
SUPPLEMENTARY MATERIAL FOR

Compact, Efficient and Unlimited Capacity: Language Modeling
with Compressed Suffix Trees

Algorithm 6 Compute one-sided occurrence counts, N1+(·α) or N1+(α·) for pattern α
Precondition: node n in CST t matches α

1: function N1P(t, n, α)
2: o← 1
3: if string-depth(n) = |α| then
4: o← degree(n)
5: return o

Algorithm 7 Compute backward occurrence counts, N1+(·α), using only forward CST

Precondition: vF is the node in the forward CST tF matching pattern α
Precondition: the CSA component, aF of tF is a wavelet tree

1: function N1PBACK1(tF, vF, α)
2: S ← int-syms(aF, [lb(vF), rb(vF)])
3: return |S|

Function/Constant Description Complexity

SAS sample rate of the suffix array. determines the number of jumps in
T bwt required before a suffix array value can be accessed

8 (in our exp.)

SA[i] access the i-th element of the suffix array O(SAS log σ)
leaf(n) tests if node n is a leaf of the t O(1)
string-depth(n) pattern length for the path from root to n (inclusive). Requires SA[i]

access if leaf
O(1) non-leaf;
O(SAS log σ) leaf

edge(n, k) kth symbol in the edge label from root for node n. Requires SA[i]
access

O(SAS log σ)

degree(n) number of child nodes under parent n O(σ/64)
children(n) list of all d child nodes under n O(σ/64 + d)
back-search([l, r], s) finds the node v = [l′, r′] from parent node α = v′ = [l, r] match-

ing the pattern sα. Requires 2 RANK operations on the wavelet tree
O(log σ)

fw-search([l, r], s) finds the node v = [l′, r′] from parent node α = v′ = [l, r] match-
ing the pattern αs. Requires log σ accesses to SA and one LCP
access

O(SAS log2 σ + LCPC)

int-syms(a, [l, r]) finds the set of symbols P (α) preceeding pattern α matched by
[l, r]; returns a list of tuples describing the bounds and the preced-
ding symbol 〈l, r, s〉

O(|P (α)| log σ)

Table 1: Summary of CSA and CST functions used and their time complexity of inference. The above
assumes that n or (equivalently) [l, r] matches α in the CSA a and/or CST t.

1

