
A Derivation of the u-updates in
DD-ADMM

By equating to zero∇uAρ, we obtain

ut+1(r) = 1
δ(r)

∑
s:r∈R̄s

(
zt+1
s (r)− ρ−1λts(r)

)
. (22)

Second, note that if we initialize λ to zero, it will
always satisfy

∑
s:r∈R̄s

λs(r) = 0, ∀r ∈ R. (This
can be easily proved by induction by inspecting the
updates in Eqs. 10 and 22.) Those conditions are
simply the constraints of problem D (Eq. 7); hence,
each iterate of the ADMM is guaranteed to produce
a dual feasible solution. Furthermore, this property
allows us to simplify the u-updates (Eq. 22) to:

ut+1(r) = 1
δ(r)

∑
s:r∈R̄s

zt+1
s (r); (23)

this is precisely the average operation used in the
subgradient algorithm (cf. Eq. 9).

B Pairwise Factors

Define a12 = ρ−1θ12, and assume that a12 ≥ 0,
without loss of generality (if a12 < 0, we recover
this case by redefining a′1 = a1 + a12, a′2 = 1− a2,
a′12 = −a12, z′2 = 1 − z2, z′12 = z1 − z12). Then,
the lower bound constraints z12 ≥ z1 + z2 − 1 and
z12 ≥ 0 are always inactive and can be ignored. By
inspecting the KKT conditions we obtain the follow-
ing closed-form solution: z?12 = min{z?1 , z?2} and
〈z?1 , z?2〉 =

([a1]U, [a2 + a12]U) if a1 > a2 + a12

([a1 + a12]U, [a2]U) if a2 > a1 + a12

([(a1 + a2 + a12)/2]U ,
[(a1 + a2 + a12)/2]U) otherwise,

(24)
where [x]U = min{max{x, 0}, 1} denotes the pro-
jection (clipping) onto the unit interval. Hence, for
this case, Eq. 14 can be solved in constant time.

C Uniqueness Quantification and XOR

The algorithm for computing a projection onto the
simplex is depicted as Alg. 2 (Duchi et al., 2008).

D Existential Quantification and OR

The following procedure computes this projection:

1. For i = 1, . . . , n, set zi = [ai]U.

Algorithm 2 Projection onto simplex
Input: 〈a1, . . . , an〉
Sort 〈a1, . . . , an〉 into 〈b1, . . . , bn〉: b1 ≥ . . . ≥ bn
Find ρ = max

{
j ∈ [n] | bj − 1

j

(∑j
r=1 br − 1

)
> 0
}

Define τ = 1
ρ (
∑ρ
r=1 br − 1)

Output: 〈z1, . . . , zn〉 with zi = max{ai − τ, 0}.

2. If
∑n

i=1 zi ≥ 1, return 〈z1, . . . , zn〉. Else, project
〈a1, . . . , an〉 onto the simplex.

The runtime is also O(n log n).
To see that this procedure is correct, we need the

following
Lemma 1. Consider a problem of the form

P : min
x∈X

f(x) s.t. g(x) ≤ 0, (25)

where X is nonempty convex subset of Rd and f :
X → R and g : X → R are convex functions. Sup-
pose that the problem (25) is feasible and bounded
below, and let A be the set of solutions of the relaxed
problem minx∈X f(x), i.e. A = Argminx∈X f(x).
Then:

1. if for some x̃ ∈ A we have g(x̃) ≤ 0, then x̃ is
also a solution of the original problem P ;

2. otherwise (if for all x̃ ∈ A we have g(x̃) > 0),
the inequality constraint is necessarily active in
P , i.e., problem P is equivalent to minx∈X f(x)
s.t. g(x) = 0.

