SUPPLEMENTARY MATERIAL FOR Compact, Efficient and Unlimited Capacity: Language Modeling with Compressed Suffix Trees

Algorithm 6 Compute one-sided occurrence counts, $N^{1+}(\bullet \alpha)$ or $N^{1+}(\alpha \bullet)$ for pattern α

Precondition: node n in CST t matches α

1: **function** N1P(t, n, α)

2: $o \leftarrow 1$ 3: **if** string-depth $(n) = |\alpha|$ **then** 4: $o \leftarrow \text{degree}(n)$

5: return o

Algorithm 7 Compute backward occurrence counts, $N^{1+}(\bullet \alpha)$, using only forward CST

Precondition: $v_{\rm F}$ is the node in the forward CST $t_{\rm F}$ matching pattern α

Precondition: the CSA component, $a_{\rm F}$ of $t_{\rm F}$ is a wavelet tree

- 1: **function** N1PBACK1(t_F, v_F, α)
- 2: $S \leftarrow \text{int-syms}(a_{\text{F}}, [\text{lb}(v_{\text{F}}), \text{rb}(v_{\text{F}})])$
- 3: return |S|

P_C)
Pa

Table 1: Summary of CSA and CST functions used and their time complexity of inference. The above assumes that n or (equivalently) [l, r] matches α in the CSA a and/or CST t.