shows an example of

a user goal in the composite task-completion dia-

logue.

book-flight-ticket reserve-hotel

i
n

f
o

r
m

dst city=LA hotel city=LA

numberofpeople=2 hotel numberofpeople=2

depart date dep=09-04 hotel date checkin=09-04

or city=Toronto

seat=economy

r
e
q

u
e
s
t

price=? hotel price=?

return time dep=? hotel date checkout=?

return date dep=? hotel name=?

depart time dep=?

Table 3: An example of user goal

First User Act This work focuses on user-

initiated dialogues, so we randomly generate a

user action as the first turn (a user turn). To make

the first user-act more reasonable, we add some

constraints in the generation process. For exam-

ple, the first user turn can be inform or request

turn; it has at least two informable slots, if the user

knows the original and destination cities, or city
and dst city will appear in the first user turn etc.;

If the intent of first turn is request, it will contain

one requestable slot.

During the course of a dialogue, the user sim-

ulator maintains a compact stack-like represen-

tation named as user agenda (Schatzmann and

Young, 2009), where the user state su is factored

into an agenda A and a goal G, which consists

of constraints C and request R. At each time-

step t, the user simulator will generate the next

user action au,t based on the its current status su,t

and the last agent action am,t�1, and then update

the current status s

0
u,t. Here, when training or

testing a policy without natural language under-

standing (NLU) module, an error model (Li et al.,

2017b) is introduced to simulate the noise from

the NLU component, and noisy communication

between the user and agent.

B Algorithms

Algorithm 1 outlines the full procedure for train-

ing hierarchical dialogue policies in this compos-

ite task-completion dialogue system.



Algorithm 1 Learning algorithm for HRL agent in composite task-completion dialogue

1: Initialize experience replay buffer D1 for meta-controller and D2 for controller.

2: Initialize Q1 and Q2 network with random weights.

3: Initialize dialogue simulator and load knowledge base.

4: for episode=1:N do
5: Restart dialogue simulator and get state description s

6: while s is not terminal do
7: extrinsic reward := 0

8: s0 := s

9: select a subtask g based on probability distribution ⇡(g|s) and exploration probability ✏g

10: while s is not terminal and subtask g is not achieved do
11: select an action a based on the distribution ⇡(a|s, g) and exploration probability ✏c

12: Execute action a, obtain next state description s

0
, perceive extrinsic reward r

e
from environ-

ment

13: Obtain intrinsic reward r

i
from internal critic

14: Sample random minibatch of transitions from D1

15: y =

(
r

i
ifs

0
is terminal

r

i
+ � ⇤maxa0Q1({s0, g}, a0; ✓1) oterwise

16: Perform gradient descent on loss L(✓1) according to equation 2

17: Store transition({s,g},a,r

i
,{s0,g}) in D1

18: Sample random minibatch of transitions from D2

19: y =

(
r

e
ifs

0
is terminal

r

e
+ � ⇤maxa0Q2(s

0
, g

0
, a

0
; ✓2) oterwise

20: Perform gradient descent on loss L(✓2) according to equation 3

21: extrinsic reward += r

e

22: s = s

0

23: end while
24: Store transition (s0, g, extrinsic reward, s

0
) in D2

25: end while
26: end for