Proof. Let f∗ be the optimal value of P . The first
statement is obvious: since x̃ is a solution of a re-
laxed problem we have f(x̃) ≤ f∗; hence if x̃ is
feasible this becomes an equality. For the second
statement, assume that ∃x ∈ X s.t. g(x) < 0
(otherwise, the statement holds trivially). The non-
linear Farkas’ lemma (Prop. 3.5.4, p. 204, of Bert-
sekas et al. (2003)) implies that there exists some
λ∗ ≥ 0 s.t. f(x) − f∗ + λ∗g(x) ≥ 0 holds for
all x ∈ X. In particular, this also holds for an op-
timal x∗ (i.e., such that f∗ = f(x∗)), which im-
plies that λ∗g(x∗) ≥ 0. However, since λ∗ ≥ 0
and g(x∗) ≤ 0 (since x∗ has to be feasible), we also
have λ∗g(x∗) ≤ 0, i.e., λ∗g(x∗) = 0. Now suppose
that λ∗ = 0. Then we have f(x)− f∗ ≥ 0, ∀x ∈ X,
which implies that x∗ ∈ A and contradicts the as-
sumption that g(x̃) > 0,∀x̃ ∈ A. Hence we must
have g(x∗) = 0.



Hence, the validity of the second step stems from
the fact that, if the relaxed problem in the first step
does not return a feasible point, then the constraint∑n

i=1 zi ≥ 1 has to be active, i.e., we must have∑n
i=1 zi = 1. This, in turn, implies that zi ≤ 1, ∀i,

hence the problem reduces to the XOR case.

E Logical Variable Assignments

Note that ZOR-OUT = Z′ ∩ Z′′ where Z′ =
{〈z0, . . . , zn〉 | z0 ≤ zi, ∀i = 1, . . . , n} and Z′′ =
{〈z0, . . . , zn〉 ∈ [0, 1]n | z0 ≥

∑n
i=1 zi}.

The following procedure computes the desired
projection:

1. Set 〈z′0, . . . , z′n〉 as the projection of 〈a0, . . . , an〉
onto Z′. This can be done with a sort in
O(n log n), via Alg. 3.

2. Clip onto the unit cube: for i = 1, . . . , n, set zi =
[z′i]U. If the result lies in Z′′, return 〈z0, . . . , zn〉.
Otherwise, go to step 3.

3. Project 〈a0, . . . , an〉 onto {〈z0, . . . , zn〉 ∈
[0, 1]n | z0 =

∑n
i=1 zi}. Note that this corre-

sponds to the slave subproblem of the XOR-WITH-
OUTPUT factor, hence can be solved inO(n log n)
by projecting onto the simplex.

The total runtime is O(n log n).
To prove the correctness of this procedure, we

will show that steps 1–2 are computing a projection
onto the set: Z̃ = {〈z0, . . . , zn〉 ∈ [0, 1]n | z0 ≤
zi, ∀i = 1, . . . , n}. If that is true, then Lemma 1
ensures that the procedure is correct. Note that steps
1–2 are a composition of two projections. In gen-
eral, the composition of individual projections is not
equivalent to projecting onto the intersection. In
particular, commuting the two steps would make
our procedure incorrect. However, it turns out that
the sequence of these two projections correspond to
the first iteration of Dykstra’s projection algorithm
(Boyle and Dykstra, 1986) applied to sets Z′ and
[0, 1]n; and that Dykstra’s converges in one iteration
for this particular case (Martins et al., 2011, supple-
mentary material).

F Linear Program for the Head
Automaton

In this section, we derive the linear program associ-
ated with the sibling-based head automaton used by

Algorithm 3 Projection onto Z′

Input: 〈a0, . . . , an〉
Sort a1, . . . , an into b1 ≥ . . . ≥ bn
Find ρ = min

{
j ∈ [n] | 1

j

(
a0 +

∑j−1
r=1 br

)
> bj

}
Define τ = 1

ρ

(
a0 +

∑ρ−1
r=1 br

)
Output: 〈z0, . . . , zn〉 with z0 = τ and zi =
min{ai, τ}, i = 1, . . . , n.

Koo et al. (2010). Let 〈t0, . . . , tn〉 be a sentence with
nwords, where t0 is a dummy root symbol. For each
word i, we will cast the head automaton problem as
an LP. Without loss of generality, assume that i = 0
and the sequence of siblings lie on the right side of
the root; the general case follows easily. Let:

• sj be the score associated with word tj being a
modifier of t0,

• s0j be the score associated with word tj being
the first modifier of t0,

• sjk be the score associated with words tj and
tk being consecutive siblings.

The problem is equivalent to that of finding a Viterbi
path 〈y1, . . . , yn〉 for a chain model whose possi-
ble states for Yj are {0, . . . , j}; the event Yj = a
means that “the last modifier, up to tj , is ta.” Be-
tween words tj and tj+1, only two transitions may
occur: either Yj+1 = yj (which happens if tj+1 is
not a modifier), or Yj+1 = j + 1 (which happens
otherwise). Since this is a chain model, the marginal
polytope is exactly characterized by local consis-
tency constraints (Wainwright and Jordan, 2008) and
hard constraints. Let µi(a) be the posterior marginal
for the event Yi = a, and µi,i+1(a, b) the posterior
marginal for the event Yi = a ∧ Yi+1 = b. Local
consistency constraints assert that∑i

a=0 µi(a) = 1, i ∈ [n] (26)∑i+1
b=0 µi,i+1(a, b)

= µi(a), i ∈ [n], a ∈ [i] (27)∑i
a=0 µi,i+1(a, b)

= µi+1(b), i ∈ [n], b ∈ [i+ 1] (28)

µi(a) ≥ 0, i ∈ [n], a ∈ [i] (29)

µi,i+1(a, b) ≥ 0, i ∈ [n], a ∈ [i], b ∈ [i+ 1].
(30)



Hard constraints assert that impossible configura-
tions must receive zero marginals:

µi,i+1(a, b) = 0, i ∈ [n], a ∈ [i], b /∈ {a, i+ 1}.
(31)

Plugging (31) in (27)–(28) yields:

µi,i+1(a, a) + µi,i+1(a, i+ 1) = µi(a),

i ∈ [n], a ∈ [i] (32)

µi,i+1(b, b) = µi+1(b),

i ∈ [n], b ∈ [i+ 1] (33)∑i
a=0 µi,i+1(a, i+ 1) = µi+1(i+ 1),

i ∈ [n], (34)

and plugging further (33) in (32) yields:

µi+1(a) + µi,i+1(a, i+ 1) = µi(a),

i ∈ [n], a ∈ [i]. (35)

The marginal polytope is thus characterized by (26),
(35), (34), and (29)–(30). We next make the variable
replacements

• zi , µi(i), the posterior marginal for the event
that ti is a modifier;

• za(i+1) , µi,i+1(a, i + 1), the posterior
marginal for the event that ta and ti+1 are con-
secutive siblings;

• ωai , µi(a), the posterior marginal for the
event that, up to ti, the last modifier is ta.

The overall optimization problem becomes that of
maximizing

n∑
j=1

sjzj +

n∑
j=0

n∑
k=j+1

sjkzjk (36)

subject to:

ωii = zi, i ∈ [n] (37)
i∑

a=0

ωai = 1, i ∈ [n] (38)

ωa(i+1) + za(i+1) = ωai, i ∈ [n], a ∈ [i] (39)
i∑

a=0

za(i+1) = zi+1, i ∈ [n] (40)

ωai ≥ 0, i ∈ [n], a ∈ [i] (41)

za(i+1) ≥ 0, i ∈ [n], a ∈ [i]. (42)

Introducing head automata for each word t0, . . . , tn
yields O(n3) variables and constraints. Therefore
this formulation is as costly as the one employed in
Martins et al. (2009a), while much simpler and, un-
like the latter, exact.

Examining constraints (38) and (41), we recog-
nize the linear equations that define the marginal
polytope ZXOR (cf. Eq. 19). Similarly, constraints
(39) and (41–42) define the marginal polytope of a
XOR-WITH-OUTPUT factor, and so do (40) and (42).
Writing the corresponding logical constraints yields
the expressions in the fifth row of Table 1.

We now show that, if we take the multi-
commodity flow formulation of Martins et al.
(2009a) and replace the consecutive-sibling con-
straints there by the ones in (37)–(42), then the re-
sulting LP has exactly the same solution that is found
by the dual decomposition method of Koo et al.
(2010) with sibling head automata.16 This is done by
showing that the two local polytope approximations
are the same. Moreover, both are tighter approxi-
mations than the one resulting from the single com-
modity flow formulation of Martins et al. (2009a).

The local polytope in Koo et al. (2010) is of the
form

Z̄ =

(ztree, zhead)

∣∣∣∣ ztree ∈ Ztree

zhead ∈ Zhead

ztree ∼ zhead

 , (43)

where Ztree is the directed spanning tree polytope,
and Zhead is the marginal polytope associated with
the head automata, which is characterized by (37)–
(42);17 the requirement for overlap agreement is the
same in Martins et al. (2009a) and Koo et al. (2010),
hence we only need to concern about the directed
spanning tree polytope Ztree. The multi-commodity
flow formulation of Martins et al. (2009a) adds ex-
tra variables for flows in the arcs, and it is shown
that for an arc-factored model the formulation is ex-
act. This means that by projecting out the flow vari-
ables, the constraint space in Martins et al. (2009a)

16However, this does not apply to the head automata model
of Koo et al. (2010) with siblings and grandparents, whose re-
laxation appears to be tighter than just adding grandparent vari-
ables and constraints as in Martins et al. (2009a).

17To be precise, (37)–(42) define a polytope in a larger space
(with extra dimensions for the auxiliary ω-variables). However
the projection of this polytope onto the subspace where the z-
variables live equals Zhead.



becomes exactly the spanning tree polytope Ztree.
Therefore, the local polytope Z̄mc in Martins et al.
(2009a) with the corrections above equals the one in
(43). In contrast, the formulation with single com-
modities is not exact for the arc-factored model, and
as a consequence, the polytope Z̄sc is an outer bound
of Z. In sum, we have the chain:

Z ⊆ Z̄ = Z̄mc ⊆ Z̄sc (44)

where Z is the true (intractable) marginal polytope
for this problem.

G Error Analysis

Fig. 5 shows examples of parses that were correctly
predicted by the full model, but not by the G+CS
model.

In (A), the G+CS model has predicted 1987 as the
head of about. The full model got it right, arguably
due to the nonprojectivity features that find the non-
projective arc lesson→about to be likely.

In (B), the G+CS model attached further to re-
tailers. The word further forms an adverbial phrase
which enjoys considerable freedom about where it
can be placed in a sentence. Hence, features that
look at all siblings attached to a head word (rather
than just consecutive ones) may help parsing sen-
tences without a rigid word ordering.

(C) is an example where path features seem to
help. The G+CS model predicted 3 arcs incor-
rectly, because it assumed that policy won’t become
clear for months was a phrase (hence it predicted
*→translate→wo(n’t)→policy). The full model
may have found unlikely the long path that would
descend from translate, and prefered a more hori-
zontal parse.

Example (D) seems simple to parse; the word
snowball, however, was incorrectly tagged as a verb
by the part-of-speech tagger and confused the G+CS
model, which predicted to→snowball→effect. The
full model got it right, arguably because of the bi-
gram features, which give a low score to configura-
tions in which two consecutive words (in this case
a and snowball) have crossing dependency attach-
ments in opposite sides. This shows that a parser
with many features may gain robustness to errors in
the pipeline.



(A) * He added : ‘‘ We learned a lesson in 1987 about volatility

(B) * ‘‘ This further confuses retailers , ’’ she says

(C) * How such remarks translate into policy wo n’t become clear for months

(D) * In 1987 , such selling contributed to a snowball effect

Figure 5: Sentences of the English non-projective dataset (CoNLL 2008) that were correctly parsed by the full model,
but not by the G+CS model. Arcs shown in blue are those that were missed by the G+CS model. See text for an
explanation.


